1
|
Zhou Y, Ouyang F, Liu X, Lu J, Hu H, Sun Q, Yang H. A Sensitivity and Consistency Comparison Between Next-Generation Sequencing and Sanger Sequencing in HIV-1 Pretreatment Drug Resistance Testing. Viruses 2024; 16:1713. [PMID: 39599828 PMCID: PMC11599105 DOI: 10.3390/v16111713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Next-generation sequencing (NGS) for HIV drug resistance (DR) testing has an increasing number of applications for the detection of low-abundance drug-resistant variants (LA-DRVs) in regard to its features as a quasi-species. However, there is less information on its detection performance in DR detection with NGS. To determine the feasibility of using NGS technology in LA-DRV detection for HIV-1 pretreatment drug resistance, 80 HIV-infected individuals who had never undergone antiretroviral therapy were subjected to both NGS and Sanger sequencing (SS) in HIV-1 drug resistance testing. The results reported in this study show that NGS exhibits higher sensitivity for drug resistance identification than SS at a 5% detection threshold. NGS showed a better consistency compared with that of SS for both protease inhibitors (PIs) and integrase inhibitors (INSTIs), with a figure amounting to more than 90%, but worse consistency in nucleotide reverse transcriptase inhibitors (NRTIs), with a consistency ranging from only 61.25% to 87.50%. The consistency of non-nucleotide reverse transcriptase inhibitors (NNRTIs) between NGS and SS was around 85%. NGS showed the highest sensitivity of 87.0% at a 5% threshold. The application of NGS technology in HIV-1 genotype resistance detection in different populations infected with HIV requires further documentation and validation.
Collapse
Affiliation(s)
- Ying Zhou
- Department of HIV/STD Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; (X.L.); (J.L.); (H.H.); (Q.S.); (H.Y.)
| | - Fei Ouyang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China;
| | - Xiaoyan Liu
- Department of HIV/STD Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; (X.L.); (J.L.); (H.H.); (Q.S.); (H.Y.)
| | - Jing Lu
- Department of HIV/STD Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; (X.L.); (J.L.); (H.H.); (Q.S.); (H.Y.)
| | - Haiyang Hu
- Department of HIV/STD Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; (X.L.); (J.L.); (H.H.); (Q.S.); (H.Y.)
| | - Qi Sun
- Department of HIV/STD Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; (X.L.); (J.L.); (H.H.); (Q.S.); (H.Y.)
| | - Haitao Yang
- Department of HIV/STD Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; (X.L.); (J.L.); (H.H.); (Q.S.); (H.Y.)
| |
Collapse
|
2
|
Armenia D, Carioti L, Micheli V, Bon I, Allice T, Bonura C, Bruzzone B, Bracchitta F, Cerutti F, Giammanco GM, Stefanelli F, Bonifacio MA, Bertoli A, Vatteroni M, Ibba G, Novazzi F, Lipsi MR, Cuomo N, Vicenti I, Ceccherini-Silberstein F, Rossetti B, Bezenchek A, Saladini F, Zazzi M, Santoro MM. Comparison of Different HIV-1 Resistance Interpretation Tools for Next-Generation Sequencing in Italy. Viruses 2024; 16:1422. [PMID: 39339898 PMCID: PMC11437420 DOI: 10.3390/v16091422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) is gradually replacing Sanger sequencing for HIV genotypic drug resistance testing (GRT). This work evaluated the concordance among different NGS-GRT interpretation tools in a real-life setting. METHODS Routine NGS-GRT data were generated from viral RNA at 11 Italian laboratories with the AD4SEQ HIV-1 Solution v2 commercial kit. NGS results were interpreted by the SmartVir system provided by the kit and by two online tools (HyDRA Web and Stanford HIVdb). NGS-GRT was considered valid when the coverage was >100 reads (100×) at each PR/RT/IN resistance-associated position listed in the HIVdb 9.5.1 algorithm. RESULTS Among 629 NGS-GRT, 75.2%, 74.2%, and 70.9% were valid according to SmartVir, HyDRA Web, and HIVdb. Considering at least two interpretation tools, 463 (73.6%) NGS-GRT had a valid coverage for resistance analyses. The proportion of valid samples was affected by viremia <10,000-1000 copies/mL and non-B subtypes. Mutations at an NGS frequency >10% showed fair concordance among different interpretation tools. CONCLUSION This Italian survey on NGS resistance testing suggests that viremia levels and HIV subtype affect NGS-GRT coverage. Within the current routine method for NGS-GRT, only mutations with frequency >10% seem reliably detected across different interpretation tools.
