1
|
Elbehiry A, Marzouk E, Abalkhail A, Abdelsalam MH, Mostafa MEA, Alasiri M, Ibrahem M, Ellethy AT, Almuzaini A, Aljarallah SN, Abu-Okail A, Marzook N, Alhadyan S, Edrees HM. Detection of antimicrobial resistance via state-of-the-art technologies versus conventional methods. Front Microbiol 2025; 16:1549044. [PMID: 40071214 PMCID: PMC11893576 DOI: 10.3389/fmicb.2025.1549044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Antimicrobial resistance (AMR) is recognized as one of the foremost global health challenges, complicating the treatment of infectious diseases and contributing to increased morbidity and mortality rates. Traditionally, microbiological culture and susceptibility testing methods, such as disk diffusion and minimum inhibitory concentration (MIC) assays, have been employed to identify AMR bacteria. However, these conventional techniques are often labor intensive and time consuming and lack the requisite sensitivity for the early detection of resistance. Recent advancements in molecular and genomic technologies-such as next-generation sequencing (NGS), matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), lateral flow immunoassays (LFIAs), PCR-based diagnostic methods, and CRISPR-based diagnostics-have revolutionized the diagnosis of AMR. These innovative approaches provide increased sensitivity, reduced turnaround times, and the ability to identify genetic resistance mechanisms. This review seeks to examine the advantages and disadvantages of both emerging technologies and traditional methods for detecting AMR, emphasizing the potential benefits and limitations inherent to each. By understanding the strengths and limitations of these technologies, stakeholders, including researchers, healthcare professionals, regulatory agencies, health authorities, financial managers, and patients, can make informed decisions aimed at preventing the emergence and dissemination of antibiotic-resistant strains, thereby ultimately increasing patient safety.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Eman Marzouk
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | | | - Mohamed E. A. Mostafa
- Department of Anatomy, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Mazen Alasiri
- Department of Pharmacy, Armed Forces Hospital, King Abdul Aziz Naval base in Jubail, Jubail, Saudi Arabia
| | - Mai Ibrahem
- Department of Public Health, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Abousree T. Ellethy
- Division of Biochemistry, Department of Basic Oral Sciences and Dental Education, College of Dentistry, Qassim University, Buraydah, Saudi Arabia
| | - Abdulaziz Almuzaini
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Sahar N. Aljarallah
- Department of Pharmacy sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Akram Abu-Okail
- Department of Pathology and Laboratory Diagnosis, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Naif Marzook
- Department of Emergency Medicine, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Satam Alhadyan
- Department of Environmental Health Administration, Health Services, Ministry of Defense, Riyadh, Saudi Arabia
| | - Husam M. Edrees
- Department of Physiology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
2
|
Pommiès L, Boutal H, Fras D, Volland H. Establishment of Sample-to-Answer Loop-Mediated Isothermal Amplification-Based Nucleic Acid Testing Using the Sampling, Processing, Incubation, Detection and Lateral Flow Immunoassay Platforms. BIOSENSORS 2024; 14:609. [PMID: 39727874 DOI: 10.3390/bios14120609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Diagnostics often require specialized equipment and trained personnel in laboratory settings, creating a growing need for point-of-care tests (POCTs). Among the genetic testing methods available, Loop-mediated Isothermal Amplification (LAMP) offers a viable solution for developing genetic POCT due to its compatibility with simplified devices. This study aimed to create a genetic test that integrates all steps from sample processing to analyzing results while minimizing the complexity, handling, equipment, and time required. Several challenges were addressed to achieve this goal: (1) the development of a buffer for bacterial DNA extraction that is compatible with both LAMP and immunochromatographic tests; (2) the adaption of the LAMP protocol for use with the SPID device; and (3) the optimization of the detection protocol for specific test conditions, with a lateral flow immunoassay format selected for its POCT compatibility. Following these developments, the test was validated using Escherichia coli (E. coli) and non-E. coli strains. A portable heating station was also developed to enable amplification without costly equipment. The resulting genetic POCT achieved 100% sensitivity and 85% specificity, with results available in 60 to 75 min. This study demonstrated that our POCT efficiently performs DNA extraction, amplification, and detection for bacterial identification. The test's simplicity and cost-effectiveness will support its implementation in various settings.
Collapse
Affiliation(s)
- Lilas Pommiès
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, SPI, 91191 Gif-sur-Yvette, France
| | - Hervé Boutal
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, SPI, 91191 Gif-sur-Yvette, France
| | - David Fras
- CEA/DRT/LIST/DIN/SIMRI, 91191 Gif-Sur-Yvette, France
| | - Hervé Volland
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, SPI, 91191 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Simner PJ, Pitout JDD, Dingle TC. Laboratory detection of carbapenemases among Gram-negative organisms. Clin Microbiol Rev 2024; 37:e0005422. [PMID: 39545731 PMCID: PMC11629623 DOI: 10.1128/cmr.00054-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
SUMMARYThe carbapenems remain some of the most effective options available for treating patients with serious infections due to Gram-negative bacteria. Carbapenemases are enzymes that hydrolyze carbapenems and are the primary method driving carbapenem resistance globally. Detection of carbapenemases is required for patient management, the rapid implementation of infection prevention and control (IP&C) protocols, and for epidemiologic purposes. Therefore, clinical and public health microbiology laboratories must be able to detect and report carbapenemases among predominant Gram-negative organisms from both cultured isolates and direct from clinical specimens for treatment and surveillance purposes. There is not a "one size fits all" laboratory approach for the detection of bacteria with carbapenemases, and institutions need to determine what fits best with the goals of their antimicrobial stewardship and IP&C programs. Luckily, there are several options and approaches available for clinical laboratories to choose methods that best suits their individual needs. A laboratory approach to detect carbapenemases among bacterial isolates consists of two steps, namely a screening process (e.g., not susceptible to ertapenem, meropenem, and/or imipenem), followed by a confirmation test (i.e., phenotypic, genotypic or proteomic methods) for the presence of a carbapenemase. Direct from specimen testing for the most common carbapenemases generally involves detection via rapid, molecular approaches. The aim of this article is to provide brief overviews on Gram-negative bacteria carbapenem-resistant definitions, types of carbapenemases, global epidemiology, and then describe in detail the laboratory methods for the detection of carbapenemases among Gram-negative bacteria. We will specifically focus on the Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii complex.
Collapse
Affiliation(s)
- Patricia J. Simner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Johann D. D. Pitout
- Cummings School of Medicine, University of Calgary, Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Diagnostic Laboratory, Calgary, Alberta, Canada
- University of Pretoria, Pretoria, Gauteng, South Africa
| | - Tanis C. Dingle
- Cummings School of Medicine, University of Calgary, Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Public Health Laboratory, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Christina S, Praveena R, Shahul MR, Saikumar C. Carbapenemase-Producing Escherichia coli: Comparison of a Novel Rapid Lateral Flow Assay With the Polymerase Chain Reaction (PCR) and Antimicrobial Resistance Pattern. Cureus 2024; 16:e68941. [PMID: 39381457 PMCID: PMC11460576 DOI: 10.7759/cureus.68941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2024] [Indexed: 10/10/2024] Open
Abstract
Background In critically ill patients, carbapenems are often used as the last line of treatment. Carbapenem-resistant Enterobacterales (CRE) present an extreme challenge to treatment due to their resistance to various antibiotics. Optimal therapy for patients and infection control relies on the early and accurate diagnosis of these infections. The K.N.I.V.O. Detection K-Set is a newly developed immunological rapid test developed to identify the presence of carbapenemase in Gram-negative bacteria resistant to multiple drugs. Objectives This study evaluates a new K.N.I.V.O. Detection K-Set and its application for the rapid detection of isolates of multidrug-resistant Escherichia coli (MDR E. coli) that produce carbapenemase. This test aims to compare the test's performance to the polymerase chain reaction (PCR) method. Methods The study included 150 MDR E. coli isolates that were confirmed to be resistant to at least three groups of antibiotics, including carbapenems. The test followed the manufacturer's instructions using the K.N.I.V.O. Detection K-Set. The outcomes were compared with carbapenemase gene detection (bla-KPC, bla-NDM, bla-OXA-48, bla -VIM, and bla -IMP) using the PCR. The K-Set's sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated and studied. Results The K.N.I.V.O. Detection K-Set showed highly effective diagnostic performance with a 97.1% sensitivity, 97.5% specificity, 97.1% positive predictive value, and 98.7% negative predictive value. Seventy-eight of the 150 isolates were proven to be producers of carbapenemase, with 68 of those cases having an accurate identification. The remaining isolates were found to be non-producers. Within 15 minutes, the rapid test provided results. Conclusion The K.N.I.V.O. Detection K-Set is an effective and rapid method for identifying carbapenemase producers among MDR E. coli isolates. Its rapid processing time, associated with its high sensitivity and specificity, indicates that it can increase the effectiveness of diagnostic laboratories and better patient care in clinical settings. Implementing such rapid screenings could be vital for controlling the spread of drug-resistant infections and enhancing antimicrobial stewardship. This also ensures that patients receive timely treatment and effective care.
