1
|
Campodónico VL, Ruelle J, Fitzgerald A, Bergman Y, Osborne B, Bourdas D, Lu J, Carroll KC, Simner PJ. Evaluation of long-read 16S rRNA next-generation sequencing for identification of bacterial isolates in a clinical diagnostic laboratory. J Clin Microbiol 2025; 63:e0167024. [PMID: 40261041 PMCID: PMC12077174 DOI: 10.1128/jcm.01670-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/11/2025] [Indexed: 04/24/2025] Open
Abstract
Sanger sequencing of the first ~500 bp of the 16S rRNA gene is frequently used to identify bacterial pathogens that have ambiguous biochemical profiles or proteomic mass spectra. When diversity does not occur within that region, genus-level and/or species-level identification may not be possible, and a longer sequence or alternative target may be required to distinguish between genera/species. In this study, we evaluated a clinically relevant end-to-end solution for long-read (~1,500 nt) 16S rRNA next-generation sequencing by Oxford Nanopore Technologies (ONT) compared to a ~500 nt Sanger sequencing approach for the identification of 153 bacterial clinical isolates. Sequencing data were analyzed using the IDNS software from SmartGene and its proprietary 16S Centroid reference database (Centroid database) SmartGene software and the Centroid database. The agreement of the two platforms on species- and genus-level identification was determined, and discrepancies were resolved by whole-genome sequencing. ONT had a higher taxonomic resolution at the genus level (P < 0.01). When genus-level identification was achieved by both methods, concordance to the best matching genus was 100%. When species-level identification was achieved by both methods, concordance to the best matching species was 91%. The costs per test were ~$25.30 (when multiplexing 24 samples/run) and $74 for ONT and Sanger sequencing, respectively. The hands-on time spent performing sequencing was similar for both methods, but the turnaround time of ONT was significantly shorter than that of Sanger sequencing.IMPORTANCEThis study adds to existing literature by describing a validated end-to-end solution of 16S rRNA gene Oxford Nanopore sequencing for bacterial isolate identification, including sequencing run time evaluation, automated analysis (SmartGene 16S Identification App) and interpretation of results, that can be incorporated into clinical and public health laboratories with a simple and cost-effective workflow.
Collapse
Affiliation(s)
- Victoria L. Campodónico
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jean Ruelle
- SmartGene Services, EPFL Innovation Park, Lausanne, Switzerland
| | - Anna Fitzgerald
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yehudit Bergman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brenda Osborne
- SmartGene Services, EPFL Innovation Park, Lausanne, Switzerland
| | - Dimitrios Bourdas
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer Lu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Karen C. Carroll
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Patricia J. Simner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Degregori S, Wang X, Kommala A, Schulhof N, Moradi S, MacDonald A, Eblen K, Jukovich S, Smith E, Kelleher E, Suzuki K, Hall Z, Knight R, Amato KR. Comparative gut microbiome research through the lens of ecology: theoretical considerations and best practices. Biol Rev Camb Philos Soc 2025; 100:748-763. [PMID: 39530277 PMCID: PMC11885713 DOI: 10.1111/brv.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Comparative approaches in animal gut microbiome research have revealed patterns of phylosymbiosis, dietary and physiological convergences, and environment-host interactions. However, most large-scale comparative studies, especially those that are highly cited, have focused on mammals, and efforts to integrate comparative approaches with existing ecological frameworks are lacking. While mammals serve as useful model organisms, developing generalised principles of how animal gut microbiomes are shaped and how these microbiomes interact bidirectionally with host ecology and evolution requires a more complete sampling of the animal kingdom. Here, we provide an overview of what past comparative studies have taught us about the gut microbiome, and how community ecology theory may help resolve certain contradictions in comparative gut microbiome research. We explore whether certain hypotheses are supported across clades, and how the disproportionate focus on mammals has introduced potential bias into gut microbiome theory. We then introduce a methodological solution by which public gut microbiome data of understudied hosts can be compiled and analysed in a comparative context. Our aggregation and analysis of 179 studies shows that generating data sets with rich host diversity is possible with public data and that key gut microbes associated with mammals are widespread across the animal kingdom. We also show the effects that sample size and taxonomic rank have on comparative gut microbiome studies and that results of multivariate analyses can vary significantly with these two parameters. While challenges remain in developing a universal model of the animal gut microbiome, we show that existing ecological frameworks can help bring us one step closer to integrating the gut microbiome into animal ecology and evolution.
