1
|
Ercanbrack CW, Rahal DA, Chauhan MZ, Jabbehdari S, Uwaydat SH. Utility of pan-bacterial and pan-fungal PCR in endophthalmitis: case report and review of the literature. J Ophthalmic Inflamm Infect 2024; 14:37. [PMID: 39088113 PMCID: PMC11294505 DOI: 10.1186/s12348-024-00419-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Endophthalmitis is a clinical diagnosis but identification of the disease-causing agent or agents allows for a more tailored treatment. This is routinely done through intraocular fluid cultures and staining. However, culture-negative endophthalmitis is a relatively common occurrence, and a causative organism cannot be identified. Thus, further diagnostic testing, such as pan-bacterial and pan-fungal polymerase chain reactions (PCRs), may be required. BODY: There are now newer, other testing modalities, specifically pan-bacterial and pan-fungal PCRs, that may allow ophthalmologists to isolate a causative agent when quantitative PCRs and cultures remain negative. We present a case report in which pan-fungal PCR was the only test, amongst quantitative PCRs, cultures, and biopsies, that was able to identify a pathogen in endophthalmitis. Pan-PCR has unique advantages over quantitative PCR in that it does not have a propensity for false-positive results due to contamination. Conversely, pan-PCR has drawbacks, including its inability to detect viruses and parasites and its increased turnaround time and cost. Based on two large retrospective studies, pan-PCR was determined not to be recommended in routine cases of systemic infection as it does not typically add value to the diagnostic workup and does not change the treatment course in most cases. However, in cases like the one presented, pan-bacterial and pan-fungal PCRs may be considered if empiric treatment fails or if the infective organism cannot be isolated. If pan-PCR remains negative or endophthalmitis continues to persist, an even newer form of testing, next-generation sequencing, may aid in the diagnostic workup of culture-negative endophthalmitis. CONCLUSION Pan-bacterial and pan-fungal PCR testing is a relatively new diagnostic tool with unique advantages and drawbacks compared to traditional culturing and PCR methods. Similar to the tests' use in non-ophthalmic systemic infections, pan-bacterial and pan-fungal PCRs are unlikely to become the initial diagnosis test and completely replace culture methods. However, they can provide useful diagnostic information if an infectious agent is unable to be identified with traditional methods or if empiric treatment of endophthalmitis continues to fail.
Collapse
Affiliation(s)
- Carson W Ercanbrack
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Dania A Rahal
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Muhammad Z Chauhan
- Harvey and Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sayena Jabbehdari
- Harvey and Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sami H Uwaydat
- Harvey and Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Department of Ophthalmology, Jones Eye Institute, University of Arkansas for Medical Sciences, 4301 W Markham Street # 523, Little Rock, AR, 72205, USA.
| |
Collapse
|
2
|
Djeghout B, Le-Viet T, Martins LDO, Savva GM, Evans R, Baker D, Page A, Elumogo N, Wain J, Janecko N. Capturing clinically relevant Campylobacter attributes through direct whole genome sequencing of stool. Microb Genom 2024; 10:001284. [PMID: 39213166 PMCID: PMC11570993 DOI: 10.1099/mgen.0.001284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Campylobacter is the leading bacterial cause of infectious intestinal disease, but the pathogen typically accounts for a very small proportion of the overall stool microbiome in each patient. Diagnosis is even more difficult due to the fastidious nature of Campylobacter in the laboratory setting. This has, in part, driven a change in recent years, from culture-based to rapid PCR-based diagnostic assays which have improved diagnostic detection, whilst creating a knowledge gap in our clinical and epidemiological understanding of Campylobacter genotypes - no isolates to sequence. In this study, direct metagenomic sequencing approaches were used to assess the possibility of replacing genome sequences with metagenome sequences; metagenomic sequencing outputs were used to describe clinically relevant attributes of Campylobacter genotypes. A total of 37 diarrhoeal stool samples with Campylobacter and five samples with an unknown pathogen result were collected and processed with and without filtration, DNA was extracted, and metagenomes were sequenced by