Collapse
Affiliation(s)
- Sharon Christina
- Microbiology, Sree Balaji Medical College & Hospital, Bharath Institute of Higher Education and Research, Chennai, IND
| | - Raveendran Praveena
- Microbiology, Sree Balaji Medical College & Hospital, Bharath Institute of Higher Education and Research, Chennai, IND
| | - Mymoonah Risha Shahul
- Microbiology, Sree Balaji Medical College & Hospital, Bharath Institute of Higher Education and Research, Chennai, IND
| | - Chitralekha Saikumar
- Microbiology, Sree Balaji Medical College & Hospital, Bharath Institute of Higher Education and Research, Chennai, IND
| |
Collapse
|
5
|
Hassall J, Coxon C, Patel VC, Goldenberg SD, Sergaki C. Limitations of current techniques in clinical antimicrobial resistance diagnosis: examples and future prospects. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:16. [PMID: 39843577 PMCID: PMC11721362 DOI: 10.1038/s44259-024-00033-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/07/2024] [Indexed: 01/24/2025]
Abstract
Antimicrobial resistance is a global threat to public health. Without proactive intervention, common infections may become untreatable, restricting the types of clinical intervention that can be undertaken and reversing improvements in mortality rates. Effective antimicrobial stewardship represents one approach to restrict the spread of antimicrobial resistance but relies on rapid and accurate diagnostics that minimise the unnecessary use of antibiotics. This is increasingly a key unmet clinical need. In this paper, we describe existing techniques for the detection of antimicrobial resistance, while examining their drawbacks and limitations. We also discuss emerging diagnostic technologies in the field, and the need for standardisation to allow for swifter and more widespread clinical adoption.
Collapse
Affiliation(s)
- Jack Hassall
- Science Research and Innovation, Medicines and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Carmen Coxon
- Science Research and Innovation, Medicines and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Vishal C Patel
- The Roger Williams Institute of Hepatology London, Foundation for Liver Research, 111 Coldharbour Lane, London, SE5 9NT, UK
- Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS, UK
| | - Simon D Goldenberg
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust and King's College, London, UK
| | - Chrysi Sergaki
- Science Research and Innovation, Medicines and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK.
| |
Collapse
|
6
|
Zhuang Q, Guo H, Peng T, Ding E, Zhao H, Liu Q, He S, Zhao G. Advances in the detection of β-lactamase: A review. Int J Biol Macromol 2023; 251:126159. [PMID: 37549760 DOI: 10.1016/j.ijbiomac.2023.126159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
β-lactamase, an enzyme secreted by bacteria, is the main resistant mechanism of Gram-negative bacteria to β-lactam antibiotics. The resistance of bacteria to β-lactam antibiotics can be evaluated by testing the activity of β-lactamase. Traditional phenotypic detection is a golden principle, but it is time-consuming. In recent years, many new methods have emerged, which improve the efficiency by virtue of their sensitivity, low cost, easy operation, and other advantages. In this paper, we systematically review these researches and emphasize their limits of detection, sample operation, and test duration. Noteworthily, some detection systems can identify the β-lactamase subtype conveniently. We mainly divide these tests into three categories to elaborate their characteristics and application status. Both advantages and disadvantages of these methods are discussed. Additionally, we analyze the recent 5 years published researches to predict the trend of development in this field.
Collapse
Affiliation(s)
- Qian Zhuang
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, China; Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110122, China
| | - Huijun Guo
- General Party Branch of the Second Clinical Department, China Medical University, Shenyang, Liaoning 110122, China
| | - Tian Peng
- General Party Branch of the Second Clinical Department, China Medical University, Shenyang, Liaoning 110122, China
| | - Enjie Ding
- General Party Branch of the Second Clinical Department, China Medical University, Shenyang, Liaoning 110122, China
| | - Hui Zhao
- General Party Branch of the Second Clinical Department, China Medical University, Shenyang, Liaoning 110122, China
| | - Qiulan Liu
- General Party Branch of the Second Clinical Department, China Medical University, Shenyang, Liaoning 110122, China
| | - Shiyin He
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, China
| | - Guojie Zhao
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
7
|
Nishida S, Ihashi Y, Yoshino Y, Ono Y. Evaluation of an immunological assay for the identification of multiple carbapenemase-producing Gram-negative bacteria. Pathology 2022; 54:917-921. [PMID: 35934532 DOI: 10.1016/j.pathol.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/24/2022] [Accepted: 05/08/2022] [Indexed: 12/31/2022]
Abstract
Carbapenemase-producing Gram-negative organisms (CPOs) frequently gain multidrug-resistant phenotypes and thereby limit the therapeutic options available. Colonisation and infection with CPOs are critical risks for mortality in clinical settings, especially in critical care medicine. Carbapenemase genes on plasmids have transferred to many Gram-negative species, and these species have spread, leading to global concern regarding antimicrobial resistance. A molecular rapid diagnostic test (mRDT) for CPOs is urgently required in critical care medicine. Here, we evaluated a rapid lateral flow immunoassay (LFIA) for CPOs isolated from patients at university hospitals, including intensive care units, and compared the results with those obtained using the multiplex polymerase chain reaction (PCR) method. NG-test CARBA 5 detected multiple carbapenemases, KPC, OXA-48, NDM, VIM, and IMP variants expressed in clinical isolates. Quick Chaser IMP detected IMP variants. The LFIAs exhibited 100% sensitivity and specificity relative to clinical isolates on agar plates. By contrast, the multiplex PCR method exhibited a limited ability to detect IMP-7-producing isolates not belonging to the IMP1 group, which resulted in 97% sensitivity and 100% specificity for IMP-producing isolates. Our results demonstrate that the LFIA is a useful mRDT to identify CPOs and has an advantage over the PCR method for both detection time and sensitivity to the IMP groups. LFIA could complement the nucleic acid amplification test used to identify CPOs. In conclusion, we evaluated sensitive and specific LFIAs capable of detecting carbapenemase production in Gram-negative bacteria. We anticipate that LFIAs will become a point-of-care test enabling rapid detection of carbapenemases in hospital settings, particularly in intensive care units.
Collapse
Affiliation(s)
- Satoshi Nishida
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Itabashi, Tokyo, Japan.
| | - Yusuke Ihashi
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Itabashi, Tokyo, Japan
| | - Yusuke Yoshino
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Itabashi, Tokyo, Japan
| | - Yasuo Ono
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Itabashi, Tokyo, Japan; Faculty of Health and Medical Science, Teikyo Heisei University, Toshima, Tokyo, Japan
| |
Collapse
|
8
|
Boutal H, Moguet C, Pommiès L, Simon S, Naas T, Volland H. The Revolution of Lateral Flow Assay in the Field of AMR Detection. Diagnostics (Basel) 2022; 12:1744. [PMID: 35885647 PMCID: PMC9317642 DOI: 10.3390/diagnostics12071744] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
The global spread of antimicrobial resistant (AMR) bacteria represents a considerable public health concern, yet their detection and identification of their resistance mechanisms remain challenging. Optimal diagnostic tests should provide rapid results at low cost to enable implementation in any microbiology laboratory. Lateral flow assays (LFA) meet these requirements and have become essential tools to combat AMR. This review presents the versatility of LFA developed for the AMR detection field, with particular attention to those directly triggering β-lactamases, their performances, and specific limitations. It considers how LFA can be modified by detecting not only the enzyme, but also its β-lactamase activity for a broader clinical sensitivity. Moreover, although LFA allow a short time-to-result, they are generally only implemented after fastidious and time-consuming techniques. We present a sample processing device that shortens and simplifies the handling of clinical samples before the use of LFA. Finally, the capacity of LFA to detect amplified genetic determinants of AMR by isothermal PCR will be discussed. LFA are inexpensive, rapid, and efficient tools that are easy to implement in the routine workflow of laboratories as new first-line tests against AMR with bacterial colonies, and in the near future directly with biological media.
Collapse
Affiliation(s)
- Hervé Boutal
- Département Médicaments et Technologies Pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.B.); (C.M.); (L.P.); (S.S.)
| | - Christian Moguet
- Département Médicaments et Technologies Pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.B.); (C.M.); (L.P.); (S.S.)
| | - Lilas Pommiès
- Département Médicaments et Technologies Pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.B.); (C.M.); (L.P.); (S.S.)
| | - Stéphanie Simon
- Département Médicaments et Technologies Pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.B.); (C.M.); (L.P.); (S.S.)
| | - Thierry Naas
- Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France;
- Team Resist, UMR1184, Université Paris-Saclay—INSERM—CEA, LabEx Lermit, 91190 Gif-sur-Yvette, France
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
| | - Hervé Volland
- Département Médicaments et Technologies Pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.B.); (C.M.); (L.P.); (S.S.)
| |
Collapse
|
9
|
Lu Y, Hu X, Pang J, Wang X, Li G, Li C, Yang X, You X. Parallel Reaction Monitoring Mass Spectrometry for Rapid and Accurate Identification of β-Lactamases Produced by Enterobacteriaceae. Front Microbiol 2022; 13:784628. [PMID: 35794914 PMCID: PMC9251374 DOI: 10.3389/fmicb.2022.784628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/03/2022] [Indexed: 11/24/2022] Open
Abstract
The increasing spread of drug-resistant bacterial strains presents great challenges to clinical antibacterial treatment and public health, particularly with regard to β-lactamase-producing Enterobacteriaceae. A rapid and accurate detection method that can expedite precise clinical diagnostics and rational administration of antibiotics is urgently needed. Targeted proteomics, a technique involving selected reaction monitoring or multiple reaction monitoring, has been developed for detecting specific peptides. In the present study, a rapid single-colony-processing procedure combined with an improved parallel reaction monitoring (PRM) workflow based on HRAM Orbitrap MS was developed to detect carbapenemases (Klebsiella pneumoniae carbapenemase, KPC; imipenemase, IMP; Verona integron-encoded metallo-β-lactamase, VIM; New Delhi metallo-β-lactamase, NDM; and oxacillinase, OXA), extended spectrum β-lactamases (TEM and CTX-M), and AmpC (CMY-2) produced by Enterobacteriaceae. Specific peptides were selected and validated, and their coefficients of variation and stability were evaluated. In total, 188 Enterobacteriaceae strains were screened using the workflow. Fourteen out of total 19 peptides have 100% specificity; three peptides have specificity >95% and two peptides have specificity ranged from 74∼85%. On the sensitivity, only nine peptides have 95∼100% sensitivity. The other 10 peptides have sensitivity ranged from 27∼94%. Thus, a screening method based on peptide groups was developed for the first time. Taken together, this study described a rapid extraction and detection workflow for widespread β-lactamases, including KPC, IMP, VIM, NDM, OXA, CMY, CTX-M, and TEM, using single colonies of Enterobacteriaceae strains. PRM-targeted proteomics was proven to be a promising approach for the detection of drug-resistant enzymes.