Collapse
Affiliation(s)
- Daniele Armenia
- Departmental Faculty, UniCamillus, Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Luca Carioti
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Valeria Micheli
- Laboratory of Clinical Microbiology, Virology and Bioemergencies, ASST Fatebenefratelli Sacco-University of Milan, 20157 Milan, Italy
| | - Isabella Bon
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Tiziano Allice
- Laboratory of Microbiology and Virology, Amedeo di Savoia Hospital, 10149 Turin, Italy
| | - Celestino Bonura
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROSAMI), Azienda Ospedaliera Universitaria Policlinico “P. Giaccone”-University of Palermo, 90127 Palermo, Italy
| | - Bianca Bruzzone
- Hygiene Unit, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Fiorenza Bracchitta
- Laboratory of Clinical Microbiology, Virology and Bioemergencies, ASST Fatebenefratelli Sacco-University of Milan, 20157 Milan, Italy
| | - Francesco Cerutti
- Laboratory of Microbiology and Virology, Amedeo di Savoia Hospital, 10149 Turin, Italy
| | - Giovanni Maurizio Giammanco
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROSAMI), Azienda Ospedaliera Universitaria Policlinico “P. Giaccone”-University of Palermo, 90127 Palermo, Italy
| | | | - Maria Addolorata Bonifacio
- Section of Experimental and Clinical Pathology, Department of Precision and Regenerative Medicine and Jonic Area, University of Bari, 70121 Bari, Italy
| | - Ada Bertoli
- Virology Unit, Polyclinic of “Tor Vergata”, 00133 Rome, Italy
| | | | - Gabriele Ibba
- Microbiology and Virology Unit, Diagnostic Department, AOU Sassari, 07100 Sassari, Italy
| | - Federica Novazzi
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Maria Rosaria Lipsi
- Microbiology and Virology Unit, Policlinico Riuniti Foggia Hospital, 71121 Foggia, Italy
| | - Nunzia Cuomo
- U.O.C. Microbiologia e Virologia, P.O. “D.Cotugno”-AO dei Colli, 80100 Napoli, Italy
| | - Ilaria Vicenti
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | | | - Barbara Rossetti
- Infectious Disease Department, USL SUDEST, Toscana, Misericordia Hospital, 58100 Grosseto, Italy
| | - Antonia Bezenchek
- IPRO-InformaPRO S.r.l., 00152 Rome, Italy
- EuResist Network GEIE, 00152 Rome, Italy
| | - Francesco Saladini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Maria Mercedes Santoro
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
3
|
Wang H. Practical updates in clinical antiviral resistance testing. J Clin Microbiol 2024; 62:e0072823. [PMID: 39051778 PMCID: PMC11323466 DOI: 10.1128/jcm.00728-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
The laboratory diagnosis of antiviral resistance is a quickly changing field due to new drug availability, the sunsetting of older drugs, the development of novel technologies, rapid viral evolution, and the financial/logistic pressures of the clinical laboratory. This mini-review summarizes the current state of clinically available antiviral resistance testing in the United States in 2024, covering the most commonly used test methods, mechanisms, and clinical indications for herpes simplex virus, cytomegalovirus, human immunodeficiency virus, influenza, hepatitis B virus, and hepatitis C virus drug resistance testing. Common themes include the move away from phenotypic to genotypic methods for first-line clinical testing, as well as uncertainty surrounding the clinical meaningfulness of minority variant detection as next-generation sequencing methods have become more commonplace.
Collapse
Affiliation(s)
- Hannah Wang
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Papa Mze N, Fernand-Laurent C, Daugabel S, Zanzouri O, Juillet SM. Optimization of HIV Sequencing Method Using Vela Sentosa Library on Miseq Ilumina Platform. Genes (Basel) 2024; 15:259. [PMID: 38397248 PMCID: PMC10887851 DOI: 10.3390/genes15020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Genotypic testing is often recommended to improve the management of patients infected with human immunodeficiency virus (HIV). To help combat this major pandemic, next-generation sequencing (NGS) techniques are widely used to analyse resistance to antiretroviral drugs. In this study, we used a Vela Sentosa kit (Vela Diagnostics, Kendall, Singapore), which is usually used for the Ion Torrent personal genome machine (PGM) platform, to sequence HIV using the Illumina Miseq platform. After RNA extraction and reverse transcriptase-polymerase chain reaction (RT-PCR), minor modifications were applied to the Vela Sentosa kit to adapt it to the Illumina Miseq platform. Analysis of the results showed the same mutations present in the samples using both sequencing platforms. The total number of reads varied from 185,069 to 752,343 and from 642,162 to 2,074,028 in the Ion Torrent PGM platform and the Illumina Miseq platform, respectively. The average depth was 21,955 and 46,856 for Ion Torrent PGM and Illumina Miseq platforms, respectively. The cost of sequencing a run of eight samples was quite similar between the two platforms (about USD 1790 for Illumina Miseq and about USD 1833 for Ion Torrent PGM platform). We have shown for the first time that it is possible to adapt and use the Vela Sentosa kit for the Illumina Miseq platform to obtain high-quality results with a similar cost.