short-read sequencing. Culture-based methods were used to validate Campylobacter metagenome-derived genome (MDG) results. Sequence output metrics were assessed for Campylobacter genome quality and accuracy of characterization. Of the 42 samples passing quality checks for analysis, identification of Campylobacter to the genus and species level was dependent on Campylobacter genome read count, coverage and genome completeness. A total of 65% (24/37) of samples were reliably identified to the genus level through Campylobacter MDG, 73% (27/37) by culture and 97% (36/37) by qPCR. The Campylobacter genomes with a genome completeness of over 60% (n=21) were all accurately identified at the species level (100%). Of those, 72% (15/21) were identified to sequence types (STs), and 95% (20/21) accurately identified antimicrobial resistance (AMR) gene determinants. Filtration of stool samples enhanced Campylobacter MDG recovery and genome quality metrics compared to the corresponding unfiltered samples, which improved the identification of STs and AMR profiles. The phylogenetic analysis in this study demonstrated the clustering of the metagenome-derived with culture-derived genomes and revealed the reliability of genomes from direct stool sequencing. Furthermore, Campylobacter genome spiking percentages ranging from 0 to 2% total metagenome abundance in the ONT MinION sequencer, configured to adaptive sequencing, exhibited better assembly quality and accurate identification of STs, particularly in the analysis of metagenomes containing 2 and 1% of Campylobacter jejuni genomes. Direct sequencing of Campylobacter from stool samples provides clinically relevant and epidemiologically important genomic information without the reliance on cultured genomes.
Collapse
Affiliation(s)
- Bilal Djeghout
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Thanh Le-Viet
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | | | - George M. Savva
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Rhiannon Evans
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - David Baker
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Andrew Page
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Ngozi Elumogo
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
- Eastern Pathology Alliance, Norfolk and Norwich University Hospital, Norwich NR4 7UY, UK
| | - John Wain
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Nicol Janecko
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| |
Collapse
|
3
|
Real-time PCR method for qualitative and quantitative detection of Lactobacillus sakei group species targeting novel markers based on bioinformatics analysis. Int J Food Microbiol 2021; 355:109335. [PMID: 34343716 DOI: 10.1016/j.ijfoodmicro.2021.109335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/06/2021] [Accepted: 07/17/2021] [Indexed: 11/21/2022]
Abstract
Latilactobacillus sakei group comprises four closely related species, making it difficult to accurately distinguish them with standard markers such as the 16S rRNA gene. The objective of our study was to mine novel markers for PCR detection and discrimination of L. sakei group species and L. sakei subspecies by comparative pan-genomic analysis. A total of 63 genome sequences of L. sakei group species consisted of 119,899 coding genes, yielding 5741 pan-genomes, 831 core-genomes, 3347 accessory-genomes, and 1563 unique-genomes. The accessory-genome was compared to extract unique candidate genes common only to genomes of the same species. The candidate genes were then aligned with the other bacterial genomes to select marker genes present in all genomes of a given species, but not in the genomes of other species. We identified the arginine/ornithine antiporter, putative cell surface protein precursor, sodium:solute symporter, PRD domain protein, PTS sugar transporter subunit IIC, and phosphoenolpyruvate-dependent sugar phosphotransferase system EIIC as marker genes for L. sakei, L. sakei subsp. sakei, L. sakei subsp. carnosus, L. curvatus, L. graminis, and L. fuchuensis, respectively. Primer pairs were designed for each marker and showed 100% specificity for 48 lactic acid bacterial reference strains. The PCR method developed in this study was used to evaluate 106 strains isolated from fermented foods to demonstrate that the marker genes provided a viable alternative to the 16S rRNA gene. We also applied the method to the monitoring of kimchi samples to quantify L. sakei group species or subspecies. Our PCR method based on novel markers can rapidly identify L. sakei group with high accuracy and high throughput.