Collapse
|
10
|
Ben Sallem R, Laribi B, Arfaoui A, Ben Khelifa Melki S, Ouzari I, Ben Slama K, Naas T, Klibi N. Co-occurrence of genes encoding carbapenemase, ESBL, pAmpC, and Non-β-Lactam resistance among Klebsiella pneumonia and E. coli clinical isolates in Tunisia. Lett Appl Microbiol 2022; 74:729-740. [PMID: 35076956 DOI: 10.1111/lam.13658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 11/27/2022]
Abstract
This study aimed to investigate the molecular mechanisms of carbapenem and colistin resistance in K. pneumoniae and E. coli isolates obtained from hospitalized patients in Carthagene International Hospital of Tunis. A total of 25 K. pneumoniae and 2 E. coli clinical isolates with reduced susceptibility to carbapenems were recovered. Susceptibility testing and phenotypic screening tests were carried out. ESBL, AmpC, carbapenemase, and other antibiotic resistance genes were sought by PCR-sequencing. The presence of plasmid-mediated colistin resistance genes (mcr-1-8) was examined by PCR and the nucleotide sequence of the mgrB gene was determined. The analysis of plasmid content was performed by PCR-Based Replicon Typing (PBRT). The clonality of isolates was assessed by PFGE and multilocus sequence typing (MLST). All of the isolates produced carbapenemase activity. They showed a great variation in the distribution of ESBL, AmpC, carbapenemase, and other plasmid-mediated resistance determinants. K. pneumoniae isolates carried blaNDM-1 (n=11), blaOXA-48 (n=11), blaNDM-1 + blaOXA-48 (n=1), blaNDM-1 + blaVIM-1 (n=1), blaOXA-204 (n=1), along with blaCTX-M , blaOXA , blaTEM , blaCMY , blaDHA and blaSHV genes variants on conjugative plasmid of IncL/M, IncR, IncFIIK , IncFIB, and IncHI1 types. Three sequence types ST101, ST307, and ST15 were identified. The mgrB alteration g109a (G37S) was detected in a single colistin-resistant, NDM-1 and OXA-48-coproducing K. pneumoniae isolate. The two E. coli isolates belonged to ST95, co-produced NDM-1 and CTX-M-15, and harbored plasmid of IncFII and IncFIB types. To our knowledge, this is the first report in Tunisia of NDM-1, OXA-48, and CTX-M-15 coexistence in colistin-resistant K. pneumoniae ST15.
Collapse
Affiliation(s)
- Rym Ben Sallem
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Bochra Laribi
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Ameni Arfaoui
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | | | - Imen Ouzari
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Karim Ben Slama
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Thierry Naas
- Bacteriology-Hygiene unit, Bicêtre Hospital, Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Naouel Klibi
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| |
Collapse
|
11
|
Oueslati S, Gonzalez C, Volland H, Cattoir V, Bernabeu S, Girlich D, Dulac D, Plaisance M, Boutigny L, Dortet L, Simon S, Naas T. Rapid Detection of VanA/B-Producing Vancomycin-Resistant Enterococci Using Lateral Flow Immunoassay. Diagnostics (Basel) 2021; 11:diagnostics11101805. [PMID: 34679500 PMCID: PMC8534553 DOI: 10.3390/diagnostics11101805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 11/18/2022] Open
Abstract
Vancomycin-resistant enterococci (VREs) have become one of the most important nosocomial pathogens worldwide, associated with increased treatment costs, prolonged hospital stays and high mortality. Rapid detection is crucial to reduce their spread and prevent infections and outbreaks. The lateral flow immunoassay NG-Test VanB (NG Biotech) was evaluated for the rapid detection of VanB-producing vancomycin-resistant enterococci (VanB-VREs) using 104 well-characterized enterococcal isolates. The sensitivity and specificity were both 100% when bacterial cells were grown in the presence of vancomycin used as a VanB inducer. The NG-Test VanB is an efficient, rapid and easy to implement assay in clinical microbiology laboratories for the confirmation of VanB-VREs from colonies. Together with the NG-Test VanA, they could replace the already existing tests available for the confirmation of acquired vancomycin resistance in enterococci, especially from selective media or from antibiograms, with 100% sensitivity and specificity. Rapid detection in less than 15 min will result in more efficient management of carriers and infected patients. In addition, these tests may be used for positive blood cultures, given a 3.5 h sub-culturing step on Chocolate agar PolyViteX in the presence of a 5-µg vancomycin disk, which is routinely performed in many clinical microbiology laboratories for every positive blood culture for subsequent MALDI-TOF identification of the growing bacteria.
Collapse
Affiliation(s)
- Saoussen Oueslati
- Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Service de Bactériologie-Hygiène, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France; (S.O.); (C.G.); (S.B.); (D.G.); (L.D.)
- Team ReSIST, INSERM U1184, School of Medicine Université Paris-Saclay, LabEx LERMIT, 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Camille Gonzalez
- Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Service de Bactériologie-Hygiène, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France; (S.O.); (C.G.); (S.B.); (D.G.); (L.D.)
- Team ReSIST, INSERM U1184, School of Medicine Université Paris-Saclay, LabEx LERMIT, 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Hervé Volland
- Département Médicaments et Technologies Pour la Santé, Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France; (D.D.); (M.P.); (S.S.)
- Correspondence: (H.V.); (T.N.); Tel.: +33-1-45-21-29-86 (T.N.); Fax: +33-1-45-21-63-40 (T.N.)
| | - Vincent Cattoir
- Department of Clinical Microbiology and French National Reference Center for Antibiotic Resistance (Lab Enterococci), Rennes University Hospital, 35033 Rennes, France;
| | - Sandrine Bernabeu
- Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Service de Bactériologie-Hygiène, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France; (S.O.); (C.G.); (S.B.); (D.G.); (L.D.)
- Team ReSIST, INSERM U1184, School of Medicine Université Paris-Saclay, LabEx LERMIT, 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Delphine Girlich
- Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Service de Bactériologie-Hygiène, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France; (S.O.); (C.G.); (S.B.); (D.G.); (L.D.)
- Team ReSIST, INSERM U1184, School of Medicine Université Paris-Saclay, LabEx LERMIT, 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Duncan Dulac
- Département Médicaments et Technologies Pour la Santé, Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France; (D.D.); (M.P.); (S.S.)
| | - Marc Plaisance
- Département Médicaments et Technologies Pour la Santé, Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France; (D.D.); (M.P.); (S.S.)
| | - Laure Boutigny
- Research and Development Department, NG Biotech, 35480 Guipry, France;
| | - Laurent Dortet
- Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Service de Bactériologie-Hygiène, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France; (S.O.); (C.G.); (S.B.); (D.G.); (L.D.)
- Team ReSIST, INSERM U1184, School of Medicine Université Paris-Saclay, LabEx LERMIT, 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Stéphanie Simon
- Département Médicaments et Technologies Pour la Santé, Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France; (D.D.); (M.P.); (S.S.)
| | - Thierry Naas
- Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Service de Bactériologie-Hygiène, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France; (S.O.); (C.G.); (S.B.); (D.G.); (L.D.)
- Correspondence: (H.V.); (T.N.); Tel.: +33-1-45-21-29-86 (T.N.); Fax: +33-1-45-21-63-40 (T.N.)
| |
Collapse
|
12
|
Nishida S, Nakagawa M, Ouchi Y, Sakuma C, Nakajima Y, Shimizu H, Shibata T, Kurosawa Y, Maruyama T, Okumura CJ, Hatayama N, Sato Y, Asahara M, Ishigaki S, Furukawa T, Akuta T, Ono Y. A rabbit monoclonal antibody-mediated lateral flow immunoassay for rapid detection of CTX-M extended-spectrum β-lactamase-producing Enterobacterales. Int J Biol Macromol 2021; 185:317-323. [PMID: 34129888 DOI: 10.1016/j.ijbiomac.2021.06.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
Infections of CTX-M extended-spectrum β-lactamase-producing Enterobacterales are a severe threat in clinical settings. CTX-M genes on plasmids have been transferred to many Enterobacterales species, and these species have spread, leading to the global problem of antimicrobial resistance. Here, we developed a lateral flow immunoassay (LFIA) based on an anti-CTX-M rabbit monoclonal antibody. This antibody detected CTX-M variants from the CTX-M-9, CTX-M-2, and CTX-M-1 groups expressed in clinical isolates. The LFIA showed 100% sensitivity and specificity with clinical isolates on agar plates, and its limit of detection was 0.8 ng/mL recombinant CTX-M-14. The rabbit monoclonal antibody did not cross-react with bacteria producing other class A β-lactamases, including SHV. In conclusion, we developed a highly sensitive and specific LFIA capable of detecting CTX-M enzyme production in Enterobacterales. We anticipate that our LFIA will become a point-of-care test enabling rapid detection of CTX-M in hospital and community settings as well as a rapid environmental test.