Collapse
Affiliation(s)
- Samuel Degregori
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Xiaolin Wang
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Akhil Kommala
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Noah Schulhof
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Sadaf Moradi
- Department of Ecology and Evolutionary BiologyUniversity of California621 Young Drive SouthLos AngelesCA90095USA
| | - Allison MacDonald
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Kaitlin Eblen
- Department of Ecology and Evolutionary BiologyUniversity of California621 Young Drive SouthLos AngelesCA90095USA
| | - Sophia Jukovich
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Emma Smith
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Emily Kelleher
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Kota Suzuki
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Zoey Hall
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Rob Knight
- Department of PediatricsUniversity of CaliforniaSan DiegoLa JollaCA92093USA
| | - Katherine Ryan Amato
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| |
Collapse
|
3
|
Mori H, Shibata E, Kondo E, Saito M, Yoshino K, Fukuda K. Effects of the sampling time on the vaginal microbiota in healthy pregnant women: a prospective observational study. AJOG GLOBAL REPORTS 2025; 5:100460. [PMID: 40114815 PMCID: PMC11925174 DOI: 10.1016/j.xagr.2025.100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Background Studies using 16S rRNA gene sequencing have extensively examined the vaginal microbiota changes of pregnant women. However, no study has examined these changes considering the time of day at which vaginal fluid samples were collected from near-term pregnant women. Objective To describe the vaginal microbiota of Japanese near-term pregnant women with normal pregnancy outcomes and potential vaginal microbiota changes from wake-up to bedtime. Study design In this prospective observational study, vaginal swab specimens were obtained from healthy near-term pregnant women twice on the same day, after waking up and before bedtime. All specimens were examined for total bacterial cell count per gram of vaginal fluid, Nugent score, pH, and vaginal microbiota analysis using 16S rRNA gene sequencing. Initially, the wake-up and bedtime samples of all participants were analyzed at the genus level using next-generation sequencing. Subsequently, all samples were analyzed at the genus and species levels using Sanger sequencing. Results Sixteen pregnant women were enrolled in this study. The median age of the participants was 32.5 years, and the median gestational age was 38 weeks. Median bacterial counts in vaginal fluids at wake-up and bedtime were 3.9 × 109/g and 3.6 × 109/g, respectively, with no significant difference. Vaginal microbiota analyses based on 16S rRNA genes showed that the vaginal microbiota in pregnant women with no abnormalities during pregnancy was limited to a single flora dominated by Lactobacillus spp. and included pregnant women with highly diverse vaginal microbiota. Genus-level analysis using next-generation sequencing showed that the vaginal microbiota differed between wake-up and bedtime in more diverse samples but not in less diverse samples. However, these differences were small compared to individual differences. The dominant genera in each sample had similar relative abundances in both wake-up and bedtime samples. However, the non-dominant genus Streptococcus spp. was significantly more frequently detected in bedtime samples. In species-level analyses, the proportions of dominant and non-dominant species showed little change between wake-up and bedtime. Conclusions The vaginal microbiota of pregnant women with normal pregnancy outcomes was not necessarily dominated by Lactobacillus spp. Further studies are required to define the vaginal microbiota in healthy pregnant women. When vaginal fluid samples were collected from the same pregnant women at wake-up and bedtime under the same conditions, the differences between wake-up and bedtime samples were greater for women with high diversity of the vaginal microbiota than for those with low diversity. However, these differences were not sufficiently large to exceed individual differences, and almost no change in the abundances of the dominant genera was observed. Since the relative abundance of Streptococcus spp., a non-dominant species of the vaginal microbiota tends to change between wake-up and bedtime, it might be necessary to collect samples before bedtime to detect group B Streptococci.
Collapse
Affiliation(s)
- Hiroshi Mori
- Department of Microbiology (Mori, Saito and Fukuda), University of Occupational and Environmental Health, Japan
- Department of Obstetrics and Gynecology (Mori), Kenwakai Otemachi hospital
| | - Eiji Shibata
- Department of Obstetrics and Gynecology (Shibata), Faculty of Medicine, Dokkyo Medical University
| | - Emi Kondo
- Department of Obstetrics and Gynecology (Kondo), Kokura Medical Center
| | - Mitsumasa Saito
- Department of Microbiology (Mori, Saito and Fukuda), University of Occupational and Environmental Health, Japan
| | - Kiyoshi Yoshino
- Department of Obstetrics and Gynecology (Shibata), University of Occupational and Environmental Health, Japan
| | - Kazumasa Fukuda
- Department of Microbiology (Mori, Saito and Fukuda), University of Occupational and Environmental Health, Japan
| |
Collapse
|
4
|
Griffith EM, Patel H, Seeram V. Tissierella Bacteremia in the Setting of Polymicrobial Osteomyelitis. Cureus 2024; 16:e74230. [PMID: 39717311 PMCID: PMC11663619 DOI: 10.7759/cureus.74230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
We present a case of Tissierella bacteremia in the setting of polymicrobial osteomyelitis. Tissierella is a Gram-variable bacterium that has been rarely documented as the etiologic organism in human infections such as septic arthritis or otitis media, and even more rarely reported as an organism associated with bacteremia. The patient presented with septic shock and the physical exam was notable for gangrene of bilateral feet. Infectious workup was significant for acute osteomyelitis and septic arthritis of his feet in the setting of Tissierella bacteremia, which was successfully treated with piperacillin-tazobactam and then metronidazole in addition to surgical resection of the feet.
