1
|
Luo Q, Luo H, Zhang T, Liu X, Chen X, Chen Q, Feng J, Qu P, Chen C, Xu N. Corynebacterium lipophilum sp. nov., a lipophilic bacterium isolated from clinical breast specimens and emended description of the species Corynebacterium pilbarense. Antonie Van Leeuwenhoek 2023; 116:1091-1101. [PMID: 37610475 DOI: 10.1007/s10482-023-01854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2023] [Indexed: 08/24/2023]
Abstract
Two isolates (MC-18T and MC-17D), representing the Gram-stain-positive, facultatively anaerobic, irregular rod-shaped, non-motile, and non-spore-forming actinobacteria, were isolated from clinical breast specimens in Guangzhou, China. The growth of the isolates is enhanced by supplementing 1% Tween-80 on Luria Bertani agar. Optimal growth of the isolates was observed at 37 °C, pH 7-8, and with 1% (w/v) NaCl on Columbia blood agar. Pairwise comparison of the 16S rRNA gene sequences revealed that isolates MC-18T and MC-17D shared the highest sequence similarities with Corynebacterium liangguodongii 2184T (96.9%), which were lower than the threshold value for species delineation (98.65%). Phylogenetic dendrograms based on the 16S rRNA gene, rpoB gene, and core genomes indicated that two isolates formed a distinct lineage within the genus Corynebacterium. The estimated dDDH, ANIb, ANIm, and AAI values between strain MC-18T and its closely related strains were below the threshold values generally considered for recognizing a new species. The genome DNA G + C contents of both the isolates MC-18T and MC-17D are 60.6%. The two isolates have virulence-related genes of the VF classes of adhesion and antiphagocytosis, and also contain the antimicrobial resistance genes ErmX, mtrA, rpoB2, and RbpA. The major fatty acids (> 10%) of isolates MC-18T and MC-17D were C16:0, C18:1 ω9c, C18:0 and summed feature 5 (anteiso-C18:0 and/or C18:2 ω6,9c). The main respiratory quinone of strain MC-18T was MK-8(H2), and the polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, three unidentified glycolipids, an unidentified aminolipid, and four unidentified phosphoglycolipids. The two isolates lack mycolic acids in the cell envelope. Based on the above findings, the two isolates are considered to represent a novel species of the genus Corynebacterium, for which the name Corynebacterium lipophilum sp. nov. is proposed, with isolate MC-18T (= NBRC 115144T = CCTCC AB 2020201T) as the type strain. An emended description of the Corynebacterium pilbarense is also provided.
Collapse
Affiliation(s)
- Qiang Luo
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Haimin Luo
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Tianqi Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Xiaofang Liu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Xiaowei Chen
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Qianming Chen
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Junhui Feng
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Pinghua Qu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Cha Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Ning Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
2
|
Saadh MJ, Lohrasbi A, Ghasemian E, Hashemian M, Etemad A, Dargahi Z, Kaviar VH. The Status of Carbapenem Resistance in Cystic Fibrosis: A Systematic Review and Meta-Analysis. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2022; 95:495-506. [PMID: 36568834 PMCID: PMC9765336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background: Antibiotic resistance in cystic fibrosis (CF) is a well-known phenomenon. However, the comprehensive epidemiological impact of antibiotic resistance in CF is not clearly documented. So, this meta-analysis evaluated the proportion rates of carbapenem resistance (imipenem, meropenem, and doripenem) in CF based on publication date (1979-2000, 2001-2010, and 2011-2021), continents, pathogens, and antimicrobial susceptibility testing (AST). Methods: We searched studies in PubMed, Scopus, and Web of Science (until April 2021). Statistical analyses were conducted using STATA software (version 14.0). Results: The 110 studies included in the analysis were performed in 25 countries and investigated 13,324 pathogens associated with CF. The overall proportion of imipenem, meropenem, and doripenem resistance in CF were 43% (95% CI 36-49), 48% (95% CI 40-57), 28% (95% CI 23-33), and 45% (95% CI 32-59), respectively. Our meta-analysis showed that trends of imipenem, meropenem, and doripenem-resistance had gradual decreases over time (1979-2021). This could be due to the limited clinical effectiveness of these antibiotics to treat CF cases over time. Among the opportunistic pathogens associated with CF, the highest carbapenem resistance rates were shown in Stenotrophomonas maltophilia, Burkholderia spp., Pseudomonas aeruginosa, and Staphylococcus aureus. The highest and lowest carbapenem resistance rates among P. aeruginosa in CF patients were shown against meropenem (23%) and doripenem (39%). Conclusions: We showed that trends of carbapenem resistance had decreased over time (1979-2021). This could be due to the limited clinical effectiveness of these antibiotics to treat CF cases over time. Plans should be directed to fight biofilm-associated infections and prevent the emergence of mutational resistance. Systematic surveillance for carbapenemase-producing pathogens in CF by molecular surveillance is necessitated.