Collapse
Affiliation(s)
- Nasserdine Papa Mze
- Service de Biologie, Unité de Microbiologie, Hôpital Mignot, Centre Hospitalier de Versailles, 177 rue de Versailles, 78150 Le Chesnay, France (O.Z.); (S.M.J.)
| | | | | | | | | |
Collapse
|
5
|
Mallory MA, Hymas WC, Simmon KE, Pyne MT, Stevenson JB, Barker AP, Hillyard DR, Hanson KE. Development and validation of a next-generation sequencing assay with open-access analysis software for detecting resistance-associated mutations in CMV. J Clin Microbiol 2023; 61:e0082923. [PMID: 38092673 PMCID: PMC10729743 DOI: 10.1128/jcm.00829-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/29/2023] [Indexed: 12/20/2023] Open
Abstract
Cytomegalovirus (CMV) resistance testing by targeted next-generation sequencing (NGS) allows for the simultaneous analysis of multiple genes. We developed and validated an amplicon-based Ion Torrent NGS assay to detect CMV resistance mutations in UL27, UL54, UL56, and UL97 and compared the results to standard Sanger sequencing. NGS primers were designed to generate 83 overlapping amplicons of four CMV genes (~10 kb encompassing 138 mutation sites). An open-access software plugin was developed to perform read alignment, call variants, and interpret drug resistance. Plasmids were tested to determine NGS error rate and minor variant limit of detection. NGS limit of detection was determined using the CMV WHO International Standard and quantified clinical specimens. Reproducibility was also assessed. After establishing quality control metrics, 185 patient specimens previously tested using Sanger were reanalyzed by NGS. The NGS assay had a low error rate (<0.05%) and high accuracy (95%) for detecting CMV-associated resistance mutations present at ≥5% in contrived mixed populations. Mutation sites were reproducibly sequenced with 40× coverage when plasma viral loads were ≥2.6 log IU/mL. NGS detected the same resistance-associated mutations identified by Sanger in 68/69 (98.6%) specimens. In 16 specimens, NGS detected 18 resistance mutations that Sanger failed to detect; 14 were low-frequency variants (<20%), and six would have changed the drug resistance interpretation. The NGS assay showed excellent agreement with Sanger and generated high-quality sequence from low viral load specimens. Additionally, the higher resolution and analytic sensitivity of NGS potentially enables earlier detection of antiviral resistance.
Collapse
Affiliation(s)
- Melanie A. Mallory
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
| | - Weston C. Hymas
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
| | - Keith E. Simmon
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
| | - Michael T. Pyne
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
| | - Jeffery B. Stevenson
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
| | - Adam P. Barker
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - David R. Hillyard
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Kimberly E. Hanson
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
6
|
Parkin N, Harrigan PR, Inzaule S, Bertagnolio S. Need assessment for HIV drug resistance testing and landscape of current and future technologies in low- and middle-income countries. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001948. [PMID: 37851634 PMCID: PMC10584185 DOI: 10.1371/journal.pgph.0001948] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Resistance to antiretroviral drugs used to treat HIV is an important and evolving concern, particularly in low- and middle-income countries (LMICs) which have been impacted to the greatest extent by the HIV pandemic. Efforts to monitor the emergence and transmission of resistance over the past decade have shown that drug resistance-especially to the nucleoside analogue and non-nucleoside reverse transcriptase inhibitors-can (and have) increased to levels that can jeopardize the efficacy of available treatment options at the population level. The global shift to integrase-based regimens as the preferred first-line therapy as well as technological advancements in the methods for detecting resistance have had an impact in broadening and diversifying the landscape of and use case for HIV drug resistance testing. This review estimates the potential demand for HIV drug resistance tests, and surveys current testing methodologies, with a focus on their application in LMICs.
Collapse
Affiliation(s)
- Neil Parkin
- Data First Consulting, Sebastopol, CA, United States of America
| | - P. Richard Harrigan
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Seth Inzaule
- Amsterdam Institute for Global Health and Development, and Department of Global Health, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
7
|
Yan J, Zhang W, Luo H, Wang X, Ruan L. Development and validation of a scoring system for the prediction of HIV drug resistance in Hubei province, China. Front Cell Infect Microbiol 2023; 13:1147477. [PMID: 37234779 PMCID: PMC10208424 DOI: 10.3389/fcimb.2023.1147477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Objective The present study aimed to build and validate a new nomogram-based scoring system for the prediction of HIV drug resistance (HIVDR). Design and methods Totally 618 patients with HIV/AIDS were included. The predictive model was created using a retrospective set (N = 427) and internally validated with the remaining cases (N = 191). Multivariable logistic regression analysis was carried out to fit a model using candidate variables selected by Least absolute shrinkage and selection operator (LASSO) regression. The predictive model was first presented as a nomogram, then transformed into a simple and convenient scoring system and tested in the internal validation set. Results The developed scoring system consisted of age (2 points), duration of ART (5 points), treatment adherence (4 points), CD4 T cells (1 point) and HIV viral load (1 point). With a cutoff value of 7.5 points, the AUC, sensitivity, specificity, PLR and NLR values were 0.812, 82.13%, 64.55%, 2.32 and 0.28, respectively, in the training set. The novel scoring system exhibited a favorable diagnostic performance in both the training and validation sets. Conclusion The novel scoring system can be used for individualized prediction of HIVDR patients. It has satisfactory accuracy and good calibration, which is beneficial for clinical practice.
Collapse
Affiliation(s)
- Jisong Yan
- Department of Respiratory and Critical Care Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wenyuan Zhang
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hong Luo
- Department of Respiratory and Critical Care Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xianguang Wang
- Department of Respiratory and Critical Care Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Lianguo Ruan
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|