Collapse
Affiliation(s)
- Emma M Griffith
- Internal Medicine, University of Florida College of Medicine - Jacksonville, Jacksonville, USA
| | - Hamel Patel
- Pulmonary and Critical Care Medicine, University of Florida College of Medicine - Jacksonville, Jacksonville, USA
| | - Vandana Seeram
- Pulmonary and Critical Care Medicine, University of Florida College of Medicine - Jacksonville, Jacksonville, USA
| |
Collapse
|
5
|
Xu J, Zhang Y, Shi L, Wang H, Zeng M, Lu Z. Community-acquired pneumonia caused by Micrococcus antarcticus: a rare case report. BMC Infect Dis 2024; 24:1200. [PMID: 39449134 PMCID: PMC11515431 DOI: 10.1186/s12879-024-10084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Micrococcus antarcticus (M. antarcticus) is an aerobic Gram-positive spherical actinobacterium that was initially isolated from Chinese Great-Wall station in Antarctica in 2000. M. antarcticus was considered to be of low pathogenicity, no previous cases of human infection by this organism have been reported. Here we describe the first report with community-acquired pneumonia (CAP) caused by M. antarcticus. CASE PRESENTATION An 87-year-old female was presented to the Central Hospital of Wuhan in November 2023 with a chief complaint of cough, sputum production, and chest tightness for 2 weeks. Microbial culture of the patient's bronchoalveolar lavage fluid (BALF) and identification of the isolates using Matrix-assisted laser desorption ionization/time of flight mass spectrometry (MALDI-TOF MS) and 16S rRNA gene sequencing revealed M. antarcticus infection. Combined with clinical symptoms, laboratory and imaging examination, the patient was diagnosed with CAP. Then cefoperazone/sulbactam and levofloxacin was administrated, the patient's condition was improved and she was discharged after a week after admission, no abnormalities were detected during a 5-month follow-up. CONCLUSIONS This case highlights that M. antarcticus, first identified from a patient with CAP, is an extremely rare pathogenic microorganism. Clinicians should be aware of its potential as a pathogen in the diagnosis and treatment of CAP.
Collapse
Affiliation(s)
- Jia Xu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingmiao Zhang
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lifeng Shi
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Zeng
- Hubei Center for Clinical Laboratory, Wuhan, China
| | - Zhongxin Lu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China.
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Dommann J, Kerbl-Knapp J, Albertos Torres D, Egli A, Keiser J, Schneeberger PHH. A novel barcoded nanopore sequencing workflow of high-quality, full-length bacterial 16S amplicons for taxonomic annotation of bacterial isolates and complex microbial communities. mSystems 2024; 9:e0085924. [PMID: 39254034 PMCID: PMC11494973 DOI: 10.1128/msystems.00859-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Due to recent improvements, Nanopore sequencing has become a promising method for experiments relying on amplicon sequencing. We describe a flexible workflow to generate and annotate high-quality, full-length 16S rDNA amplicons. We evaluated it for two applications, namely, (i) identification of bacterial isolates and (ii) species-level profiling of microbial communities. We assessed the identification of single bacterial isolates by sequencing, using a set of barcoded full-length 16S rRNA gene primer pairs (pair A), on 47 isolates encompassing multiple genera and compared those results with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)-based identification. Species-level community profiling was tested with two sets of barcoded full-length 16S primer pairs (A and B) and compared to the results obtained with shotgun Illumina sequencing using 27 stool samples. We developed a Nextflow pipeline to retain high-quality reads and taxonomically annotate them. We found high agreement between our workflow and MALDI-TOF data for isolate identification (positive predictive value = 0.90, Cramér's V = 0.857, and Theil's U = 0.316). For species-level community profiling, we found strong correlations (rs > 0.6) of alpha diversity indices between the two primer sets and Illumina sequencing. At the community level, we found significant but small differences when comparing sequencing techniques. Finally, we found a moderate to strong correlation when comparing the relative abundances of individual species (average rs = 0.6 and 0.533 for primers A and B). Despite identified shortcomings, the proposed workflow enabled accurate identification of single bacterial isolates and prominent features in microbial communities, making it a worthwhile alternative to MALDI-TOF MS and Illumina sequencing.IMPORTANCEA quick, robust, simple, and cost-effective method to identify bacterial isolates and communities in each sample is indispensable in the fields of microbiology and infection biology. Recent technological advances in Oxford Nanopore Technologies sequencing make this technique an attractive option considering the adaptability, portability, and cost-effectiveness of the platform, even with small sequencing batches. Here, we validated a flexible workflow to identify bacterial isolates and characterize bacterial communities using the Oxford Nanopore Technologies sequencing platform combined with the most recent v14 chemistry kits. For bacterial isolates, we compared our nanopore-based approach to matrix-assisted laser desorption ionization-time of flight mass spectrometry-based identification. For species-level profiling of complex bacterial communities, we compared our nanopore-based approach to Illumina shotgun sequencing. For reproducibility purposes, we wrapped the code used to process the sequencing data into a ready-to-use and self-contained Nextflow pipeline.
