1
|
Kasai Y, Komatsu M, Toyama Y, Nakano S, Hisata K, Yamada M, Shimizu T. Effect of probiotics on mother-to-neonate vertical transmission of group B streptococci: A prospective open-label randomized study. Pediatr Neonatol 2024; 65:145-151. [PMID: 37684161 DOI: 10.1016/j.pedneo.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/16/2023] [Accepted: 07/18/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Group B Streptococci (GBS) are common vaginal bacteria found in 20-30% of pregnant women and a significant cause of invasive infections in newborns. Recently, attention has been focused on the efficacy of probiotics during the perinatal period. However, the effect of probiotic intake on the mother-to-child transmission (MTCT) of GBS remains unknown. METHODS Pregnant women with positive GBS results from vaginal and rectal swab cultures at 35-37 weeks of gestation were randomly assigned to the probiotic group or the control group in an open-label manner at the Department of Obstetrics and Gynecology, San-ikukai Hospital, Tokyo, Japan. The probiotic group received Lactobacillus reuteri during antenatal checkups from 35 to 37-week gestation to 1 month after delivery. Rectal swabs were obtained from the newborns at 5 days and at 1 month of age. Whole-genome sequencing was performed to test for GBS strains in the mother, whose newborn carried GBS at the 1-month checkup. Multi-locus sequence typing and single nucleotide polymorphism analyses were performed to identify MTCT. RESULTS Overall, 67 mother-infant pairs were included, with 31 in the probiotic group and 36 in the control group. The positivity rate of GBS in newborns at 1 month of age was 10% (n = 3) in the probiotic group and 28% (n = 10) in the control group. In newborns carrying GBS at 1 month of age, genetic analysis revealed that the MTCT rate was 6% in the probiotic group and 22% in the control group, although the difference was not statistically significant (p = 0.0927). CONCLUSION No statistically significant difference was found; however, the consumption of L. reuteri by women with GBS-positive pregnancies may inhibit the MTCT of GBS.
Collapse
Affiliation(s)
- Yuriha Kasai
- Department of Pediatric and Adolescent Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Mitsutaka Komatsu
- Department of Pediatrics, San-Ikukai Hospital, 3-20-2 Taihei, Sumida-ku, Tokyo, 130-0012, Japan.
| | - Yudai Toyama
- Department of Pediatrics, Juntendo University Nerima Hospital, 3-1-10 Takanodai, Nerima-ku, Tokyo, 177-8521, Japan
| | - Saki Nakano
- Department of Pediatrics, Tokyo Rinkai Hospital, 1-4-2 Rinkai-cho, Edogawa-ku, Tokyo, 134-0086, Japan
| | - Ken Hisata
- Department of Pediatrics, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Mie Yamada
- Department of Obstetrics and Gynecology, San-Ikukai Hospital, 3-20-2 Taihei, Sumida-ku, Tokyo, 130-0012, Japan
| | - Toshiaki Shimizu
- Department of Pediatric and Adolescent Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
| |
Collapse
|
2
|
Le Gallou B, Pastuszka A, Lemaire C, Mereghetti L, Lanotte P. Group B Streptococcus CRISPR1 Typing of Maternal, Fetal, and Neonatal Infectious Disease Isolates Highlights the Importance of CC1 in In Utero Fetal Death. Microbiol Spectr 2023; 11:e0522122. [PMID: 37341591 PMCID: PMC10434043 DOI: 10.1128/spectrum.05221-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
We performed a descriptive analysis of group B Streptococcus (GBS) isolates responsible for maternal and fetal infectious diseases from 2004 to 2020 at the University Hospital of Tours, France. This represents 115 isolates, including 35 isolates responsible for early-onset disease (EOD), 48 isolates responsible for late-onset disease (LOD), and 32 isolates from maternal infections. Among the 32 isolates associated with maternal infection, 9 were isolated in the context of chorioamnionitis associated with in utero fetal death. Analysis of neonatal infection distribution over time highlighted the decrease in EOD since the early 2000s, while LOD incidence has remained relatively stable. All GBS isolates were analyzed by sequencing their CRISPR1 locus, which is an efficient way to determine the phylogenetic affiliation of strains, as it correlates with the lineages defined by multilocus sequence typing (MLST). Thus, the CRISPR1 typing method allowed us to assign a clonal complex (CC) to all isolates; among these isolates, CC17 was predominant (60/115, 52%), and the other main CCs, such as CC1 (19/115, 17%), CC10 (9/115, 8%), CC19 (8/115, 7%), and CC23 (15/115, 13%), were also identified. As expected, CC17 isolates (39/48, 81.3%) represented the majority of LOD isolates. Unexpectedly, we found mainly CC1 isolates (6/9) and no CC17 isolates that were responsible for in utero fetal death. Such a result highlights the possibility of a particular role of this CC in in utero infection, and further investigations should be conducted on a larger group of GBS isolated in a context of in utero fetal death. IMPORTANCE Group B Streptococcus is the leading bacterium responsible for maternal and neonatal infections worldwide, also involved in preterm birth, stillbirth, and fetal death. In this study, we determined the clonal complex of all GBS isolates responsible for neonatal diseases (early- and late-onset diseases) and maternal invasive infections, including chorioamnionitis associated with in utero fetal death. All GBS was isolated at the University Hospital of Tours from 2004 to 2020. We described the local group B Streptococcus epidemiology, which confirmed national and international data concerning neonatal disease incidence and clonal complex distribution. Indeed, neonatal diseases are mainly characterized by CC17 isolates, especially in late-onset disease. Interestingly, we identified mainly CC1 isolates responsible for in utero fetal death. CC1 could have a particular role in this context, and such a result should be confirmed on a larger group of GBS isolated from in utero fetal death.