Collapse
|
4
|
Chen HY, Chuang CC, Chou YC, Hsu WJ, Lin IC, Action Study Group, Sun JR. Rapid typing of carbapenem-resistant Acinetobacter baumannii and Acinetobacter nosocomialis by multiplex Pan- and OXA-PCR assays. J Med Microbiol 2021; 70. [PMID: 34236300 DOI: 10.1099/jmm.0.001385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Outbreaks of carbapenem-resistant A. baumannii and A. nosocomialis have occurred worldwide in healthcare settings. Rapid and reliable molecular typing of bacterial isolates is vital for the effective surveillance of institutional outbreaks. The Pan-PCR and OXA-PCR assays are two multiplex PCR-based assays for the molecular typing of Acinetobacter species.Gap statement. However, few studies have investigated the discriminatory power of two multiplex PCR assays in in the genotyping of Acinetobacter species.Aim. We aimed to evaluate the efficacies of the Pan-PCR and OXA-PCR assays for molecular typing of A. baumannii and A. nosocomialis.Methodology. A total of 105 carbapenem-resistant A. baumannii isolates (CRABs) and 93 carbapenem-resistant A. nosocomialis isolates (CRANs) obtained from blood cultures were used for molecular typing by the Pan-PCR and OXA-PCR assays and two multilocus sequence typing (MLST) schemes.Results. The isolates were individually divided into 12 and 21 different sequence types via the Pasteur and Oxford MLST schemes, respectively. Additionally, these isolates were distinguished into 18 different types by the Pan-PCR and OXA-PCR assays. The results of the Pan-PCR and OXA-PCR assays distinguished CRABs and CRANs with a sensitivity of 98.13 % and a specificity of 100 %.Conclusion. The Pan-PCR and OXA-PCR assays are promising alternative methods for rapid molecular typing of CRABs and CRANs in a routine laboratory setting.
Collapse
Affiliation(s)
- Hsing-Yu Chen
- Department of Medical Techniques, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan, ROC
| | - Chuan-Chung Chuang
- School of Dentistry and Graduate Institute of Dental Science, National defense medical center, Taipei, Taiwan, ROC.,Department of Dentistry, Tri-Service General Hospital, Taipei, Taiwan, ROC
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Wei-Jane Hsu
- Department of Medical Techniques, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan, ROC
| | - I-Chieh Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | - Jun-Ren Sun
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
5
|
Genome-wide comparison of coronaviruses derived from veterinary animals: A canine and feline perspective. Comp Immunol Microbiol Infect Dis 2021; 76:101654. [PMID: 33957463 DOI: 10.1016/j.cimid.2021.101654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 11/21/2022]
Abstract
Feline- and canine-derived coronaviruses (FCoVs and CCoVs) are widespread among dog and cat populations. This study was to understand the route of disease origin and viral transmission in veterinary animals and in human through comparative pan-genomic analysis of coronavirus sequences, especially retrieved from genomes of FCoV and CCoV. Average nucleotide identity based on complete genomes might clustered CoV strains according to their infected host, with an exception of type II of CCoV (accession number KC175339) that was clustered closely to virulent FCoVs. In contrast, the hierarchical clustering based on gene repertories retrieved from pan-genome analysis might divided the examined coronaviruses into host-independent clusters, and formed obviously the cluster of Alphacoronaviruses into sub-clusters of feline-canine, only feline, feline-canine-human coronavirus. Also, functional analysis of genomic subsets might help to divide FCoV and CCoV pan-genomes into (i) clusters of core genes encoding spike, membrane, nucleocapsid proteins, and ORF1ab polyprotein; (ii) clusters of core-like genes encoding nonstructural proteins; (iii) clusters of accessory genes encoding the ORF1A; and (iv) two singleton genes encoding nonstructural protein and polyprotein 1ab. Seven clusters of gene repertories were categorized as common to the FCoV and/or CCoV genomes including pantropic and high virulent strains, illustrating that distinct core-like genes/accessory genes concerning to their pathogenicity should be exploited in further biotype analysis of new isolate. In conclusion, the phylogenomic analyses have allowed the identification of trends in the viral genomic data, especially in developing a specific control measures against coronavirus disease, such as the selection of good markers for differentiating new species from common and/or pantropic isolates.
