1
|
Wei P, Li X, Zhang K, Zhao X, Dong C, Zhao J. Loss of the cytochrome b6f subunit PetN destabilizes the complex and severely impairs state transitions in Anabaena variabilis. PLANT PHYSIOLOGY 2025; 197:kiaf094. [PMID: 40073199 DOI: 10.1093/plphys/kiaf094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/06/2025] [Indexed: 03/14/2025]
Abstract
The cytochrome b6f complex (Cyt b6f) plays pivotal roles in both linear and cyclic electron transport of oxygenic photosynthesis in plants and cyanobacteria. The 4 large subunits of Cyt b6f are responsible for organizing the electron transfer chain within Cyt b6f and have their counterparts in the cytochrome bc1 complex in other bacteria. The 4 small subunits of Cyt b6f are unique to oxygenic photosynthesis, and their functions remain to be elucidated. Here, we report that Cyt b6f was destabilized by the loss of PetN, one of the small subunits, in a petN mutant (ΔpetN) of Anabaena variabilis ATCC 29413 and that the amount of the large subunits of Cyt b6f decreased to 20%-25% of that in the wild type (WT). The oxygen evolution activity of ΔpetN was ∼30% of that from the WT, and the activity could largely be restored by the addition of N,N,N', N'-tetramethyl-p-phenylenediamine (TMPD), which functions as an electron carrier and bypasses Cyt b6f. Both linear and cyclic electron transfer of the mutant became partially insensitive to the Cyt b6f inhibitor 2,5-dibromo-3-methyl-6-isopropylbenzoquinone. Although the plastoquinone pool was largely reduced in ΔpetN under normal light conditions, the mutant had a substantially higher PSII/PSI ratio than the WT. State transitions in ΔpetN were abolished, as revealed by 77 K fluorescence spectra and room temperature fluorescence kinetics in the presence of TMPD. Our findings strongly suggest that Cyt b6f is required for state transitions in the cyanobacteria.
Collapse
Affiliation(s)
- Peijun Wei
- School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Gene Function and Modulation Research, Beijing 100871, China
| | - Xiying Li
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Kun Zhang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Xueang Zhao
- School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Gene Function and Modulation Research, Beijing 100871, China
| | - Chunxia Dong
- School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Gene Function and Modulation Research, Beijing 100871, China
| | - Jindong Zhao
- School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Gene Function and Modulation Research, Beijing 100871, China
| |
Collapse
|
3
|
Feilke K, Ajlani G, Krieger-Liszkay A. Overexpression of plastid terminal oxidase in Synechocystis sp. PCC 6803 alters cellular redox state. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0379. [PMID: 28808098 DOI: 10.1098/rstb.2016.0379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2017] [Indexed: 12/18/2022] Open
Abstract
Cyanobacteria are the most ancient organisms performing oxygenic photosynthesis, and they are the ancestors of plant plastids. All plastids contain the plastid terminal oxidase (PTOX), while only certain cyanobacteria contain PTOX. Many putative functions have been discussed for PTOX in higher plants including a photoprotective role during abiotic stresses like high light, salinity and extreme temperatures. Since PTOX oxidizes PQH2 and reduces oxygen to water, it is thought to protect against photo-oxidative damage by removing excess electrons from the plastoquinone (PQ) pool. To investigate the role of PTOX we overexpressed rice PTOX fused to the maltose-binding protein (MBP-OsPTOX) in Synechocystis sp. PCC 6803, a model cyanobacterium that does not encode PTOX. The fusion was highly expressed and OsPTOX was active, as shown by chlorophyll fluorescence and P700 absorption measurements. The presence of PTOX led to a highly oxidized state of the NAD(P)H/NAD(P)+ pool, as detected by NAD(P)H fluorescence. Moreover, in the PTOX overexpressor the electron transport capacity of PSI relative to PSII was higher, indicating an alteration of the photosystem I (PSI) to photosystem II (PSII) stoichiometry. We suggest that PTOX controls the expression of responsive genes of the photosynthetic apparatus in a different way from the PQ/PQH2 ratio.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.