Collapse
Affiliation(s)
- Brice Le Gallou
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Adeline Pastuszka
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Coralie Lemaire
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Laurent Mereghetti
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Philippe Lanotte
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| |
Collapse
|
3
|
Lemaire C, Le Gallou B, Lanotte P, Mereghetti L, Pastuszka A. Distribution, Diversity and Roles of CRISPR-Cas Systems in Human and Animal Pathogenic Streptococci. Front Microbiol 2022; 13:828031. [PMID: 35173702 PMCID: PMC8841824 DOI: 10.3389/fmicb.2022.828031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/10/2022] [Indexed: 12/26/2022] Open
Abstract
Streptococci form a wide group of bacteria and are involved in both human and animal pathologies. Among pathogenic isolates, differences have been highlighted especially concerning their adaptation and virulence profiles. CRISPR-Cas systems have been identified in bacteria and many streptococci harbor one or more systems, particularly subtypes I-C, II-A, and III-A. Since the demonstration that CRISPR-Cas act as an adaptive immune system in Streptococcus thermophilus, a lactic bacteria, the diversity and role of CRISPR-Cas were extended to many germs and functions were enlarged. Among those, the genome editing tool based on the properties of Cas endonucleases is used worldwide, and the recent attribution of the Nobel Prize illustrates the importance of this tool in the scientific world. Another application is CRISPR loci analysis, which allows to easily characterize isolates in order to understand the interactions of bacteria with their environment and visualize species evolution. In this review, we focused on the distribution, diversity and roles of CRISPR-Cas systems in the main pathogenic streptococci.
Collapse
Affiliation(s)
- Coralie Lemaire
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Brice Le Gallou
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Philippe Lanotte
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
- *Correspondence: Philippe Lanotte,
| | - Laurent Mereghetti
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Adeline Pastuszka
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| |
Collapse
|
4
|
Clustered Regularly Interspaced Short Palindromic Repeat Analysis of Clonal Complex 17 Serotype III Group B Streptococcus Strains Causing Neonatal Invasive Diseases. Int J Mol Sci 2021; 22:ijms222111626. [PMID: 34769055 PMCID: PMC8584069 DOI: 10.3390/ijms222111626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Group B Streptococcus (GBS) is an important pathogen of neonatal infections, and the clonal complex (CC)-17/serotype III GBS strain has emerged as the dominant strain. The clinical manifestations of CC17/III GBS sepsis may vary greatly but have not been well-investigated. A total of 103 CC17/III GBS isolates that caused neonatal invasive diseases were studied using a new approach based on clustered regularly interspaced short palindromic repeats (CRISPR) loci and restriction fragment length polymorphism (RFLP) analyses. All spacers of CRISPR loci were sequenced and analyzed with the clinical presentations. After CRISPR-RFLP analyses, a total of 11 different patterns were observed among the 103 CRISPR-positive GBS isolates. GBS isolates with the same RFLP patterns were found to have highly comparable spacer contents. Comparative sequence analysis of the CRISPR1 spacer content revealed that it is highly diverse and consistent with the dynamics of this system. A total of 29 of 43 (67.4%) spacers displayed homology to reported phage and plasmid DNA sequences. In addition, all CC17/III GBS isolates could be categorized into three subgroups based on the CRISPR-RFLP patterns and eBURST analysis. The CC17/III GBS isolates with a specific CRISPR-RFLP pattern were more significantly associated with occurrences of severe sepsis (57.1% vs. 29.3%, p = 0.012) and meningitis (50.0% vs. 20.8%, p = 0.009) than GBS isolates with RFLP lengths between 1000 and 1300 bp. Whole-genome sequencing was also performed to verify the differences between CC17/III GBS isolates with different CRISPR-RFLP patterns. We concluded that the CRISPR-RFLP analysis is potentially applicable to categorizing CC17/III GBS isolates, and a specific CRISPR-RFLP pattern could be used as a new biomarker to predict meningitis and illness severity after further verification.