Collapse
Affiliation(s)
- Mohamed J. Saadh
- Faculty of Pharmacy, Middle East University, Amman,
Jordan
- Applied Science Research Center, Applied Science
Private University, Amman, Jordan
| | - Armaghan Lohrasbi
- Department of Biological and Biomedical Sciences,
Glasgow Caledonian University, Glasgow, Scotland
| | - Elaheh Ghasemian
- Department of Microbiology, School of Medicine,
Kermanshah University of Medical Sciences, Tehran, Iran
| | - Marzieh Hashemian
- Clinical Microbiology Research Center, Ilam University
of Medical Sciences, Ilam, Iran
| | - Anahita Etemad
- Clinical Microbiology Research Center, Ilam University
of Medical Sciences, Ilam, Iran
| | - Zahra Dargahi
- Department of Microbiology, School of Medicine, Ahvaz
Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahab Hassan Kaviar
- Clinical Microbiology Research Center, Ilam University
of Medical Sciences, Ilam, Iran
| |
Collapse
|
3
|
Prygiel M, Polak M, Mosiej E, Wdowiak K, Formińska K, Zasada AA. New Corynebacterium Species with the Potential to Produce Diphtheria Toxin. Pathogens 2022; 11:1264. [PMID: 36365015 PMCID: PMC9693595 DOI: 10.3390/pathogens11111264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Only three Corynebacterium species are known to produce a lethal exotoxin called diphtheria toxin. These are C. diphtheriae, C. ulcerans and C. pseudotuberculosis. The diphtheria toxin gene (tox) is carried in a family of closely related corynebacteriophages and therefore the toxin can be produced only through lysogenisation, in which the corynephage encoding tox is stably inserted into the chromosome. However, 'nontoxigenic tox gene-bearing' (NTTB) strains, which are genotypically tox-positive but do not express the protein, have been described. The emergence of NTTB strains was first observed during the 1990s diphtheria epidemic in Eastern Europe and nowadays such isolates have been detected in many countries in the world. Recently, novel species of Corynebacterium genus have been described which might have the potential of producing the diphtheria toxin due to the possession of the diphtheria toxin gene but it has not produced toxin in laboratory tests. The circulation of NTTB strains could be related to the increased risk for diphtheria disease arising from the risk of re-emerging toxin expression. The article presents the mechanism of diphtheria toxin expression and action, recently described novel species of NTTB corynebacteria as well as the taxonomic changes within the C. diphtheriae group.
Collapse
|
4
|
Guglielmini J, Hennart M, Badell E, Toubiana J, Criscuolo A, Brisse S. Genomic Epidemiology and Strain Taxonomy of Corynebacterium diphtheriae. J Clin Microbiol 2021; 59:e0158121. [PMID: 34524891 PMCID: PMC8601238 DOI: 10.1128/jcm.01581-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
Corynebacterium diphtheriae is highly transmissible and can cause large diphtheria outbreaks where vaccination coverage is insufficient. Sporadic cases or small clusters are observed in high-vaccination settings. The phylogeography and short timescale evolution of C. diphtheriae are not well understood, in part due to a lack of harmonized analytical approaches of genomic surveillance and strain tracking. We combined 1,305 genes with highly reproducible allele calls into a core genome multilocus sequence typing (cgMLST) scheme. We analyzed cgMLST gene diversity among 602 isolates from sporadic clinical cases, small clusters, or large outbreaks. We defined sublineages based on the phylogenetic structure within C. diphtheriae and strains based on the highest number of cgMLST mismatches within documented outbreaks. We performed time-scaled phylogenetic analyses of major sublineages. The cgMLST scheme showed high allele call rate in C. diphtheriae and the closely related species C. belfantii and C. rouxii. We demonstrate its utility to delineate epidemiological case clusters and outbreaks using a 25 mismatches threshold and reveal a number of cryptic transmission chains, most of which are geographically restricted to one or a few adjacent countries. Subcultures of the vaccine strain PW8 differed by up to 20 cgMLST mismatches. Phylogenetic analyses revealed a short-timescale evolutionary gain or loss of the diphtheria toxin and biovar-associated genes. We devised a genomic taxonomy of strains and deeper sublineages (defined using a 500-cgMLST-mismatch threshold), currently comprising 151 sublineages, only a few of which are geographically widespread based on current sampling. The cgMLST genotyping tool and nomenclature was made publicly accessible (https://bigsdb.pasteur.fr/diphtheria). Standardized genome-scale strain genotyping will help tracing transmission and geographic spread of C. diphtheriae. The unified genomic taxonomy of C. diphtheriae strains provides a common language for studies of ecology, evolution, and virulence heterogeneity among C. diphtheriae sublineages.