Collapse
Affiliation(s)
- Satoshi Nishida
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Masataka Nakagawa
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan; Kyokuto Pharmaceutical Industrial Co., Ltd., 7-8 Nihonbashi Kobunacho, Chuo-ku, Tokyo, 103-0024, Japan
| | - Yuki Ouchi
- Kyokuto Pharmaceutical Industrial Co., Ltd., 7-8 Nihonbashi Kobunacho, Chuo-ku, Tokyo, 103-0024, Japan
| | - Chiaki Sakuma
- Kyokuto Pharmaceutical Industrial Co., Ltd., 7-8 Nihonbashi Kobunacho, Chuo-ku, Tokyo, 103-0024, Japan
| | - Yu Nakajima
- Kyokuto Pharmaceutical Industrial Co., Ltd., 7-8 Nihonbashi Kobunacho, Chuo-ku, Tokyo, 103-0024, Japan
| | - Hisayo Shimizu
- Kyokuto Pharmaceutical Industrial Co., Ltd., 7-8 Nihonbashi Kobunacho, Chuo-ku, Tokyo, 103-0024, Japan
| | - Takashi Shibata
- Kyokuto Pharmaceutical Industrial Co., Ltd., 7-8 Nihonbashi Kobunacho, Chuo-ku, Tokyo, 103-0024, Japan
| | - Yasunori Kurosawa
- Kyokuto Pharmaceutical Industrial Co., Ltd., 7-8 Nihonbashi Kobunacho, Chuo-ku, Tokyo, 103-0024, Japan
| | - Toshiaki Maruyama
- Abwiz Bio, Inc., 9823 Pacific Heights BLVD, Suite J, San Diego, CA, 92121, USA
| | - C J Okumura
- Abwiz Bio, Inc., 9823 Pacific Heights BLVD, Suite J, San Diego, CA, 92121, USA
| | - Nami Hatayama
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yoshinori Sato
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Miwa Asahara
- Department of Laboratory Medicine, Teikyo University Hospital, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Shinobu Ishigaki
- Department of Laboratory Medicine, Teikyo University Hospital, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Taiji Furukawa
- Department of Laboratory Medicine, Teikyo University Hospital, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Teruo Akuta
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan; Kyokuto Pharmaceutical Industrial Co., Ltd., 7-8 Nihonbashi Kobunacho, Chuo-ku, Tokyo, 103-0024, Japan
| | - Yasuo Ono
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|
13
|
Torres I, Albert E, Giménez E, Olea B, Valdivia A, Pascual T, Huntley D, Sánchez D, Costa RM, Pinto C, Oltra R, Colomina J, Navarro D. Performance of a MALDI-TOF mass spectrometry-based method for rapid detection of third-generation oxymino-cephalosporin-resistant Escherichia coli and Klebsiella spp. from blood cultures. Eur J Clin Microbiol Infect Dis 2021; 40:1925-1932. [PMID: 33876385 DOI: 10.1007/s10096-021-04251-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022]
Abstract
We optimized and prospectively evaluated a simple MALDI-TOF MS-based method for direct detection of third-generation oxymino-cephalosporin resistance (3rd CephR) in Escherichia coli and Klebsiella spp. from blood cultures (BC). In addition, we assessed the performance of a lateral flow immunochromatographic assay (LFIC) for detecting extended-spectrum β-lactamases (ESBL) (NG-Test CTX-M MULTI assay) using bacterial pellets from BC. A total of 168 BCs from unique patients were included. A pre-established volume of BC flagged as positive was transferred in brain heart infusion with or without ceftriaxone (2 mg/ml). After 2-h incubation, intact bacterial pellets were used for MALDI-TOF MS testing. Identification of bacterial species (index score > 2) in the presence of CRO was considered marker of 3rd CephR. The LFIC assay was evaluated in 141 BC. Bacteremia episodes were caused by E. coli (n = 115) or Klebsiella spp. (n = 53). A total of 49 strains were 3rd CephR by broth microdilution, of which 41 were ESBL producers, seven expressed ESBL and OXA-48 type D carbapenemase, and one harbored a plasmid-mediated AmpC. The MALDI-TOF MS method yielded four very major errors (false susceptibility) and two major errors (false resistance). The overall sensitivity of the assay was 91.8% and the specificity 98.3%. Concordance between the LFIC assay and the MALDI-TOF MS method for detection of ESBL-mediated 3rd CephR was 100%. Both evaluated methods may prove useful for early adjustment of empirical therapy in patients with E. coli and Klebsiella spp. bloodstream infections. Whether their use has a beneficial impact on patient outcomes is currently under investigation.
Collapse
Affiliation(s)
- Ignacio Torres
- Microbiology Service, Hospital Clínico Universitario, Instituto de Investigación INCLIVA, Valencia, Spain
| | - Eliseo Albert
- Microbiology Service, Hospital Clínico Universitario, Instituto de Investigación INCLIVA, Valencia, Spain
| | - Estela Giménez
- Microbiology Service, Hospital Clínico Universitario, Instituto de Investigación INCLIVA, Valencia, Spain
| | - Beatriz Olea
- Microbiology Service, Hospital Clínico Universitario, Instituto de Investigación INCLIVA, Valencia, Spain
| | - Arantxa Valdivia
- Microbiology Service, Hospital Clínico Universitario, Instituto de Investigación INCLIVA, Valencia, Spain
| | - Tania Pascual
- Microbiology Service, Hospital Clínico Universitario, Instituto de Investigación INCLIVA, Valencia, Spain
| | - Dixie Huntley
- Microbiology Service, Hospital Clínico Universitario, Instituto de Investigación INCLIVA, Valencia, Spain
| | - David Sánchez
- Microbiology Service, Hospital Clínico Universitario, Instituto de Investigación INCLIVA, Valencia, Spain
| | - Rosa María Costa
- Microbiology Service, Hospital Clínico Universitario, Instituto de Investigación INCLIVA, Valencia, Spain
| | - Carolina Pinto
- Infectious Diseases Unit, Hospital Clínico Universitario, Instituto de Investigación INCLIVA, Valencia, Spain
| | - Rosa Oltra
- Infectious Diseases Unit, Hospital Clínico Universitario, Instituto de Investigación INCLIVA, Valencia, Spain
| | - Javier Colomina
- Microbiology Service, Hospital Clínico Universitario, Instituto de Investigación INCLIVA, Valencia, Spain
| | - David Navarro
- Microbiology Service, Hospital Clínico Universitario, Instituto de Investigación INCLIVA, Valencia, Spain. .,Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 17, 46010, Valencia, Spain.
| |
Collapse
|
14
|
Worbs S, Kampa B, Skiba M, Hansbauer EM, Stern D, Volland H, Becher F, Simon S, Dorner MB, Dorner BG. Differentiation, Quantification and Identification of Abrin and Abrus precatorius Agglutinin. Toxins (Basel) 2021; 13:toxins13040284. [PMID: 33919561 PMCID: PMC8073929 DOI: 10.3390/toxins13040284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022] Open
Abstract
Abrin, the toxic lectin from the rosary pea plant Abrus precatorius, has gained considerable interest in the recent past due to its potential malevolent use. However, reliable and easy-to-use assays for the detection and discrimination of abrin from related plant proteins such as Abrus precatorius agglutinin or the homologous toxin ricin from Ricinus communis are sparse. To address this gap, a panel of highly specific monoclonal antibodies was generated against abrin and the related Abrus precatorius agglutinin. These antibodies were used to establish two sandwich ELISAs to preferentially detect abrin or A. precatorius agglutinin (limit of detection 22 pg/mL for abrin; 35 pg/mL for A. precatorius agglutinin). Furthermore, an abrin-specific lateral flow assay was developed for rapid on-site detection (limit of detection ~1 ng/mL abrin). Assays were validated for complex food, environmental and clinical matrices illustrating broad applicability in different threat scenarios. Additionally, the antibodies turned out to be suitable for immuno-enrichment strategies in combination with mass spectrometry-based approaches for unambiguous identification. Finally, we were able to demonstrate for the first time how the developed assays can be applied to detect, identify and quantify abrin from a clinical sample derived from an attempted suicide case involving A. precatorius.