Collapse
|
6
|
Yan Y, Nguyen LH, Franzosa EA, Huttenhower C. Strain-level epidemiology of microbial communities and the human microbiome. Genome Med 2020; 12:71. [PMID: 32791981 PMCID: PMC7427293 DOI: 10.1186/s13073-020-00765-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
The biological importance and varied metabolic capabilities of specific microbial strains have long been established in the scientific community. Strains have, in the past, been largely defined and characterized based on microbial isolates. However, the emergence of new technologies and techniques has enabled assessments of their ecology and phenotypes within microbial communities and the human microbiome. While it is now more obvious how pathogenic strain variants are detrimental to human health, the consequences of subtle genetic variation in the microbiome have only recently been exposed. Here, we review the operational definitions of strains (e.g., genetic and structural variants) as they can now be identified from microbial communities using different high-throughput, often culture-independent techniques. We summarize the distribution and diversity of strains across the human body and their emerging links to health maintenance, disease risk and progression, and biochemical responses to perturbations, such as diet or drugs. We list methods for identifying, quantifying, and tracking strains, utilizing high-throughput sequencing along with other molecular and “culturomics” technologies. Finally, we discuss implications of population studies in bridging experimental gaps and leading to a better understanding of the health effects of strains in the human microbiome.
Collapse
Affiliation(s)
- Yan Yan
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Long H Nguyen
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eric A Franzosa
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
7
|
Hawken SE, Snitkin ES. Genomic epidemiology of multidrug-resistant Gram-negative organisms. Ann N Y Acad Sci 2019; 1435:39-56. [PMID: 29604079 PMCID: PMC6167210 DOI: 10.1111/nyas.13672] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 02/13/2018] [Accepted: 02/17/2018] [Indexed: 12/12/2022]
Abstract
The emergence and spread of antibiotic-resistant Gram-negative bacteria (rGNB) across global healthcare networks presents a significant threat to public health. As the number of effective antibiotics available to treat these resistant organisms dwindles, it is essential that we devise more effective strategies for controlling their proliferation. Recently, whole-genome sequencing has emerged as a disruptive technology that has transformed our understanding of the evolution and epidemiology of diverse rGNB species, and it has the potential to guide strategies for controlling the evolution and spread of resistance. Here, we review specific areas in which genomics has already made a significant impact, including outbreak investigations, regional epidemiology, clinical diagnostics, resistance evolution, and the study of epidemic lineages. While highlighting early successes, we also point to the next steps needed to translate this technology into strategies to improve public health and clinical medicine.
Collapse
Affiliation(s)
- Shawn E Hawken
- Department of Microbiology and Immunology, University of Michigan Medical School, Michigan, USA
| | - Evan S Snitkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Michigan, USA
- Division of Infectious Diseases/Department of Medicine, University of Michigan Medical School, Michigan, USA
| |
Collapse
|
8
|
Lowe M, Ehlers MM, Ismail F, Peirano G, Becker PJ, Pitout JDD, Kock MM. Acinetobacter baumannii: Epidemiological and Beta-Lactamase Data From Two Tertiary Academic Hospitals in Tshwane, South Africa. Front Microbiol 2018; 9:1280. [PMID: 29946315 PMCID: PMC6005857 DOI: 10.3389/fmicb.2018.01280] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/25/2018] [Indexed: 01/26/2023] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen that is increasingly responsible for hospital-acquired infections. The increasing prevalence of carbapenem resistant A. baumannii has left clinicians with limited treatment options. Last line antimicrobials (i.e., polymyxins and glycylcyclines) are often used as treatment options. The aim of this study was to determine the prevalence of selected β-lactamase genes from A. baumannii isolates obtained from patients with hospital-acquired infections and to determine the genetic relationship and epidemiological profiles among clinical A. baumannii isolates collected from two tertiary academic hospitals in the Tshwane region, South Africa (SA). Multiplex-PCR (M-PCR) assays were performed to detect selected resistance genes. The collected isolates’ genetic relatedness was determined by using pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The acquired oxacillinase (OXA) genes, notably blaOXA-23-like were prevalent in the A. baumannii isolates. The M-PCR assays showed that the isolates collected from hospital A contained the OXA-23-like (96%; n = 69/72) genes and the isolates collected from hospital B contained the OXA-23-like (91%; n = 63/69) and OXA-58-like (4%; n = 3/69) genes. Colistin resistance was found in 1% of the isolates (n = 2/141) and tigecycline intermediate resistance was found in 6% of the isolates (n = 8/141). The A. baumannii isolates were genetically diverse. Molecular epidemiological data showed that specific sequence types (STs) (ST106, ST229, ST258 and ST208) were established in both hospitals, while ST848 was established in hospital A and ST502, ST339 and the novel ST1552 were established in hospital B. ST848 (established in hospital A) was predominately detected in ICU wards whereas ST208, ST339 and the novel ST1552 (established in hospital B) were detected in ICUs and the general wards. The origin of the A. baumannii isolates in the hospitals may be due to the dissemination and adaptation of a diverse group of successful clones. Poor infection control and prevention strategies and possibly the overuse of antimicrobials contributed to the establishment of these A. baumannii clones in the studied hospitals.