Collapse
Affiliation(s)
- Julian Dommann
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jakob Kerbl-Knapp
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Diana Albertos Torres
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Adrian Egli
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Pierre H. H. Schneeberger
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
Lee AWT, Ng ICF, Wong EYK, Wong ITF, Sze RPP, Chan KY, So TY, Zhang Z, Ka-Yee Fung S, Choi-Ying Wong S, Tam WY, Lao HY, Lee LK, Leung JSL, Chan CTM, Ng TTL, Zhang J, Chow FWN, Leung PHM, Siu GKH. Comprehensive identification of pathogenic microbes and antimicrobial resistance genes in food products using nanopore sequencing-based metagenomics. Food Microbiol 2024; 121:104493. [PMID: 38637066 DOI: 10.1016/j.fm.2024.104493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 04/20/2024]
Abstract
Foodborne pathogens, particularly antimicrobial-resistant (AMR) bacteria, remain a significant threat to global health. Given the limitations of conventional culture-based approaches, which are limited in scope and time-consuming, metagenomic sequencing of food products emerges as a promising solution. This method provides a fast and comprehensive way to detect the presence of pathogenic microbes and antimicrobial resistance genes (ARGs). Notably, nanopore long-read sequencing provides more accurate bacterial taxonomic classification in comparison to short-read sequencing. Here, we revealed the impact of food types and attributes (origin, retail place, and food processing methods) on microbial communities and the AMR profile using nanopore metagenomic sequencing. We analyzed a total of 260 food products, including raw meat, sashimi, and ready-to-eat (RTE) vegetables. Clostridium botulinum, Acinetobacter baumannii, and Vibrio parahaemolyticus were identified as the top three foodborne pathogens in raw meat and sashimi. Importantly, even with low pathogen abundance, higher percentages of samples containing carbapenem and cephalosporin resistance genes were identified in chicken and RTE vegetables, respectively. In parallel, our results demonstrated that fresh, peeled, and minced foods exhibited higher levels of pathogenic bacteria. In conclusion, this comprehensive study offers invaluable data that can contribute to food safety assessments and serve as a basis for quality indicators.
Collapse
Affiliation(s)
- Annie Wing-Tung Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Iain Chi-Fung Ng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Evelyn Yin-Kwan Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Ivan Tak-Fai Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Rebecca Po-Po Sze
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Kit-Yu Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Tsz-Yan So
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Zhipeng Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Sharon Ka-Yee Fung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Sally Choi-Ying Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Wing-Yin Tam
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Hiu-Yin Lao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Lam-Kwong Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Jake Siu-Lun Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Chloe Toi-Mei Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Timothy Ting-Leung Ng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Jiaying Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Franklin Wang-Ngai Chow
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Polly Hang-Mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Gilman Kit-Hang Siu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| |
Collapse
|
8
|
Nagpal S, Mande SS, Hooda H, Dutta U, Taneja B. EnsembleSeq: a workflow towards real-time, rapid, and simultaneous multi-kingdom-amplicon sequencing for holistic and resource-effective microbiome research at scale. Microbiol Spectr 2024; 12:e0415023. [PMID: 38687072 PMCID: PMC11237516 DOI: 10.1128/spectrum.04150-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/30/2024] [Indexed: 05/02/2024] Open
Abstract
Bacterial communities are often concomitantly present with numerous microorganisms in the human body and other natural environments. Amplicon-based microbiome studies have generally paid skewed attention, that too at a rather shallow genus level resolution, to the highly abundant bacteriome, with interest now forking toward the other microorganisms, particularly fungi. Given the generally sparse abundance of other microbes in the total microbiome, simultaneous sequencing of amplicons targeting multiple microbial kingdoms could be possible even with full multiplexing. Guiding studies are currently needed for performing and monitoring multi-kingdom-amplicon sequencing and data capture at scale. Aiming to address these gaps, amplification of full-length bacterial 16S rRNA gene and entire fungal internal-transcribed spacer (ITS) region was performed for human saliva samples (n = 96, including negative and positive controls). Combined amplicon DNA libraries were prepared for nanopore sequencing using a major fraction of 16S molecules and a minor fraction of ITS amplicons. Sequencing was performed in a single run of an R10.4.1 flow cell employing the latest V14 chemistry. An approach for real-time monitoring of the species saturation using dynamic rarefaction was designed as a guiding determinant of optimal run time. Real-time saturation monitoring for both bacterial and fungal species enabled the completion of sequencing within 30 hours, utilizing less than 60% of the total nanopores. Approximately 5 million high quality (HQ) taxonomically assigned reads were generated (~4.2 million bacterial and 0.7 million fungal), providing a wider (beyond bacteriome) snapshot of human oral microbiota at species-level resolution. Among the more than 400 bacterial and 240 fungal species identified in the studied samples, the species of Streptococcus (e.g., Streptococcus mitis and Streptococcus oralis) and Candida (e.g., Candida albicans and Candida tropicalis) were observed to be the dominating microbes in the oral cavity, respectively. This conformed well with the previous reports of the human oral microbiota. EnsembleSeq provides a proof-of-concept toward the identification of both fungal and bacterial species simultaneously in a single fully multiplexed nanopore sequencing run in a time- and resource-effective manner. Details of this workflow, along with the associated codebase, are provided to enable large-scale application for a holistic species-level microbiome study. IMPORTANCE Human microbiome is a sum total of a variety of microbial genomes (including bacteria, fungi, protists, viruses, etc.) present in and on the human body. Yet, a majority of amplicon-based microbiome studies have largely remained skewed toward bacteriome as an assumed proxy of the total microbiome, primarily at a shallow genus level. Cost, time, effort, data quality/management, and importantly lack of guiding studies often limit progress in the direction of moving beyond bacteriome. Here, EnsembleSeq presents a proof-of-concept toward concomitantly capturing multiple-kingdoms of microorganisms (bacteriome and mycobiome) in a fully multiplexed (96-sample) single run of long-read amplicon sequencing. In addition, the workflow captures dynamic tracking of species-level saturation in a time- and resource-effective manner.