Collapse
Affiliation(s)
- Kathleen Feilke
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Saclay, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Ghada Ajlani
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Saclay, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Saclay, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France
| |
Collapse
|
4
|
Ermakova M, Huokko T, Richaud P, Bersanini L, Howe CJ, Lea-Smith DJ, Peltier G, Allahverdiyeva Y. Distinguishing the Roles of Thylakoid Respiratory Terminal Oxidases in the Cyanobacterium Synechocystis sp. PCC 6803. PLANT PHYSIOLOGY 2016; 171:1307-19. [PMID: 27208274 PMCID: PMC4902628 DOI: 10.1104/pp.16.00479] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 04/11/2016] [Indexed: 05/03/2023]
Abstract
Various oxygen-utilizing electron sinks, including the soluble flavodiiron proteins (Flv1/3), and the membrane-localized respiratory terminal oxidases (RTOs), cytochrome c oxidase (Cox) and cytochrome bd quinol oxidase (Cyd), are present in the photosynthetic electron transfer chain of Synechocystis sp. PCC 6803. However, the role of individual RTOs and their relative importance compared with other electron sinks are poorly understood, particularly under light. Via membrane inlet mass spectrometry gas exchange, chlorophyll a fluorescence, P700 analysis, and inhibitor treatment of the wild type and various mutants deficient in RTOs, Flv1/3, and photosystem I, we investigated the contribution of these complexes to the alleviation of excess electrons in the photosynthetic chain. To our knowledge, for the first time, we demonstrated the activity of Cyd in oxygen uptake under light, although it was detected only upon inhibition of electron transfer at the cytochrome b6f site and in ∆flv1/3 under fluctuating light conditions, where linear electron transfer was drastically inhibited due to impaired photosystem I activity. Cox is mostly responsible for dark respiration and competes with P700 for electrons under high light. Only the ∆cox/cyd double mutant, but not single mutants, demonstrated a highly reduced plastoquinone pool in darkness and impaired gross oxygen evolution under light, indicating that thylakoid-based RTOs are able to compensate partially for each other. Thus, both electron sinks contribute to the alleviation of excess electrons under illumination: RTOs continue to function under light, operating on slower time ranges and on a limited scale, whereas Flv1/3 responds rapidly as a light-induced component and has greater capacity.
Collapse
Affiliation(s)
- Maria Ermakova
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku FI-20014, Finland (M.E., T.H., L.B., Y.A.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Cadarache, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Centre National de la Recherche Scientifique, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Aix Marseille Université, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13284 Marseille, France (P.R., G.P.); andDepartment of Biochemistry, University of Cambridge, Cambridge, CB2 1QW United Kingdom (C.J.H., D.J.L.-S.)
| | - Tuomas Huokko
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku FI-20014, Finland (M.E., T.H., L.B., Y.A.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Cadarache, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Centre National de la Recherche Scientifique, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Aix Marseille Université, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13284 Marseille, France (P.R., G.P.); andDepartment of Biochemistry, University of Cambridge, Cambridge, CB2 1QW United Kingdom (C.J.H., D.J.L.-S.)
| | - Pierre Richaud
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku FI-20014, Finland (M.E., T.H., L.B., Y.A.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Cadarache, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Centre National de la Recherche Scientifique, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Aix Marseille Université, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13284 Marseille, France (P.R., G.P.); andDepartment of Biochemistry, University of Cambridge, Cambridge, CB2 1QW United Kingdom (C.J.H., D.J.L.-S.)
| | - Luca Bersanini
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku FI-20014, Finland (M.E., T.H., L.B., Y.A.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Cadarache, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Centre National de la Recherche Scientifique, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Aix Marseille Université, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13284 Marseille, France (P.R., G.P.); andDepartment of Biochemistry, University of Cambridge, Cambridge, CB2 1QW United Kingdom (C.J.H., D.J.L.-S.)
| | - Christopher J Howe
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku FI-20014, Finland (M.E., T.H., L.B., Y.A.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Cadarache, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Centre National de la Recherche Scientifique, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Aix Marseille Université, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13284 Marseille, France (P.R., G.P.); andDepartment of Biochemistry, University of Cambridge, Cambridge, CB2 1QW United Kingdom (C.J.H., D.J.L.-S.)
| | - David J Lea-Smith
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku FI-20014, Finland (M.E., T.H., L.B., Y.A.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Cadarache, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Centre National de la Recherche Scientifique, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Aix Marseille Université, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13284 Marseille, France (P.R., G.P.); andDepartment of Biochemistry, University of Cambridge, Cambridge, CB2 1QW United Kingdom (C.J.H., D.J.L.-S.)
| | - Gilles Peltier
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku FI-20014, Finland (M.E., T.H., L.B., Y.A.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Cadarache, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Centre National de la Recherche Scientifique, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Aix Marseille Université, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13284 Marseille, France (P.R., G.P.); andDepartment of Biochemistry, University of Cambridge, Cambridge, CB2 1QW United Kingdom (C.J.H., D.J.L.-S.)
| | - Yagut Allahverdiyeva
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku FI-20014, Finland (M.E., T.H., L.B., Y.A.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Cadarache, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Centre National de la Recherche Scientifique, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Aix Marseille Université, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13284 Marseille, France (P.R., G.P.); andDepartment of Biochemistry, University of Cambridge, Cambridge, CB2 1QW United Kingdom (C.J.H., D.J.L.-S.)
| |
Collapse
|