Collapse
Affiliation(s)
- Michelle Lowe
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Marthie M Ehlers
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
| | - Farzana Ismail
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
| | - Gisele Peirano
- Departments of Microbiology, Immunology, Infectious Diseases and Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Division of Microbiology, Calgary Laboratory Services, Calgary, AB, Canada
| | - Piet J Becker
- Research Office, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Johann D D Pitout
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Departments of Microbiology, Immunology, Infectious Diseases and Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Division of Microbiology, Calgary Laboratory Services, Calgary, AB, Canada
| | - Marleen M Kock
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
| |
Collapse
|
9
|
Furstenau TN, Cocking JH, Sahl JW, Fofanov VY. Variant site strain typer (VaST): efficient strain typing using a minimal number of variant genomic sites. BMC Bioinformatics 2018; 19:222. [PMID: 29890941 PMCID: PMC5996513 DOI: 10.1186/s12859-018-2225-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/30/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Targeted PCR amplicon sequencing (TAS) techniques provide a sensitive, scalable, and cost-effective way to query and identify closely related bacterial species and strains. Typically, this is accomplished by targeting housekeeping genes that provide resolution down to the family, genera, and sometimes species level. Unfortunately, this level of resolution is not sufficient in many applications where strain-level identification of bacteria is required (biodefense, forensics, clinical diagnostics, and outbreak investigations). Adding more genomic targets will increase the resolution, but the challenge is identifying the appropriate targets. VaST was developed to address this challenge by finding the minimum number of targets that, in combination, achieve maximum strain-level resolution for any strain complex. The final combination of target regions identified by the algorithm produce a unique haplotype for each strain which can be used as a fingerprint for identifying unknown samples in a TAS assay. VaST ensures that the targets have conserved primer regions so that the targets can be amplified in all of the known strains and it also favors the inclusion of targets with basal variants which makes the set more robust when identifying previously unseen strains. RESULTS We analyzed VaST's performance using a number of different pathogenic species that are relevant to human disease outbreaks and biodefense. The number of targets required to achieve full resolution ranged from 20 to 88% fewer sites than what would be required in the worst case and most of the resolution is achieved within the first 20 targets. We computationally and experimentally validated one of the VaST panels and found that the targets led to accurate phylogenetic placement of strains, even when the strains were not a part of the original panel design. CONCLUSIONS VaST is an open source software that, when provided a set of variant sites, can find the minimum number of sites that will provide maximum resolution of a strain complex, and it has many different run-time options that can accommodate a wide range of applications. VaST can be an effective tool in the design of strain identification panels that, when combined with TAS technologies, offer an efficient and inexpensive strain typing protocol.