Collapse
Affiliation(s)
- Sunil Nagpal
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- TCS Research, Tata Consultancy Services Ltd, Pune, India
| | | | - Harish Hooda
- Department of Gastroenterology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Usha Dutta
- Department of Gastroenterology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Bhupesh Taneja
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
9
|
Lao HY, Wong LLY, Hui Y, Ng TTL, Chan CTM, Lo HWH, Yau MCY, Leung ECM, Wong RCW, Ho AYM, Yip KT, Lam JYW, Chow VCY, Luk KS, Que TL, Chow FWN, Siu GKH. The clinical utility of Nanopore 16S rRNA gene sequencing for direct bacterial identification in normally sterile body fluids. Front Microbiol 2024; 14:1324494. [PMID: 38264489 PMCID: PMC10803466 DOI: 10.3389/fmicb.2023.1324494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
The prolonged incubation period of traditional culture methods leads to a delay in diagnosing invasive infections. Nanopore 16S rRNA gene sequencing (Nanopore 16S) offers a potential rapid diagnostic approach for directly identifying bacteria in infected body fluids. To evaluate the clinical utility of Nanopore 16S, we conducted a study involving the collection and sequencing of 128 monomicrobial samples, 65 polymicrobial samples, and 20 culture-negative body fluids. To minimize classification bias, taxonomic classification was performed using 3 analysis pipelines: Epi2me, Emu, and NanoCLUST. The result was compared to the culture references. The limit of detection of Nanopore 16S was also determined using simulated bacteremic blood samples. Among the three classifiers, Emu demonstrated the highest concordance with the culture results. It correctly identified the taxon of 125 (97.7%) of the 128 monomicrobial samples, compared to 109 (85.2%) for Epi2me and 102 (79.7%) for NanoCLUST. For the 230 cultured species in the 65 polymicrobial samples, Emu correctly identified 188 (81.7%) cultured species, compared to 174 (75.7%) for Epi2me and 125 (54.3%) for NanoCLUST. Through ROC analysis on the monomicrobial samples, we determined a threshold of relative abundance at 0.058 for distinguishing potential pathogens from background in Nanopore 16S. Applying this threshold resulted in the identification of 107 (83.6%), 117 (91.4%), and 114 (91.2%) correctly detected samples for Epi2me, Emu, and NanoCLUST, respectively, in the monomicrobial samples. Nanopore 16S coupled with Epi2me could provide preliminary results within 6 h. However, the ROC analysis of polymicrobial samples exhibited a random-like performance, making it difficult to establish a threshold. The overall limit of detection for Nanopore 16S was found to be about 90 CFU/ml.