Collapse
Affiliation(s)
- Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Bettina Kampa
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Martin Skiba
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Eva-Maria Hansbauer
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.V.); (F.B.); (S.S.)
| | - Daniel Stern
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Hervé Volland
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.V.); (F.B.); (S.S.)
| | - François Becher
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.V.); (F.B.); (S.S.)
| | - Stéphanie Simon
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.V.); (F.B.); (S.S.)
| | - Martin B. Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Brigitte G. Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
- Correspondence: ; Tel.: +49-30-18754-2500
| |
Collapse
|
15
|
Féraudet Tarisse C, Goulard-Huet C, Nia Y, Devilliers K, Marcé D, Dambrune C, Lefebvre D, Hennekinne JA, Simon S. Highly Sensitive and Specific Detection of Staphylococcal Enterotoxins SEA, SEG, SEH, and SEI by Immunoassay. Toxins (Basel) 2021; 13:130. [PMID: 33572449 PMCID: PMC7916246 DOI: 10.3390/toxins13020130] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/05/2023] Open
Abstract
Staphylococcal food poisoning (SFP) is one of the most common foodborne diseases worldwide, resulting from the ingestion of staphylococcal enterotoxins (SEs), primarily SE type A (SEA), which is produced in food by enterotoxigenic strains of staphylococci, mainly S. aureus. Since newly identified SEs have been shown to have emetic properties and the genes encoding them have been found in food involved in poisoning outbreaks, it is necessary to have reliable tools to prove the presence of the toxins themselves, to clarify the role played by these non-classical SEs, and to precisely document SFP outbreaks. We have produced and characterized monoclonal antibodies directed specifically against SE type G, H or I (SEG, SEH or SEI respectively) or SEA. With these antibodies, we have developed, for each of these four targets, highly sensitive, specific, and reliable 3-h sandwich enzyme immunoassays that we evaluated for their suitability for SE detection in different matrices (bacterial cultures of S. aureus, contaminated food, human samples) for different purposes (strain characterization, food safety, biological threat detection, diagnosis). We also initiated and described for the first time the development of monoplex and quintuplex (SEA, SE type B (SEB), SEG, SEH, and SEI) lateral flow immunoassays for these new staphylococcal enterotoxins. The detection limits in buffer were under 10 pg/mL (0.4 pM) by enzyme immunoassays and at least 300 pg/mL (11 pM) by immunochromatography for all target toxins with no cross-reactivity observed. Spiking studies and/or bacterial supernatant analysis demonstrated the applicability of the developed methods, which could become reliable detection tools for the routine investigation of SEG, SEH, and SEI.
Collapse
Affiliation(s)
- Cécile Féraudet Tarisse
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (C.G.-H.); (K.D.); (D.M.); (C.D.); (D.L.); (S.S.)
| | - Céline Goulard-Huet
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (C.G.-H.); (K.D.); (D.M.); (C.D.); (D.L.); (S.S.)
| | - Yacine Nia
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94706 Maisons-Alfort, France; (Y.N.); (J.-A.H.)
| | - Karine Devilliers
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (C.G.-H.); (K.D.); (D.M.); (C.D.); (D.L.); (S.S.)
| | - Dominique Marcé
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (C.G.-H.); (K.D.); (D.M.); (C.D.); (D.L.); (S.S.)
| | - Chloé Dambrune
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (C.G.-H.); (K.D.); (D.M.); (C.D.); (D.L.); (S.S.)
| | - Donatien Lefebvre
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (C.G.-H.); (K.D.); (D.M.); (C.D.); (D.L.); (S.S.)
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94706 Maisons-Alfort, France; (Y.N.); (J.-A.H.)
| | - Jacques-Antoine Hennekinne
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94706 Maisons-Alfort, France; (Y.N.); (J.-A.H.)
| | - Stéphanie Simon
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (C.G.-H.); (K.D.); (D.M.); (C.D.); (D.L.); (S.S.)
| |
Collapse
|
16
|
Ramakrishnan V, Marialouis XA, Sankarasubramanian J, Santhanam A, Balakrishnan AS. Whole Genomic analysis of a clinical isolate of Uropathogenic Escherichia coli strain of Sequence Type - 101 carrying the drug resistance NDM-7 in IncX3 plasmid. Bioinformation 2021; 17:126-131. [PMID: 34393427 PMCID: PMC8340689 DOI: 10.6026/97320630017126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 11/30/2022] Open
Abstract
The emerging NDM-producing Enterobactereciae is a major threat to public health. The association of NDM-7 with sequence type 101 E.coli is identified in very few numbers. Therefore, it is of interest to analyse the whole genome sequence of NDM-producing uropathogenic E. coli XA31 that was found to carry numerous drug resistance genes of different antibiotic classes. The isolate E. coli belongs to ST-101 carrying blaNDM-7 coexisting with several resistance genes blaOXA-1, blaTEM1-A, blaCTX-M15, aac(6')-Ib-cr, catB3, tetB. Resfinder predicts this and four other plasmid replicons were identified using the Plasfinder in the CGE platform. The high transferable IncX3 plasmid was found to carry the NDM-7 gene. Thus, we the report the combination of NDM-7-ST101-IncX3 in India. The combination of this epidemic clone with NDM-7 is highly required to develop an effective infection control strategy.
Collapse
Affiliation(s)
- Venkatesan Ramakrishnan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Xavier Alexander Marialouis
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
- National Institute of Pharmaceutical Education and Research, 168, Manicktala Main Road, Kolkata 700054, West Bengal, India
| | - Jagadesan Sankarasubramanian
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Amutha Santhanam
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Anand Setty Balakrishnan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| |
Collapse
|
17
|
Oueslati S, Volland H, Cattoir V, Bernabeu S, Girlich D, Dulac D, Plaisance M, Laroche M, Dortet L, Simon S, Naas T. Development and validation of a lateral flow immunoassay for rapid detection of VanA-producing enterococci. J Antimicrob Chemother 2021; 76:146-151. [PMID: 33305802 DOI: 10.1093/jac/dkaa413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND VRE are nosocomial pathogens with an increasing incidence in recent decades. Rapid detection is crucial to reduce their spread and prevent infections and outbreaks. OBJECTIVES To evaluate a lateral flow immunoassay (LFIA) (called NG-Test VanA) for the rapid and reliable detection of VanA-producing VRE (VanA-VRE) from colonies and broth. METHODS NG-Test VanA was validated on 135 well-characterized enterococcal isolates grown on Mueller-Hinton (MH) agar (including 40 VanA-VRE). Different agar plates and culture broths widely used in routine laboratories for culture of enterococci were tested. RESULTS All 40 VanA-VRE clinical isolates were correctly detected in less than 15 min irrespective of the species expressing the VanA ligase and the medium used for bacterial growth. No cross-reaction was observed with any other clinically relevant ligases (VanB, C1, C2, D, E, G, L, M and N). Overall, the sensitivity and specificity of the assay were 100% for VanA-VRE grown on MH agar plates. NG-Test VanA accurately detects VanA-VRE irrespective of the culture medium (agar and broth). Band intensity was increased when using bacteria grown on vancomycin-containing culture media or on MH close to the vancomycin disc as a consequence of VanA induction. The limit of detection of the assay was 6.3 × 106 cfu per test with bacteria grown on MH plates and 4.9 × 105 cfu per test with bacteria grown on ChromID® VRE plates. CONCLUSIONS NG-Test VanA is efficient, rapid and easy to implement in the routine workflow of a clinical microbiology laboratory for the confirmation of VanA-VRE.
Collapse
Affiliation(s)
- Saoussen Oueslati
- Team ReSIST, INSERM U1184, School of Medicine, Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France.,Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Hervé Volland
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, 91191 Gif-sur-Yvette, France
| | - Vincent Cattoir
- Department of Clinical Microbiology and French National Reference Centre for Antibiotic Resistance: Glycopeptide-Resistant Enterococci, University Hospital, Rennes, France
| | - Sandrine Bernabeu
- Team ReSIST, INSERM U1184, School of Medicine, Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France.,Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Delphine Girlich
- Team ReSIST, INSERM U1184, School of Medicine, Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France
| | - Ducan Dulac
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, 91191 Gif-sur-Yvette, France
| | - Marc Plaisance
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, 91191 Gif-sur-Yvette, France
| | - Maxime Laroche
- Research and Development Department, NG Biotech, Guipry, France
| | - Laurent Dortet
- Team ReSIST, INSERM U1184, School of Medicine, Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France.,Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France.,French National Reference Centre for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Stéphanie Simon
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, 91191 Gif-sur-Yvette, France
| | - Thierry Naas
- Team ReSIST, INSERM U1184, School of Medicine, Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France.,Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France.,French National Reference Centre for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| |
Collapse
|
18
|
Bernabeu S, Ratnam KC, Boutal H, Gonzalez C, Vogel A, Devilliers K, Plaisance M, Oueslati S, Malhotra-Kumar S, Dortet L, Fortineau N, Simon S, Volland H, Naas T. A Lateral Flow Immunoassay for the Rapid Identification of CTX-M-Producing Enterobacterales from Culture Plates and Positive Blood Cultures. Diagnostics (Basel) 2020; 10:diagnostics10100764. [PMID: 32998433 PMCID: PMC7600033 DOI: 10.3390/diagnostics10100764] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
We have developed a lateral flow immunoassay (LFIA), named NG-Test CTX-M MULTI (NG-Test), to detect group 1, 2, 8, 9, 25 CTX-M producers from agar plates and from positive blood cultures in less than 15 min. The NG-Test was validated retrospectively on 113 well-characterized enterobacterial isolates, prospectively on 102 consecutively isolated ESBL-producers from the Bicêtre hospital and on 100 consecutive blood cultures positive with a gram-negative bacilli (GNB). The NG-Test was able to detect all CTX-M producers grown on the different agar plates used in clinical microbiology laboratories. No false positive nor negative results were observed. Among the 102 consecutive ESBL isolates, three hyper mucous isolates showed an incorrect migration leading to invalid results (no control band). Using an adapted protocol, the results could be validated. The NG-Test detected 99/102 ESBLs as being CTX-Ms. Three SHV producers were not detected. Among the 100 positive blood cultures with GNB tested 10/11 ESBL-producers were detected (8 CTX-M-15, 2 CTX-M-27). One SHV-2-producing-E. cloacae was missed. The NG-Test CTX-M MULTI showed 100% sensitivity and specificity with isolates cultured on agar plates and was able to detect 98% of the ESBL-producers identified in our clinical setting either from colonies or from positive blood cultures.
Collapse
Affiliation(s)
- Sandrine Bernabeu
- Team Resist, UMR1184, School of Medicine of Université Paris-Saclay—INSERM—CEA, LabEx Lermit, 94276 Le Kremlin-Bicêtre, France; (S.B.); (S.O.); (L.D.); (N.F.)
- Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France; (K.C.R.); (C.G.)
| | | | - Hervé Boutal
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Laboratoire d’Etudes et de Recherches en Immunonalyse, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (H.B.); (A.V.); (K.D.); (M.P.); (S.S.); (H.V.)
| | - Camille Gonzalez
- Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France; (K.C.R.); (C.G.)
| | - Anaïs Vogel
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Laboratoire d’Etudes et de Recherches en Immunonalyse, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (H.B.); (A.V.); (K.D.); (M.P.); (S.S.); (H.V.)
| | - Karine Devilliers
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Laboratoire d’Etudes et de Recherches en Immunonalyse, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (H.B.); (A.V.); (K.D.); (M.P.); (S.S.); (H.V.)
| | - Marc Plaisance
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Laboratoire d’Etudes et de Recherches en Immunonalyse, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (H.B.); (A.V.); (K.D.); (M.P.); (S.S.); (H.V.)
| | - Saoussen Oueslati
- Team Resist, UMR1184, School of Medicine of Université Paris-Saclay—INSERM—CEA, LabEx Lermit, 94276 Le Kremlin-Bicêtre, France; (S.B.); (S.O.); (L.D.); (N.F.)
- Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France; (K.C.R.); (C.G.)
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, 2610 Antwerp, Belgium;
- Members of ESCMID Study Group for Antimicrobial Resistance Surveillance—ESGARS, Headquarter, 4010 Basel, Switzerland
| | - Laurent Dortet
- Team Resist, UMR1184, School of Medicine of Université Paris-Saclay—INSERM—CEA, LabEx Lermit, 94276 Le Kremlin-Bicêtre, France; (S.B.); (S.O.); (L.D.); (N.F.)
- Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France; (K.C.R.); (C.G.)
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
| | - Nicolas Fortineau
- Team Resist, UMR1184, School of Medicine of Université Paris-Saclay—INSERM—CEA, LabEx Lermit, 94276 Le Kremlin-Bicêtre, France; (S.B.); (S.O.); (L.D.); (N.F.)
- Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France; (K.C.R.); (C.G.)
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
| | - Stéphanie Simon
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Laboratoire d’Etudes et de Recherches en Immunonalyse, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (H.B.); (A.V.); (K.D.); (M.P.); (S.S.); (H.V.)
| | - Hervé Volland
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Laboratoire d’Etudes et de Recherches en Immunonalyse, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (H.B.); (A.V.); (K.D.); (M.P.); (S.S.); (H.V.)
| | - Thierry Naas
- Team Resist, UMR1184, School of Medicine of Université Paris-Saclay—INSERM—CEA, LabEx Lermit, 94276 Le Kremlin-Bicêtre, France; (S.B.); (S.O.); (L.D.); (N.F.)
- Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France; (K.C.R.); (C.G.)
- Members of ESCMID Study Group for Antimicrobial Resistance Surveillance—ESGARS, Headquarter, 4010 Basel, Switzerland
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
- Service de Bactériologie, AP-HP, CHU de Bicêtre, 78 Rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France
- Correspondence: ; Tel.: +33-1-45-21-29-86
| |
Collapse
|
19
|
Shanmugakani RK, Srinivasan B, Glesby MJ, Westblade LF, Cárdenas WB, Raj T, Erickson D, Mehta S. Current state of the art in rapid diagnostics for antimicrobial resistance. LAB ON A CHIP 2020; 20:2607-2625. [PMID: 32644060 PMCID: PMC7428068 DOI: 10.1039/d0lc00034e] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Antimicrobial resistance (AMR) is a fundamental global concern analogous to climate change threatening both public health and global development progress. Infections caused by antimicrobial-resistant pathogens pose serious threats to healthcare and human capital. If the increasing rate of AMR is left uncontrolled, it is estimated that it will lead to 10 million deaths annually by 2050. This global epidemic of AMR necessitates radical interdisciplinary solutions to better detect antimicrobial susceptibility and manage infections. Rapid diagnostics that can identify antimicrobial-resistant pathogens to assist clinicians and health workers in initiating appropriate treatment are critical for antimicrobial stewardship. In this review, we summarize different technologies applied for the development of rapid diagnostics for AMR and antimicrobial susceptibility testing (AST). We briefly describe the single-cell technologies that were developed to hasten the AST of infectious pathogens. Then, the different types of genotypic and phenotypic techniques and the commercially available rapid diagnostics for AMR are discussed in detail. We conclude by addressing the potential of current rapid diagnostic systems being developed as point-of-care (POC) diagnostic tools and the challenges to adapt them at the POC level. Overall, this review provides an insight into the current status of rapid and POC diagnostic systems for AMR.
Collapse
Affiliation(s)
- Rathina Kumar Shanmugakani
- Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, New York, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Balaji Srinivasan
- Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, New York, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Marshall J. Glesby
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Lars F. Westblade
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Washington B. Cárdenas
- Laboratorio para Investigaciones Biomédicas, Escuela Superior Politécnica del Litoral, Guayaquil, Guayas, Ecuador
| | - Tony Raj
- St. John’s Research Institute, Bangalore, Karnataka, India
| | - David Erickson
- Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, New York, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| | - Saurabh Mehta
- Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, New York, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
20
|
Cui ZH, Jia L, Han L, Tang T, Zhong ZX, Fang LX, Ni WN, Wang MG, Wang XR, Liu YH, Liao XP, Sun J. A Four-Hour Carbapenem Inactivation Method (CIM B.S ) Using Bacillus stearothermophilus as Indicator Strain. Front Med (Lausanne) 2020; 7:364. [PMID: 32850887 PMCID: PMC7411124 DOI: 10.3389/fmed.2020.00364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/15/2020] [Indexed: 01/04/2023] Open
Abstract
Objectives: There is an urgent need for accurate and fast diagnostic tests to identify carbapenemase-producing bacteria. Here we used Bacillus stearothermophilus as an indicator strain in the format of the carbapenem inactivation method (CIM) procedure to develop a rapid carbapenemase phenotype detection method: CIMB.S. Methods: The CIMB.S test was derived from the mCIM, where B. stearothermophilus replaced Escherichia coli as the indicator strain. The test bacteria were incubated in the presence of imipenem for 30 min, and then, aliquots were placed on colorimetric plates, and incubation was continued for 3.5 h at 60°C. We examined 134 clinical strains to evaluate the CIMB.S performance. Results: The CIMB.S can be completed in 4 h, and we successfully identified 38/39 (97.4%) carbapenemase-producing Enterobacteriaceae, including 17/18 (94.4%) carbapenemase-producing Pseudomonas aeruginosa and 18/19 (94.7%) carbapenemase-producing Acinetobacter baumannii. All non-carbapenemase producers we tested were negative and included Enterobacteriaceae (n = 36), P. aeruginosa (n = 17), and A. baumannii (n = 5). Conclusions: The CIMB.S test is a rapid carbapenemase phenotype detection method requiring only 4 h of total work time and displays high sensitivity and specificity.
Collapse
Affiliation(s)
- Ze-Hua Cui
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ling Jia
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lu Han
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tian Tang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zi-Xing Zhong
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Liang-Xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wei-Na Ni
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Min-Ge Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xi-Ran Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
21
|
Vasala A, Hytönen VP, Laitinen OH. Modern Tools for Rapid Diagnostics of Antimicrobial Resistance. Front Cell Infect Microbiol 2020; 10:308. [PMID: 32760676 PMCID: PMC7373752 DOI: 10.3389/fcimb.2020.00308] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022] Open
Abstract
Fast, robust, and affordable antimicrobial susceptibility testing (AST) is required, as roughly 50% of antibiotic treatments are started with wrong antibiotics and without a proper diagnosis of the pathogen. Validated growth-based AST according to EUCAST or CLSI (European Committee on Antimicrobial Susceptibility Testing, Clinical Laboratory Standards Institute) recommendations is currently suggested to guide the antimicrobial therapy. Any new AST should be validated against these standard methods. Many rapid diagnostic techniques can already provide pathogen identification. Some of them can additionally detect the presence of resistance genes or resistance proteins, but usually isolated pure cultures are needed for AST. We discuss the value of the technologies applying nucleic acid amplification, whole genome sequencing, and hybridization as well as immunodiagnostic and mass spectrometry-based methods and biosensor-based AST. Additionally, we evaluate the potential of integrated systems applying microfluidics to integrate cultivation, lysis, purification, and signal reading steps. We discuss technologies and commercial products with potential for Point-of-Care Testing (POCT) and their capability to analyze polymicrobial samples without pre-purification steps. The purpose of this critical review is to present the needs and drivers for AST development, to show the benefits and limitations of AST methods, to introduce promising new POCT-compatible technologies, and to discuss AST technologies that are likely to thrive in the future.