Collapse
|
5
|
Beauruelle C, Treluyer L, Pastuszka A, Cochard T, Lier C, Mereghetti L, Glaser P, Poyart C, Lanotte P. CRISPR Typing Increases the Discriminatory Power of Streptococcus agalactiae Typing Methods. Front Microbiol 2021; 12:675597. [PMID: 34349737 PMCID: PMC8328194 DOI: 10.3389/fmicb.2021.675597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/15/2021] [Indexed: 11/25/2022] Open
Abstract
We explored the relevance of a Clustered regularly interspaced short palindromic repeats (CRISPR)-based genotyping tool for Streptococcus agalactiae typing and we compared this method to current molecular methods [multi locus sequence typing (MLST) and capsular typing]. To this effect, we developed two CRISPR marker schemes (using 94 or 25 markers, respectively). Among the 255 S. agalactiae isolates tested, 229 CRISPR profiles were obtained. The 94 and 25 markers made it possible to efficiently separate isolates with a high diversity index (0.9947 and 0.9267, respectively), highlighting a high discriminatory power, superior to that of both capsular typing and MLST (diversity index of 0.9017 for MLST). This method has the advantage of being correlated with MLST [through analysis of the terminal direct repeat (TDR) and ancestral spacers] and to possess a high discriminatory power (through analysis of the leader-end spacers recently acquired, which are the witnesses of genetic mobile elements encountered by the bacteria). Furthermore, this “one-shot” approach presents the benefit of much-reduced time and cost in comparison with MLST. On the basis of these data, we propose that this method could become a reference method for group B Streptococcus (GBS) typing.
Collapse
Affiliation(s)
- Clémence Beauruelle
- Département de Bactériologie-Virologie, Hygiène Hospitalière et Parasitologie-Mycologie, Centre Hospitalier Régional Universitaire (CHRU) de Brest, Brest, France.,Inserm, EFS, UMR 1078, GGB, Universitè de Bretagne Occidentale, Brest, France
| | - Ludovic Treluyer
- Institut Cochin, Team Bacteria and Perinatality, INSERM U1016, Paris, France
| | - Adeline Pastuszka
- INRAE, ISP, Université de Tours, Tours, France.,Service de Bactériologie-Virologie, CHRU de Tours, Tours, France
| | | | - Clément Lier
- INRAE, ISP, Université de Tours, Tours, France.,Service de Bactériologie-Virologie, CHRU de Tours, Tours, France
| | - Laurent Mereghetti
- INRAE, ISP, Université de Tours, Tours, France.,Service de Bactériologie-Virologie, CHRU de Tours, Tours, France
| | - Philippe Glaser
- Evolution and Ecology of Resistance to Antibiotics (EERA) Unit, Institut Pasteur, Paris, France.,UMR CNRS 3525, Paris, France
| | - Claire Poyart
- Institut Cochin, Team Bacteria and Perinatality, INSERM U1016, Paris, France.,CNRS UMR 8104, Paris Descartes University, Paris, France.,Department of Bacteriology, University Hospitals Paris Centre-Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | |
Collapse
|
6
|
Lichvariková A, Soltys K, Szemes T, Slobodnikova L, Bukovska G, Turna J, Drahovska H. Characterization of Clinical and Carrier Streptococcus agalactiae and Prophage Contribution to the Strain Variability. Viruses 2020; 12:v12111323. [PMID: 33217933 PMCID: PMC7698700 DOI: 10.3390/v12111323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus, GBS) represents a leading cause of invasive bacterial infections in newborns and is also responsible for diseases in older and immunocompromised adults. Prophages represent an important factor contributing to the genome plasticity and evolution of new strains. In the present study, prophage content was analyzed in human GBS isolates. Thirty-seven prophages were identified in genomes of 20 representative sequenced strains. On the basis of the sequence comparison, we divided the prophages into eight groups named A–H. This division also corresponded to the clustering of phage integrase, even though several different integration sites were observed in some relative prophages. Next, PCR method was used for detection of the prophages in 123 GBS strains from adult hospitalized patients and from pregnancy screening. At least one prophage was present in 105 isolates (85%). The highest prevalence was observed for prophage group A (71%) and satellite prophage group B (62%). Other groups were detected infrequently (1–6%). Prophage distribution did not differ between clinical and screening strains, but it was unevenly distributed in MLST (multi locus sequence typing) sequence types. High content of full-length and satellite prophages detected in present study implies that prophages could be beneficial for the host bacterium and could contribute to evolution of more adapted strains.