Collapse
Affiliation(s)
- Hiu-Yin Lao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Lily Lok-Yee Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yan Hui
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Timothy Ting-Leung Ng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Chloe Toi-Mei Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Hazel Wing-Hei Lo
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Miranda Chong-Yee Yau
- Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong SAR, China
| | - Eddie Chi-Man Leung
- Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong SAR, China
| | - River Chun-Wai Wong
- Department of Microbiology, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Alex Yat-Man Ho
- Department of Pathology, Princess Margaret Hospital, Kowloon, Hong Kong SAR, China
| | - Kam-Tong Yip
- Department of Clinical Pathology, Tuen Mun Hospital, Tuen Mun, Hong Kong SAR, China
| | - Jimmy Yiu-Wing Lam
- Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong SAR, China
| | - Viola Chi-Ying Chow
- Department of Microbiology, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Kristine Shik Luk
- Department of Pathology, Princess Margaret Hospital, Kowloon, Hong Kong SAR, China
| | - Tak-Lun Que
- Department of Clinical Pathology, Tuen Mun Hospital, Tuen Mun, Hong Kong SAR, China
| | - Franklin Wang Ngai Chow
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Gilman Kit-Hang Siu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
10
|
Sulaiman IM, Miranda N, Hook W, Mendoza J, Kumfert Q, Barnes T, Sung K, Khan S, Nawaz M, Banerjee P, Simpson S, Karem K. A Single-Laboratory Performance Evaluation of MALDI-TOF MS in Rapid Identification of Staphylococcus aureus, Cronobacter sakazakii, Vibrio parahaemolyticus, and Some Closely Related Bacterial Species of Public Health Importance. J AOAC Int 2023; 106:1574-1588. [PMID: 37725340 DOI: 10.1093/jaoacint/qsad109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Staphylococcus is a genus of Gram-positive bacteria, known to cause food poisoning and gastrointestinal illness in humans. Additionally, the emergence of methicillin-resistant S. aureus (MRSA) strains has caused a major health care burden worldwide. Cronobacter is a group of Gram-negative bacteria that can survive in extreme dry conditions. Cronobacter sakazakii is known to contaminate powdered infant formula and cause life-threatening infections in neonates. Vibrio is a genus of human-pathogenic Gram-negative bacteria that can cause foodborne illness by consuming undercooked or raw seafood. Vibrio parahaemolyticus can cause serious gastrointestinal disease in humans. Thus, rapid identification of Staphylococcus spp., Cronobacter spp., and Vibrio spp. is crucial for the source tracking of contaminated food, as well as to measure the transmission dynamics of these bacterial pathogens causing foodborne diseases and outbreaks. OBJECTIVE This single-laboratory performance evaluation study used the VITEK MS system to evaluate the potential of MALDI-TOF MS technology for rapid identification of S. aureus-like, C. sakazakii-like, and V. parahaemolyticus-like isolates of public health importance. METHOD A total of 226 isolates recovered from various food, environmental surveillance samples, and other sources were identified by bioMérieux VITEK 2 and VITEK MS systems as Staphylococcus spp., Cronobacter spp., and Vibrio spp. Five American Type Culture Collection (ATCC) reference Gram-positive and Gram-negative bacterial isolates were also tested to complete the study. In addition, for some Staphylococcus spp. isolates, whole genome sequencing (WGS) and DNA sequencing of 16S rRNA partial region were also performed for species identification. RESULTS The VITEK MS system was able to provide species identification to all 96 isolates of Staphylococcus spp. and to all 29 isolates of Vibrio spp. examined with a high confidence value (99.9%). Similarly, species identification was observed for the majority of spots (245 of 303) for the 101 Cronobacter spp. isolates (∼82.0%) with a high confidence value (99.9%), and genus level identification was noticed for the rest of the Cronobacter spp. isolates (18.0%; 58 of the 303 spots) analyzed. Species identification data generated by VITEK 2 system were comparable to data obtained by the VITEK MS system. CONCLUSIONS The VITEK MS system is a reliable high-throughput platform that can rapidly identify Staphylococcus, Vibrio, and Cronobacter to the genus level, as well as S. aureus, C. sakazakii, V. parahaemolyticus, and other closely related foodborne isolates and bacterial isolates from additional sources, in most cases. HIGHLIGHTS The VITEK MS system can be used in the rapid genus and species identification of human-pathogenic Staphylococcus spp., Cronobacter spp., and Vibrio spp. isolates.