Collapse
Affiliation(s)
- Antti Vasala
- Protein Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa P. Hytönen
- Protein Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Olli H. Laitinen
- Protein Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
22
|
Accuracy and applicability of different phenotypic methods for carbapenemase detection in Enterobacteriaceae: A systematic review and meta-analysis. J Glob Antimicrob Resist 2020; 21:138-147. [DOI: 10.1016/j.jgar.2019.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 11/23/2022] Open
|
23
|
Swathi C, Sudhaharan S, Lakshmi V, Suguna Ratnakar K, Sritharan V. Direct Detection and Discrimination of Carbapenemases of Acinetobacter baumannii from Uncultured Tracheal Aspirates. Microb Drug Resist 2020; 26:1153-1162. [PMID: 32364821 DOI: 10.1089/mdr.2019.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Carbapenemases play important roles in conferring resistance to beta-lactam antibiotics, including the carbapenems. Detection of carbapenemase activity helps to understand the possible mechanism(s) of carbapenem resistance. Identification of carbapenemases is currently being done by various phenotypic methods and molecular methods. However, innovative biochemical and spectrophotometric methods are desirable as they will be easy to perform, affordable, and rapid. A novel chromogenic method called Carba NP test was introduced recently to screen for carbapenemases in clinical isolates of gram-negative pathogens. We adopted this assay (1) to detect the total carbapenemase activity, (2) to discriminate Class A, B, and D carbapenemases with inhibitors, (3) to compare with carbapenemase genotype, and (4) for direct differential diagnosis of carbapenemases in uncultured clinical sample such as tracheal aspirate. The study included 132 purulent tracheal aspirates. All samples were processed and screened by a protocol optimized in our laboratory, which showed good sensitivity and correlation with genotyping and conventional phenotyping. Our protocol not only offers the fastest way to identify the pathogen but also its carbapenemase profile, directly from uncultured clinical samples in less than 4 hr. Our protocol is currently being validated on other types of clinical specimens in our laboratory.
Collapse
Affiliation(s)
- Cheguri Swathi
- Department of Molecular Diagnostics & Biomarkers, Global Medical Education and Research Foundation (GMERF), Hyderabad, India
| | - Sukanya Sudhaharan
- Department of Microbiology, Nizam's Institute of Medical Sciences (NIMS), Hyderabad, India
| | - Vemu Lakshmi
- Department of Microbiology, Nizam's Institute of Medical Sciences (NIMS), Hyderabad, India
| | - Kamaraju Suguna Ratnakar
- Department of Molecular Diagnostics & Biomarkers, Global Medical Education and Research Foundation (GMERF), Hyderabad, India
| | - Venkataraman Sritharan
- Department of Molecular Diagnostics & Biomarkers, Global Medical Education and Research Foundation (GMERF), Hyderabad, India
| |
Collapse
|
24
|
Improvement of the Immunochromatographic NG-Test Carba 5 Assay for the Detection of IMP Variants Previously Undetected. Antimicrob Agents Chemother 2019; 64:AAC.01940-19. [PMID: 31685459 DOI: 10.1128/aac.01940-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022] Open
Abstract
Here, we evaluated the immunochromatographic assay NG-Test Carba 5v2 (NG-Biotech), with improved IMP variant detection on 31 IMP producers, representing the different branches of the IMP phylogeny, including 32 OXA-48, 19 KPC, 12 VIM, 14 NDM, and 13 multiple carbapenemase producers (CPs), 13 CPs that were not targeted, and 13 carbapenemase-negative isolates. All tested IMP variants were accurately detected without impairing detection of the other carbapenemases. Thus, NG-Test Carba 5v2 is now well adapted to countries with high IMP prevalence and to the epidemiology of CP-Pseudomonas aeruginosa, where IMPs are most frequently detected.
Collapse
|
25
|
Ali MM, Wolfe M, Tram K, Gu J, Filipe CDM, Li Y, Brennan JD. A DNAzyme‐Based Colorimetric Paper Sensor for
Helicobacter pylori. Angew Chem Int Ed Engl 2019; 58:9907-9911. [PMID: 31095864 DOI: 10.1002/anie.201901873] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/18/2019] [Indexed: 01/25/2023]
Affiliation(s)
- M. Monsur Ali
- Biointerfaces InstituteMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Michael Wolfe
- Biointerfaces InstituteMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Kha Tram
- InnovoGene Biosciences Inc. 919 Fraser Drive Burlington ON L7L 4X8 Canada
| | - Jimmy Gu
- InnovoGene Biosciences Inc. 919 Fraser Drive Burlington ON L7L 4X8 Canada
- Department of Biochemistry and Biomedical SciencesMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Carlos D. M. Filipe
- Department of Chemical EngineeringMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Yingfu Li
- InnovoGene Biosciences Inc. 919 Fraser Drive Burlington ON L7L 4X8 Canada
- Department of Biochemistry and Biomedical SciencesMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - John D. Brennan
- Biointerfaces InstituteMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| |
Collapse
|
26
|
Ali MM, Wolfe M, Tram K, Gu J, Filipe CDM, Li Y, Brennan JD. A DNAzyme‐Based Colorimetric Paper Sensor forHelicobacter pylori. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901873] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- M. Monsur Ali
- Biointerfaces InstituteMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Michael Wolfe
- Biointerfaces InstituteMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Kha Tram
- InnovoGene Biosciences Inc. 919 Fraser Drive Burlington ON L7L 4X8 Canada
| | - Jimmy Gu
- InnovoGene Biosciences Inc. 919 Fraser Drive Burlington ON L7L 4X8 Canada
- Department of Biochemistry and Biomedical SciencesMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Carlos D. M. Filipe
- Department of Chemical EngineeringMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Yingfu Li
- InnovoGene Biosciences Inc. 919 Fraser Drive Burlington ON L7L 4X8 Canada
- Department of Biochemistry and Biomedical SciencesMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - John D. Brennan
- Biointerfaces InstituteMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| |
Collapse
|
27
|
Boutal H, Vogel A, Bernabeu S, Devilliers K, Creton E, Cotellon G, Plaisance M, Oueslati S, Dortet L, Jousset A, Simon S, Naas T, Volland H. A multiplex lateral flow immunoassay for the rapid identification of NDM-, KPC-, IMP- and VIM-type and OXA-48-like carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother 2019; 73:909-915. [PMID: 29365094 PMCID: PMC5890661 DOI: 10.1093/jac/dkx521] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/13/2017] [Indexed: 12/12/2022] Open
Abstract
Objectives The global spread of carbapenemase-producing Enterobacteriaceae represents a substantial challenge in clinical practice and rapid and reliable detection of these organisms is essential. The aim of this study was to develop and validate a lateral flow immunoassay (Carba5) for the detection of the five main carbapenemases (KPC-, NDM-, VIM- and IMP-type and OXA-48-like). Methods Carba5 was retrospectively and prospectively evaluated using 296 enterobacterial isolates from agar culture. An isolated colony was suspended in extraction buffer and then loaded on the manufactured Carba5. Results All 185 isolates expressing a carbapenemase related to one of the Carba5 targets were correctly and unambiguously detected in <15 min. All other isolates gave negative results except those producing OXA-163 and OXA-405, which are considered low-activity carbapenemases. No cross-reaction was observed with non-targeted carbapenemases, ESBLs, AmpCs or oxacillinases (OXA-1, -2, -9 and -10). Overall, this assay reached 100% sensitivity and 95.3% (retrospectively) to 100% (prospectively) specificity. Conclusions Carba5 is efficient, rapid and easy to implement in the routine workflow of a clinical microbiology laboratory for confirmation of the five main carbapenemases encountered in Enterobacteriaceae.
Collapse
Affiliation(s)
- Hervé Boutal
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Laboratoire d'Etudes et de Recherches en Immunonalyse, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Anaïs Vogel
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Laboratoire d'Etudes et de Recherches en Immunonalyse, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Sandrine Bernabeu
- EA7361, Université Paris-Sud, Université Paris-Saclay, LabEx Lermit, Bacteriology-Hygiene unit, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Karine Devilliers
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Laboratoire d'Etudes et de Recherches en Immunonalyse, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Elodie Creton
- EA7361, Université Paris-Sud, Université Paris-Saclay, LabEx Lermit, Bacteriology-Hygiene unit, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Associated French National Reference Centre for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Garence Cotellon
- EA7361, Université Paris-Sud, Université Paris-Saclay, LabEx Lermit, Bacteriology-Hygiene unit, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Associated French National Reference Centre for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Marc Plaisance
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Laboratoire d'Etudes et de Recherches en Immunonalyse, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Saoussen Oueslati
- EA7361, Université Paris-Sud, Université Paris-Saclay, LabEx Lermit, Bacteriology-Hygiene unit, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Laurent Dortet
- EA7361, Université Paris-Sud, Université Paris-Saclay, LabEx Lermit, Bacteriology-Hygiene unit, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Associated French National Reference Centre for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Agnès Jousset
- EA7361, Université Paris-Sud, Université Paris-Saclay, LabEx Lermit, Bacteriology-Hygiene unit, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Associated French National Reference Centre for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Stéphanie Simon
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Laboratoire d'Etudes et de Recherches en Immunonalyse, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Thierry Naas
- EA7361, Université Paris-Sud, Université Paris-Saclay, LabEx Lermit, Bacteriology-Hygiene unit, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Associated French National Reference Centre for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Hervé Volland
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Laboratoire d'Etudes et de Recherches en Immunonalyse, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| |
Collapse
|
28
|
NDM Metallo-β-Lactamases and Their Bacterial Producers in Health Care Settings. Clin Microbiol Rev 2019; 32:32/2/e00115-18. [PMID: 30700432 DOI: 10.1128/cmr.00115-18] [Citation(s) in RCA: 439] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
New Delhi metallo-β-lactamase (NDM) is a metallo-β-lactamase able to hydrolyze almost all β-lactams. Twenty-four NDM variants have been identified in >60 species of 11 bacterial families, and several variants have enhanced carbapenemase activity. Klebsiella pneumoniae and Escherichia coli are the predominant carriers of bla NDM, with certain sequence types (STs) (for K. pneumoniae, ST11, ST14, ST15, or ST147; for E. coli, ST167, ST410, or ST617) being the most prevalent. NDM-positive strains have been identified worldwide, with the highest prevalence in the Indian subcontinent, the Middle East, and the Balkans. Most bla NDM-carrying plasmids belong to limited replicon types (IncX3, IncFII, or IncC). Commonly used phenotypic tests cannot specifically identify NDM. Lateral flow immunoassays specifically detect NDM, and molecular approaches remain the reference methods for detecting bla NDM Polymyxins combined with other agents remain the mainstream options of antimicrobial treatment. Compounds able to inhibit NDM have been found, but none have been approved for clinical use. Outbreaks caused by NDM-positive strains have been reported worldwide, attributable to sources such as contaminated devices. Evidence-based guidelines on prevention and control of carbapenem-resistant Gram-negative bacteria are available, although none are specific for NDM-positive strains. NDM will remain a severe challenge in health care settings, and more studies on appropriate countermeasures are required.