Collapse
Affiliation(s)
- Tara N Furstenau
- The School of Informatics, Computing, and Cyber Systems, Northern Arizona University, 1295 S Knoles Dr., Flagstaff, Arizona, 86001, USA
| | - Jill H Cocking
- The School of Informatics, Computing, and Cyber Systems, Northern Arizona University, 1295 S Knoles Dr., Flagstaff, Arizona, 86001, USA
- Pathogen and Microbiome Institute, Northern Arizona University, 1395 S Knoles Dr., Flagstaff, Arizona, 86001, USA
| | - Jason W Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, 1395 S Knoles Dr., Flagstaff, Arizona, 86001, USA
| | - Viacheslav Y Fofanov
- The School of Informatics, Computing, and Cyber Systems, Northern Arizona University, 1295 S Knoles Dr., Flagstaff, Arizona, 86001, USA.
- Pathogen and Microbiome Institute, Northern Arizona University, 1395 S Knoles Dr., Flagstaff, Arizona, 86001, USA.
| |
Collapse
|
10
|
Widespread dispersion of the resistance element tet(B)::ISCR2 in XDR Acinetobacter baumannii isolates. Epidemiol Infect 2015; 144:1574-8. [DOI: 10.1017/s0950268815002897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
SUMMARYAcinetobacter baumannii is a significant nosocomial pathogen often associated with extreme drug resistance (XDR). In Argentina, isolates of A. baumannii resistant to tetracyclines have accounted for more than 40% of drug-resistant isolates in some hospitals. We have previously reported the dispersion of the tet(B) resistance element associated with the ISCR2 transposase in epidemiologically unrelated A. baumannii isolates recovered from 1983 to 2011. This study extends this surveillance to 77 recent (2009–2013) XDR A. baumannii isolates with different levels of minocycline susceptibility. Isolates were examined by a pan-PCR assay, which showed six different amplification patterns, and specific PCRs were used for the confirmation of the the ΔISCR2-tet(B)-tet(R)-ISCR2 element. The tet(B) gene was present in 66 isolates and the ISCR2 element in 68 isolates; the tet(B) gene was associated with ISCR2 in all tet(B)-positive isolates. We conclude that this element is widespread in XDR A. baumannii isolates from Argentina and could be responsible for the emergence of tetracycline resistance in recent years.
Collapse
|
11
|
Conlan S, Thomas PJ, Deming C, Park M, Lau AF, Dekker JP, Snitkin ES, Clark TA, Luong K, Song Y, Tsai YC, Boitano M, Dayal J, Brooks SY, Schmidt B, Young AC, Thomas JW, Bouffard GG, Blakesley RW, Mullikin JC, Korlach J, Henderson DK, Frank KM, Palmore TN, Segre JA. Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae. Sci Transl Med 2015; 6:254ra126. [PMID: 25232178 DOI: 10.1126/scitranslmed.3009845] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Public health officials have raised concerns that plasmid transfer between Enterobacteriaceae species may spread resistance to carbapenems, an antibiotic class of last resort, thereby rendering common health care-associated infections nearly impossible to treat. To determine the diversity of carbapenemase-encoding plasmids and assess their mobility among bacterial species, we performed comprehensive surveillance and genomic sequencing of carbapenem-resistant Enterobacteriaceae in the National Institutes of Health (NIH) Clinical Center patient population and hospital environment. We isolated a repertoire of carbapenemase-encoding Enterobacteriaceae, including multiple strains of Klebsiella pneumoniae, Klebsiella oxytoca, Escherichia coli, Enterobacter cloacae, Citrobacter freundii, and Pantoea species. Long-read genome sequencing with full end-to-end assembly revealed that these organisms carry the carbapenem resistance genes on a wide array of plasmids. K. pneumoniae and E. cloacae isolated simultaneously from a single patient harbored two different carbapenemase-encoding plasmids, indicating that plasmid transfer between organisms was unlikely within this patient. We did, however, find evidence of horizontal transfer of carbapenemase-encoding plasmids between K. pneumoniae, E. cloacae, and C. freundii in the hospital environment. Our data, including full plasmid identification, challenge assumptions about horizontal gene transfer events within patients and identify possible connections between patients and the hospital environment. In addition, we identified a new carbapenemase-encoding plasmid of potentially high clinical impact carried by K. pneumoniae, E. coli, E. cloacae, and Pantoea species, in unrelated patients and in the hospital environment.