Collapse
Affiliation(s)
- Irshad M Sulaiman
- Microbiological Sciences Branch, Atlanta Human and Animal Food Laboratory, Office of Regulatory Science, Office of Regulatory Affairs, U.S. Food and Drug Administration, 60 Eighth Street NE, Atlanta, GA 30309, USA
| | - Nancy Miranda
- Microbiological Sciences Branch, Atlanta Human and Animal Food Laboratory, Office of Regulatory Science, Office of Regulatory Affairs, U.S. Food and Drug Administration, 60 Eighth Street NE, Atlanta, GA 30309, USA
| | - Whitney Hook
- Microbiological Sciences Branch, Atlanta Human and Animal Food Laboratory, Office of Regulatory Science, Office of Regulatory Affairs, U.S. Food and Drug Administration, 60 Eighth Street NE, Atlanta, GA 30309, USA
| | - Joseph Mendoza
- Microbiological Sciences Branch, Atlanta Human and Animal Food Laboratory, Office of Regulatory Science, Office of Regulatory Affairs, U.S. Food and Drug Administration, 60 Eighth Street NE, Atlanta, GA 30309, USA
| | - Quincy Kumfert
- University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Tamayo Barnes
- Microbiological Sciences Branch, Atlanta Human and Animal Food Laboratory, Office of Regulatory Science, Office of Regulatory Affairs, U.S. Food and Drug Administration, 60 Eighth Street NE, Atlanta, GA 30309, USA
| | - Kidon Sung
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Saeed Khan
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Mohamed Nawaz
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Pratik Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 1302 W. Pennsylvania Avenue, Urbana, IL 61801, USA
| | - Steven Simpson
- Microbiological Sciences Branch, Atlanta Human and Animal Food Laboratory, Office of Regulatory Science, Office of Regulatory Affairs, U.S. Food and Drug Administration, 60 Eighth Street NE, Atlanta, GA 30309, USA
| | - Kevin Karem
- Microbiological Sciences Branch, Atlanta Human and Animal Food Laboratory, Office of Regulatory Science, Office of Regulatory Affairs, U.S. Food and Drug Administration, 60 Eighth Street NE, Atlanta, GA 30309, USA
| |
Collapse
|
11
|
Chen J, Xu F. Application of Nanopore Sequencing in the Diagnosis and Treatment of Pulmonary Infections. Mol Diagn Ther 2023; 27:685-701. [PMID: 37563539 PMCID: PMC10590290 DOI: 10.1007/s40291-023-00669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2023] [Indexed: 08/12/2023]
Abstract
This review provides an in-depth discussion of the development, principles and utility of nanopore sequencing technology and its diverse applications in the identification of various pulmonary pathogens. We examined the emergence and advancements of nanopore sequencing as a significant player in this field. We illustrate the challenges faced in diagnosing mixed infections and further scrutinize the use of nanopore sequencing in the identification of single pathogens, including viruses (with a focus on its use in epidemiology, outbreak investigation, and viral resistance), bacteria (emphasizing 16S targeted sequencing, rare bacterial lung infections, and antimicrobial resistance studies), fungi (employing internal transcribed spacer sequencing), tuberculosis, and atypical pathogens. Furthermore, we discuss the role of nanopore sequencing in metagenomics and its potential for unbiased detection of all pathogens in a clinical setting, emphasizing its advantages in sequencing genome repeat areas and structural variant regions. We discuss the limitations in dealing with host DNA removal, the inherent high error rate of nanopore sequencing technology, along with the complexity of operation and processing, while acknowledging the possibilities provided by recent technological improvements. We compared nanopore sequencing with the BioFire system, a rapid molecular diagnostic system based on polymerase chain reaction. Although the BioFire system serves well for the rapid screening of known and common pathogens, it falls short in the identification of unknown or rare pathogens and in providing comprehensive genome analysis. As technological advancements continue, it is anticipated that the role of nanopore sequencing technology in diagnosing and treating lung infections will become increasingly significant.
Collapse
Affiliation(s)
- Jie Chen
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
12
|
Coryell MP, Sava RL, Hastie JL, Carlson PE. Application of MALDI-TOF MS for enumerating bacterial constituents of defined consortia. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12558-5. [PMID: 37148337 DOI: 10.1007/s00253-023-12558-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Characterization of live biotherapeutic product (LBP) batches typically includes a measurement of viability, such as colony forming units (CFU). However, strain-specific CFU enumeration assays can be complicated by the presence of multiple organisms in a single product with similar growth requirements. To overcome specific challenges associated with obtaining strain-specific CFU values from multi-strain mixtures, we developed a method combining mass spectrometry-based colony identification with a traditional CFU assay. This method was assessed using defined consortia made from up to eight bacterial strains. Among four replicate batches of an eight-strain mixture, observed values differed from expected values by less than 0.4 log10 CFU among all strains measured (range of differences, -0.318 to + 0.267). The average difference between observed and expected values was + 0.0308 log10 CFU, with 95% limits of agreement from -0.347 to 0.408 (Bland-Altman analysis). To estimate precision, a single batch of eight-strain mixture was assayed in triplicate by three different users, for a total of nine measurements. Pooled standard deviation values ranged from 0.067 to 0.195 log10 CFU for the eight strains measured, and user averages did not differ significantly. Leveraging emerging mass-spectrometry-based colony identification tools, a novel method for simultaneous enumeration and identification of viable bacteria from mixed-strain consortia was developed and tested. This study demonstrates the potential for this approach to generate accurate and consistent measurements of up to eight bacterial strains simultaneously and may provide a flexible platform for future refinements and modifications. KEY POINTS: • Enumeration of live biotherapeutics is essential for product quality and safety. • Conventional CFU counting may not differentiate between strains in microbial products. • This approach was developed for direct enumeration of mixed bacterial strains simultaneously.