Collapse
|
29
|
Lagoutte P, Lugari A, Elie C, Potisopon S, Donnat S, Mignon C, Mariano N, Troesch A, Werle B, Stadthagen G. Combination of ribosome display and next generation sequencing as a powerful method for identification of affibody binders against β-lactamase CTX-M15. N Biotechnol 2019; 50:60-69. [PMID: 30634000 DOI: 10.1016/j.nbt.2019.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 01/15/2023]
Abstract
CTX-M15 is one of the most widespread, extended spectrum β-lactamases, a major determinant of antibiotic resistance representing urgent public health threats, among enterobacterial strains infecting humans and animals. Here we describe the selection of binders to CTX-M15 from a combinatorial affibody library displayed on ribosomes. Upon three increasingly selective ribosome display iterations, selected variants were identified by next generation sequencing (NGS). Nine affibody variants with high relative abundance bearing QRP and QLH amino acid motifs at residues 9-11 were produced and characterized in terms of stability, affinity and specificity. All affibodies were correctly folded, with affinities ranging from 0.04 to 2 μM towards CTX-M15, and successfully recognized CTX-M15 in bacterial lysates, culture supernatants and on whole bacteria. It was further demonstrated that the binding of affibody molecules to CTX-M15 modulated the enzyme's kinetic parameters. This work provides an approach using ribosome display coupled to NGS for the rapid generation of protein ligands of interest in diagnostic and research applications.
Collapse
Affiliation(s)
| | - Adrien Lugari
- BIOASTER, 40 Avenue Tony Garnier, 69007 Lyon, France
| | - Céline Elie
- BIOASTER, 40 Avenue Tony Garnier, 69007 Lyon, France
| | | | | | | | | | - Alain Troesch
- BIOASTER, 40 Avenue Tony Garnier, 69007 Lyon, France
| | - Bettina Werle
- BIOASTER, 40 Avenue Tony Garnier, 69007 Lyon, France.
| | | |
Collapse
|
30
|
Phenotypic Detection of Carbapenemase-Producing Organisms from Clinical Isolates. J Clin Microbiol 2018; 56:JCM.01140-18. [PMID: 30158194 DOI: 10.1128/jcm.01140-18] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The rapid spread of multidrug-resistant Gram-negative organisms constitutes one of the greatest challenges to global health. While Gram-negative organisms have developed several mechanisms to avert the bactericidal effects of commonly prescribed antibiotic agents, the increasing prevalence of carbapenemase-producing organisms (CPO) is particularly concerning given the rapid spread of mobile genetic elements containing carbapenemase genes, the limited treatment options for infections caused by these organisms, and the high mortality rates associated with CPO infections. Understanding if an organism is carbapenemase producing and, if so, the class of carbapenemase(s) produced has treatment implications, as some agents preferentially have activity against specific carbapenemases. Furthermore, CPO disseminate between patients with greater ease than non-CP-carbapenem-resistant organisms and warrant more intensive infection control measures than would be employed in the absence of carbapenemase production. Phenotypic assays currently used in clinical practice to detect CPO consist of the following: (i) growth-based assays which measure carbapenem resistance based on organism growth in the presence of a carbapenem antibiotic (e.g., modified Hodge test and modified carbapenem inactivation method), (ii) hydrolysis methods which detect carbapenem degradation products (e.g., Carba NP test and matrix-assisted laser desorption-ionization time of flight mass spectrometry), and (iii) lateral flow immunoassays which detect carbapenemase enzymes through the use of specific antibodies. Although there is no single phenotypic test that meets all specifications of the ideal test, as we describe in this review, there are a number of tests that are user-friendly, affordable, accurate, and feasible for implementation in clinical microbiology laboratories of all sizes.
Collapse
|
31
|
Evaluation of the Amplidiag CarbaR+VRE Kit for Accurate Detection of Carbapenemase-Producing Bacteria. J Clin Microbiol 2018; 56:JCM.01092-17. [PMID: 29305547 DOI: 10.1128/jcm.01092-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022] Open
Abstract
As carbapenemase-producing Gram-negative bacilli (CP-GNB) (Enterobacteriaceae, Pseudomonadaceae, and Acinetobacter spp.) are becoming a major public health issue, there is an urgent need for accurate and fast diagnostic tests. The Amplidiag CarbaR+VRE assay is a multiplex nucleic acid-based in vitro diagnostic test intended for the detection of CP-GNB and vancomycin-resistant enterococci (VRE) from cultured colonies. We have evaluated its ability to detect carbapenemase genes in 100 well-characterized GNB and in 200 consecutive enterobacterial isolates with reduced susceptibility to carbapenems that were referred to the French National Reference Center for carbapenem resistance. The assay has been validated on purified DNA but also directly on colonies. The Amplidiag CarbaR+VRE assay could detect all KPC, NDM, VIM, IMP, and OXA-48-like variants tested and all acquired carbapenem-hydrolyzing oxacillinases from Acinetobacter baumannii (OXA-23, OXA-24/-40, and OXA-58) as well as the overexpressed chromosomally encoded OXA-51-like β-lactamase associated with an upstream inserted ISAba1 However, as claimed by the manufacturer, other carbapenemases such as GES-like carbapenemases (GES-2, GES-5, and GES-14), GIM-1, AIM-1, SPM-1, DIM-1, OXA-198 in Pseudomonas aeruginosa, or OXA-143-like in A. baumannii were not detected. Amplidiag CarbaR+VRE's performance values were high (100% sensitivity and 99% specificity) as it could detect the five major carbapenemases-NDM, VIM, IMP, KPC, and OXA-48-as well as OXA-type carbapenemases from Acinetobacter spp. that are currently emerging also among Proteus mirabilis and other enterobacterial isolates. It can provide a result directly from colonies growing on Mueller-Hinton (MH) agar or on selective screening medium in less than 2 h. Further evaluations are now necessary to determine the performance values directly on rectal swabs.
Collapse
|
32
|
Girlich D, Bernabeu S, Fortineau N, Dortet L, Naas T. Evaluation of the CRE and ESBL ELITe MGB® kits for the accurate detection of carbapenemase- or CTX-M-producing bacteria. Diagn Microbiol Infect Dis 2018; 92:1-7. [PMID: 29983286 DOI: 10.1016/j.diagmicrobio.2018.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/12/2022]
Abstract
As carbapenemase-producing Enterobacteriaceae (CPE) and extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) are becoming a major public health issue, there is an urgent need for accurate and fast diagnostic tests. The ELITe InGenius is a fully automated sample-to-result system designed for the extraction and detection by multiplex real-time polymerase chain reaction of carbapenemases KPC, NDM, VIM, IMP, and OXA-48-like variants and CTX-M group 1 and 9-producers from diverse sample matrices such as colonies, positive blood cultures, and rectal swabs. CRE and ESBL ELITe MGB® kits were evaluated on 153 cultured colonies of enterobacterial isolates with characterized β-lactamase content, on 30 spiked blood cultures, and the CRE kit was also evaluated on 53 clinical rectal swabs collected prospectively during a 3-month period and 10 spiked rectal swabs. CRE ELITe MGB® kit's performances reached 100% sensitivity and 100% specificity, while for the ESBL ELITe kit, 100% sensitivity and 96.6% specificity were observed, with a sample to result of less than 3 h and a total percentage of agreement with expected results of 99.6% (255/256).
Collapse
Affiliation(s)
- Delphine Girlich
- EA7361 "Structure, Dynamic, Function and Expression of Broad Spectrum β-lactamases", Université Paris-Sud, Université Paris-Saclay, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France; Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur - APHP -Université Paris-Sud, Paris, France
| | - Sandrine Bernabeu
- EA7361 "Structure, Dynamic, Function and Expression of Broad Spectrum β-lactamases", Université Paris-Sud, Université Paris-Saclay, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France; Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur - APHP -Université Paris-Sud, Paris, France; Bacteriology-Hygiene unit, Assistance Publique - Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Nicolas Fortineau
- EA7361 "Structure, Dynamic, Function and Expression of Broad Spectrum β-lactamases", Université Paris-Sud, Université Paris-Saclay, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France; Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur - APHP -Université Paris-Sud, Paris, France; Bacteriology-Hygiene unit, Assistance Publique - Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Laurent Dortet
- EA7361 "Structure, Dynamic, Function and Expression of Broad Spectrum β-lactamases", Université Paris-Sud, Université Paris-Saclay, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France; Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur - APHP -Université Paris-Sud, Paris, France; Bacteriology-Hygiene unit, Assistance Publique - Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Thierry Naas
- EA7361 "Structure, Dynamic, Function and Expression of Broad Spectrum β-lactamases", Université Paris-Sud, Université Paris-Saclay, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France; Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur - APHP -Université Paris-Sud, Paris, France; Bacteriology-Hygiene unit, Assistance Publique - Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.
| |
Collapse
|