Collapse
Affiliation(s)
- Sean Conlan
- National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Pamela J Thomas
- National Institutes of Health Intramural Sequencing Center (NISC), Bethesda, MD 20852, USA
| | - Clayton Deming
- National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Morgan Park
- National Institutes of Health Intramural Sequencing Center (NISC), Bethesda, MD 20852, USA
| | - Anna F Lau
- National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - John P Dekker
- National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Evan S Snitkin
- National Human Genome Research Institute, Bethesda, MD 20892, USA
| | | | - Khai Luong
- Pacific Biosciences, Menlo Park, CA 94025, USA
| | - Yi Song
- Pacific Biosciences, Menlo Park, CA 94025, USA
| | | | | | - Jyoti Dayal
- National Institutes of Health Intramural Sequencing Center (NISC), Bethesda, MD 20852, USA
| | - Shelise Y Brooks
- National Institutes of Health Intramural Sequencing Center (NISC), Bethesda, MD 20852, USA
| | - Brian Schmidt
- National Institutes of Health Intramural Sequencing Center (NISC), Bethesda, MD 20852, USA
| | - Alice C Young
- National Institutes of Health Intramural Sequencing Center (NISC), Bethesda, MD 20852, USA
| | - James W Thomas
- National Institutes of Health Intramural Sequencing Center (NISC), Bethesda, MD 20852, USA
| | - Gerard G Bouffard
- National Institutes of Health Intramural Sequencing Center (NISC), Bethesda, MD 20852, USA
| | - Robert W Blakesley
- National Institutes of Health Intramural Sequencing Center (NISC), Bethesda, MD 20852, USA
| | | | - James C Mullikin
- National Institutes of Health Intramural Sequencing Center (NISC), Bethesda, MD 20852, USA
| | | | - David K Henderson
- National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Karen M Frank
- National Institutes of Health Clinical Center, Bethesda, MD 20892, USA.
| | - Tara N Palmore
- National Institutes of Health Clinical Center, Bethesda, MD 20892, USA.
| | - Julia A Segre
- National Human Genome Research Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Genetic Variability of AdeRS Two-Component System Associated with Tigecycline Resistance in XDR-Acinetobacter baumannii Isolates. Curr Microbiol 2015; 71:76-82. [DOI: 10.1007/s00284-015-0829-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/18/2015] [Indexed: 11/28/2022]
|
13
|
Preferential carriage of class 2 integrons in Acinetobacter baumannii CC113 and novel singletons. Epidemiol Infect 2015; 143:3118-21. [PMID: 25697643 DOI: 10.1017/s0950268815000060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Our understanding of the distribution of integrons associated with multidrug resistance in Acinetobacter baumannii isolates around the world remains incomplete. The association between the class 1 and 2 integron A. baumannii-positive isolates (n = 60), recovered since 1982 from 11 Argentinean hospitals, and the circulating lineages, was investigated. While class 2 integrons were highly significantly associated with clonal lineage CC113B/CC79P (P = 0·009) and novel singletons (P = 0·001), class 1 integrons were found not to be associated with CC109B/CC1P or other lineages. The study reveals a differential distribution of class 2 integrons in lineages, and suggests that the prevalence of intI2 in Argentina is related to the emergence of novel singletons in recent years and to the abundance of CC113B/CC79P, which has been the local dominant lineage for several decades.
Collapse
|
14
|
Fournier PE, Dubourg G, Raoult D. Clinical detection and characterization of bacterial pathogens in the genomics era. Genome Med 2014; 6:114. [PMID: 25593594 PMCID: PMC4295418 DOI: 10.1186/s13073-014-0114-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The availability of genome sequences obtained using next-generation sequencing (NGS) has revolutionized the field of infectious diseases. Indeed, more than 38,000 bacterial and 5,000 viral genomes have been sequenced to date, including representatives of all significant human pathogens. These tremendous amounts of data have not only enabled advances in fundamental biology, helping to understand the pathogenesis of microorganisms and their genomic evolution, but have also had implications for clinical microbiology. Here, we first review the current achievements of genomics in the development of improved diagnostic tools, including those that are now available in the clinic, such as the design of PCR assays for the detection of microbial pathogens, virulence factors or antibiotic-resistance determinants, or the design of optimized culture media for 'unculturable' pathogens. We then review the applications of genomics to the investigation of outbreaks, either through the design of genotyping assays or the direct sequencing of the causative strains. Finally, we discuss how genomics might change clinical microbiology in the future.