Collapse
Affiliation(s)
- Julien Guglielmini
- Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, Department of Computational Biology, Paris, France
| | - Melanie Hennart
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Edgar Badell
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- National Reference Center for the Corynebacteria of the Diphtheriae Complex, Paris, France
| | - Julie Toubiana
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- National Reference Center for the Corynebacteria of the Diphtheriae Complex, Paris, France
- Université de Paris, Service de Pédiatrie Générale et Maladies Infectieuses, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexis Criscuolo
- Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, Department of Computational Biology, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- National Reference Center for the Corynebacteria of the Diphtheriae Complex, Paris, France
| |
Collapse
|
5
|
Whole genome sequence of a non-toxigenic Corynebacterium diphtheriae strain from a hospital in southeastern China. BMC Genom Data 2021; 22:42. [PMID: 34656079 PMCID: PMC8520229 DOI: 10.1186/s12863-021-00998-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/06/2021] [Indexed: 12/02/2022] Open
Abstract
Background Sporadic cases of infection with non-toxigenic Corynebacterium diphtheriae (C. diphtheriae) isolates have been reported in regions covered by the Diphtheria-Tetanus-Pertussis vaccine, but no information describing the whole genome of non-toxigenic strains collected in China is available. Therefore, in this work, the complete genome of a non-toxigenic strain of C. diphtheriae from a hospital located in southeastern China was performed. Results This non-toxigenic isolate belonged to the belfanti biotype and possessed a unique ST (assigned as ST799 in pubMLST). ErmX was present in the genome sequence and this isolate owned the resistance to erythromycin and clindamycin. Genes coding for virulence factors involved in adherence, iron-uptake and regulation of diphtheria toxin were also found. Two genes were involved in the interaction between pathogen and host. The phylogenetic analysis revealed that this newly isolated strain was similar to the strain NCTC10838, CMCNS703 and CHUV2995. Conclusion Non-toxigenic C. diphtheriae strain contained virulence factors, thus it is able to cause an infectious disease, aspect that could be clarified by performing the whole genome sequencing analysis. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-00998-9.
Collapse
|
6
|
Willis JR, Saus E, Iraola-Guzmán S, Cabello-Yeves E, Ksiezopolska E, Cozzuto L, Bejarano LA, Andreu-Somavilla N, Alloza-Trabado M, Blanco A, Puig-Sola A, Broglio E, Carolis C, Ponomarenko J, Hecht J, Gabaldón T. Citizen-science based study of the oral microbiome in Cystic fibrosis and matched controls reveals major differences in diversity and abundance of bacterial and fungal species. J Oral Microbiol 2021; 13:1897328. [PMID: 34104346 PMCID: PMC8143623 DOI: 10.1080/20002297.2021.1897328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Introduction: Cystic fibrosis (CF) is an autosomal genetic disease, associated with the production of excessively thick mucosa and with life-threatening chronic lung infections. The microbiota of the oral cavity can act as a reservoir or as a barrier for infectious microorganisms that can colonize the lungs. However, the specific composition of the oral microbiome in CF is poorly understood.Methods: In collaboration with CF associations in Spain, we collected oral rinse samples from 31 CF persons (age range 7-47) and matched controls, and then performed 16S rRNA metabarcoding and high-throughput sequencing, combined with culture and proteomics-based identification of fungi to survey the bacterial and fungal oral microbiome.Results: We found that CF is associated with less diverse oral microbiomes, which were characterized by higher prevalence of Candida albicans and differential abundances of a number of bacterial taxa that have implications in both the connection to lung infections in CF, as well as potential oral health concerns, particularly periodontitis and dental caries.Conclusion: Overall, our study provides a first global snapshot of the oral microbiome in CF. Future studies are required to establish the relationships between the composition of the oral and lung microbiomes in CF.