Collapse
Affiliation(s)
- Michael P Coryell
- Division of Bacterial, Parasitic, and Allergenic Products; Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Rosa L Sava
- Division of Bacterial, Parasitic, and Allergenic Products; Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jessica L Hastie
- Division of Bacterial, Parasitic, and Allergenic Products; Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Paul E Carlson
- Division of Bacterial, Parasitic, and Allergenic Products; Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.
| |
Collapse
|
13
|
Sawaswong V, Chanchaem P, Kemthong T, Warit S, Chaiprasert A, Malaivijitnond S, Payungporn S. Alteration of gut microbiota in wild-borne long-tailed macaques after 1-year being housed in hygienic captivity. Sci Rep 2023; 13:5842. [PMID: 37037869 PMCID: PMC10085984 DOI: 10.1038/s41598-023-33163-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023] Open
Abstract
The wild-born long-tailed macaques (Macaca fascicularis) were recently recruited and used as breeders for the National Primate Research Center of Thailand, Chulalongkorn University (NPRCT-CU), and changes in their in-depth gut microbiota profiles were investigated. The Oxford Nanopore Technology (ONT) was used to explore full-length 16S rDNA sequences of gut microbiota in animals once captured in their natural habitat and 1-year following translocation and housing in a hygienic environment at NPRCT-CU. Our findings show that the gut microbiota of macaques after 1 year of hygienic housing and programmed diets feeding was altered and reshaped. The prevalent gut bacteria such as Prevotella copri and Faecalibacterium prausnitzii were enriched after translocation, causing the lower alpha diversity. The correlation analysis revealed that Prevotella copri, Phascolarctobacterium succinatutens, and Prevotella stercorea, showed a positive correlation with each other. Significantly enriched pathways in the macaques after translocation included biosynthesis of essential amino acids, fatty acids, polyamine and butanoate. The effects of microbiota change could help macaques to harvest the energy from programmed diets and adapt their gut metabolism. The novel probiotics and microbiota engineering approach could be further developed based on the current findings and should be helpful for captive animal health care management.
Collapse
Affiliation(s)
- Vorthon Sawaswong
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand
- Nucleic Acid Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Prangwalai Chanchaem
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand
| | - Taratorn Kemthong
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, 18110, Thailand
| | - Saradee Warit
- Industrial Tuberculosis Team, Industrial Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Angkana Chaiprasert
- Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, 18110, Thailand
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
14
|
Lee AWT, Chan CTM, Wong LLY, Yip CY, Lui WT, Cheng KC, Leung JSL, Lee LK, Wong ITF, Ng TTL, Lao HY, Siu GKH. Identification of microbial community in the urban environment: The concordance between conventional culture and nanopore 16S rRNA sequencing. Front Microbiol 2023; 14:1164632. [PMID: 37125165 PMCID: PMC10133568 DOI: 10.3389/fmicb.2023.1164632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/14/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Microbes in the built environment have been implicated as a source of infectious diseases. Bacterial culture is the standard method for assessing the risk of exposure to pathogens in urban environments, but this method only accounts for <1% of the diversity of bacteria. Recently, full-length 16S rRNA gene analysis using nanopore sequencing has been applied for microbial evaluations, resulting in a rise in the development of long-read taxonomic tools for species-level classification. Regarding their comparative performance, there is, however, a lack of information. Methods Here, we aim to analyze the concordance of the microbial community in the urban environment inferred by multiple taxonomic classifiers, including ARGpore2, Emu, Kraken2/Bracken and NanoCLUST, using our 16S-nanopore dataset generated by MegaBLAST, as well as assess their abilities to identify culturable species based on the conventional culture results. Results According to our results, NanoCLUST was preferred for 16S microbial profiling because it had a high concordance of dominant species and a similar microbial profile to MegaBLAST, whereas Kraken2/Bracken, which had similar clustering results as NanoCLUST, was also desirable. Second, for culturable species identification, Emu with the highest accuracy (81.2%) and F1 score (29%) for the detection of culturable species was suggested. Discussion In addition to generating datasets in complex communities for future benchmarking studies, our comprehensive evaluation of the taxonomic classifiers offers recommendations for ongoing microbial community research, particularly for complex communities using nanopore 16S rRNA sequencing.
Collapse
|
15
|
Ji X, Ni S, Tian G, Zhang L, Wang W. Detection of Microorganisms in Body Fluid Samples. Methods Mol Biol 2023; 2695:73-88. [PMID: 37450112 DOI: 10.1007/978-1-0716-3346-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Next-generation sequencing (NGS) has been widely applied to the identification of microbiome in body fluids. The methodology of 16S rRNA amplicon sequencing is simple, fast, and cost-effective. It overcomes the problem that some microorganisms cannot be isolated or cultured. Low abundant bacteria can also be amplified and sequenced, but the resolution of classification can hardly reach species or sub-species level; moreover, this methodology is mainly used to identify bacterial populations, and other microorganisms like viruses or fungi cannot be sequenced. On the other hand, the microbiome profiling obtained by shotgun metagenomic sequencing is more comprehensive with better resolution, and more accurate classification can be expected due to higher coverage of genomic sequences from microorganisms. By combining the capture-based method with metagenomic sequencing, we can further enrich and detect low abundant microorganisms and identify the viral integration sites in host gDNA at once.
Collapse
|