Collapse
Affiliation(s)
- Aneta Lichvariková
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 841 15 Bratislava, Slovakia; (A.L.); (K.S.); (T.S.); (J.T.)
- Comenius University Science Park, Ilkovicova 8, 841 04 Bratislava, Slovakia
| | - Katarina Soltys
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 841 15 Bratislava, Slovakia; (A.L.); (K.S.); (T.S.); (J.T.)
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 841 15 Bratislava, Slovakia
| | - Tomas Szemes
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 841 15 Bratislava, Slovakia; (A.L.); (K.S.); (T.S.); (J.T.)
- Comenius University Science Park, Ilkovicova 8, 841 04 Bratislava, Slovakia
| | - Livia Slobodnikova
- Institute of Microbiology, Medical Faculty, Comenius University in Bratislava, 813 72 Bratislava, Slovakia;
| | - Gabriela Bukovska
- Institute of Molecular Biology, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia;
| | - Jan Turna
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 841 15 Bratislava, Slovakia; (A.L.); (K.S.); (T.S.); (J.T.)
| | - Hana Drahovska
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 841 15 Bratislava, Slovakia; (A.L.); (K.S.); (T.S.); (J.T.)
- Correspondence:
| |
Collapse
|
7
|
Whole-Genome Sequencing Confirms the Coexistence of Different Colonizing Group B Streptococcus Isolates Underscored by CRISPR Typing. Microbiol Resour Announc 2020; 9:9/5/e01359-19. [PMID: 32001563 PMCID: PMC6992867 DOI: 10.1128/mra.01359-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus agalactiae is a major pathogen and is the leading cause of neonatal infections in industrialized countries. The diversity of strains isolated from two pregnant women was investigated. Here, we present the draft genome sequences of strains W8A2, W8A6, W10E2, and W10F3, obtained in order to ascertain their phylogenetic affiliation. Streptococcus agalactiae is a major pathogen and is the leading cause of neonatal infections in industrialized countries. The diversity of strains isolated from two pregnant women was investigated. Here, we present the draft genome sequences of strains W8A2, W8A6, W10E2, and W10F3, obtained in order to ascertain their phylogenetic affiliation.
Collapse
|
8
|
Dion MB, Labrie SJ, Shah SA, Moineau S. CRISPRStudio: A User-Friendly Software for Rapid CRISPR Array Visualization. Viruses 2018; 10:v10110602. [PMID: 30388811 PMCID: PMC6267562 DOI: 10.3390/v10110602] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023] Open
Abstract
The CRISPR-Cas system biologically serves as an adaptive defense mechanism against phages. However, there is growing interest in exploiting the hypervariable nature of the CRISPR locus, often of viral origin, for microbial typing and tracking. Moreover, the spacer content of any given strain provides a phage resistance profile. Large-scale CRISPR typing studies require an efficient method for showcasing CRISPR array similarities across multiple isolates. Historically, CRISPR arrays found in microbes have been represented by colored shapes based on nucleotide sequence identity and, while this approach is now routinely used, only scarce computational resources are available to automate the process, making it very time-consuming for large datasets. To alleviate this tedious task, we introduce CRISPRStudio, a command-line tool developed to accelerate CRISPR analysis and standardize the preparation of CRISPR array figures. It first compares nucleotide spacer sequences present in a dataset and then clusters them based on sequence similarity to assign a meaningful representative color. CRISPRStudio offers versatility to suit different biological contexts by including options such as automatic sorting of CRISPR loci and highlighting of shared spacers, while remaining fast and user-friendly.
Collapse
Affiliation(s)
- Moïra B Dion
- Département de Biochimie, de Microbiologie, et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec City, QC G1V 0A6, Canada.
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec City, QC G1V 0A6, Canada.
| | - Simon J Labrie
- SyntBioLab Inc., 4820 rue de la Pascaline, Lévis, QC G6W 0L9, Canada.
| | - Shiraz A Shah
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark.
| | - Sylvain Moineau
- Département de Biochimie, de Microbiologie, et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec City, QC G1V 0A6, Canada.
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec City, QC G1V 0A6, Canada.
| |
Collapse
|