Collapse
Affiliation(s)
- Jesse R Willis
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ester Saus
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Susana Iraola-Guzmán
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elena Cabello-Yeves
- Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ewa Ksiezopolska
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luca Cozzuto
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Luis A Bejarano
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nuria Andreu-Somavilla
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Miriam Alloza-Trabado
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Andrea Blanco
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Puig-Sola
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Elisabetta Broglio
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carlo Carolis
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Julia Ponomarenko
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jochen Hecht
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
7
|
Hennart M, Panunzi LG, Rodrigues C, Gaday Q, Baines SL, Barros-Pinkelnig M, Carmi-Leroy A, Dazas M, Wehenkel AM, Didelot X, Toubiana J, Badell E, Brisse S. Population genomics and antimicrobial resistance in Corynebacterium diphtheriae. Genome Med 2020; 12:107. [PMID: 33246485 PMCID: PMC7694903 DOI: 10.1186/s13073-020-00805-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022] Open
Abstract
Background Corynebacterium diphtheriae, the agent of diphtheria, is a genetically diverse bacterial species. Although antimicrobial resistance has emerged against several drugs including first-line penicillin, the genomic determinants and population dynamics of resistance are largely unknown for this neglected human pathogen. Methods Here, we analyzed the associations of antimicrobial susceptibility phenotypes, diphtheria toxin production, and genomic features in C. diphtheriae. We used 247 strains collected over several decades in multiple world regions, including the 163 clinical isolates collected prospectively from 2008 to 2017 in France mainland and overseas territories. Results Phylogenetic analysis revealed multiple deep-branching sublineages, grouped into a Mitis lineage strongly associated with diphtheria toxin production and a largely toxin gene-negative Gravis lineage with few toxin-producing isolates including the 1990s ex-Soviet Union outbreak strain. The distribution of susceptibility phenotypes allowed proposing ecological cutoffs for most of the 19 agents tested, thereby defining acquired antimicrobial resistance. Penicillin resistance was found in 17.2% of prospective isolates. Seventeen (10.4%) prospective isolates were multidrug-resistant (≥ 3 antimicrobial categories), including four isolates resistant to penicillin and macrolides. Homologous recombination was frequent (r/m = 5), and horizontal gene transfer contributed to the emergence of antimicrobial resistance in multiple sublineages. Genome-wide association mapping uncovered genetic factors of resistance, including an accessory penicillin-binding protein (PBP2m) located in diverse genomic contexts. Gene pbp2m is widespread in other Corynebacterium species, and its expression in C. glutamicum demonstrated its effect against several beta-lactams. A novel 73-kb C. diphtheriae multiresistance plasmid was discovered. Conclusions This work uncovers the dynamics of antimicrobial resistance in C. diphtheriae in the context of phylogenetic structure, biovar, and diphtheria toxin production and provides a blueprint to analyze re-emerging diphtheria. Supplementary information Supplementary information accompanies this paper at 10.1186/s13073-020-00805-7.
Collapse
Affiliation(s)
- Melanie Hennart
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Collège doctoral, Sorbonne Université, F-75005, Paris, France
| | - Leonardo G Panunzi
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Français de Bioinformatique, CNRS UMS 3601, Evry, France
| | - Carla Rodrigues
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Quentin Gaday
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Université de Paris, F-75015, Paris, France
| | - Sarah L Baines
- Doherty Applied Microbial Genomics, Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | | | - Annick Carmi-Leroy
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Corynebacteria of the Diphtheriae Complex, Paris, France
| | - Melody Dazas
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Corynebacteria of the Diphtheriae Complex, Paris, France
| | - Anne Marie Wehenkel
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Université de Paris, F-75015, Paris, France
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, UK
| | - Julie Toubiana
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Corynebacteria of the Diphtheriae Complex, Paris, France.,Department of General Pediatrics and Pediatric Infectious Diseases, Hôpital Necker-Enfants Malades, APHP, Université de Paris, Paris, France
| | - Edgar Badell
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Corynebacteria of the Diphtheriae Complex, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France. .,Institut Pasteur, National Reference Center for Corynebacteria of the Diphtheriae Complex, Paris, France.
| |
Collapse
|
8
|
Whole-Genome Sequencing of Corynebacterium diphtheriae Isolates Recovered from an Inner-City Population Demonstrates the Predominance of a Single Molecular Strain. J Clin Microbiol 2020; 58:JCM.01651-19. [PMID: 31748323 DOI: 10.1128/jcm.01651-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 11/18/2019] [Indexed: 12/26/2022] Open
Abstract
In some parts of the world, Corynebacterium diphtheriae has reemerged as a pathogen, especially as a cause of infections among impoverished and marginalized populations. We performed whole-genome sequencing (WGS) on all cutaneous C. diphtheriae isolates (n = 56) from Vancouver's inner-city population over a 3-year time period (2015 to 2018). All isolates with complete genome assembly were toxin negative, contained a common set of 22 virulence factors, and shared a highly conserved accessory genome. One of our isolates harbored a novel plasmid conferring macrolide and lincosamide resistance. Fifty-two out of 56 isolates were multilocus sequence type 76, and single nucleotide variants (SNV) and core-genome multilocus sequence typing (cgMLST) analysis demonstrated tight clustering of our isolates relative to all publicly available C. diphtheriae genomes. All sequence type 76 (ST76) study isolates were within a median of 22 SNVs and 13 cgMLST alleles of each other, while NCBI genomes were within a median of 17,436 SNVs and 1,552 cgMLST alleles of each other (both P < 2.2 × 10-16). A single strain of C. diphtheriae appears to be causing cutaneous infections in the low-income population of Vancouver. Further research is needed to elucidate transmission networks in our study population and standardize C. diphtheriae epidemiological typing when whole genomes are sequenced.
Collapse
|