Collapse
Affiliation(s)
- Pierre-Edouard Fournier
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS7278, IRD198, InsermU1095, Institut hospitalo-universitaire Méditerranée-Infection, Aix-Marseille University, Faculté de Medecine, 27 Blvd Jean Moulin, Marseille, 13385, cedex 5 France
| | - Gregory Dubourg
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS7278, IRD198, InsermU1095, Institut hospitalo-universitaire Méditerranée-Infection, Aix-Marseille University, Faculté de Medecine, 27 Blvd Jean Moulin, Marseille, 13385, cedex 5 France
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS7278, IRD198, InsermU1095, Institut hospitalo-universitaire Méditerranée-Infection, Aix-Marseille University, Faculté de Medecine, 27 Blvd Jean Moulin, Marseille, 13385, cedex 5 France
| |
Collapse
|
15
|
Abstract
Nosocomial waterborne pathogens may reach patients through several modes of transmission. Colonization of healthcare facility waterworks can occur in the proximal infrastructure, in the distal water outlets, or both. Infections with waterborne organisms such as Legionella, mycobacteria, Pseudomonas, and others cause significant morbidity and mortality, particularly in immunocompromised patients. Hospitals should have prospective water safety plans that include preventive measures, as prevention is preferable to remediation of contaminated hospital water distribution systems. Whole-genome sequencing may provide more informative epidemiologic data to link patient infections with hospital water isolates.
Collapse
Affiliation(s)
- Brooke K Decker
- National Institutes of Health Clinical Center, 10 Center Drive, 12C103A, Bethesda, MD, 20892, USA
| | | |
Collapse
|
16
|
Padmanabhan R, Mishra AK, Raoult D, Fournier PE. Genomics and metagenomics in medical microbiology. J Microbiol Methods 2013; 95:415-24. [PMID: 24200711 DOI: 10.1016/j.mimet.2013.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 02/06/2023]
Abstract
Over the last two decades, sequencing tools have evolved from laborious time-consuming methodologies to real-time detection and deciphering of genomic DNA. Genome sequencing, especially using next generation sequencing (NGS) has revolutionized the landscape of microbiology and infectious disease. This deluge of sequencing data has not only enabled advances in fundamental biology but also helped improve diagnosis, typing of pathogen, virulence and antibiotic resistance detection, and development of new vaccines and culture media. In addition, NGS also enabled efficient analysis of complex human micro-floras, both commensal, and pathological, through metagenomic methods, thus helping the comprehension and management of human diseases such as obesity. This review summarizes technological advances in genomics and metagenomics relevant to the field of medical microbiology.
Collapse
Affiliation(s)
- Roshan Padmanabhan
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Aix-Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, Faculté de Médecine, 27 Bd. Jean Moulin, 13005 Marseille, France
| | | | | | | |
Collapse
|
17
|
Outbreak of extensively drug-resistant Acinetobacter baumannii indigo-pigmented strains. J Clin Microbiol 2013; 51:3726-30. [PMID: 23985923 DOI: 10.1128/jcm.01388-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii pigmented strains are not common in clinical settings. Here, we report an outbreak caused by indigo-pigmented A. baumannii strains isolated in an acute care hospital in Argentina from March to September 2012. Pan-PCR assays exposed a unique pattern belonging to the recently described regional CC113(B)/CC79(P) clonal complex that confirms the relevant relationships among the indigo-pigmented A. baumannii strains. All of them were extensively drug resistant and harbored different genetic elements associated with horizontal genetic transfer, such as the transposon Tn2006, class 2 integrons, AbaR-type islands, IS125, IS26, strA, strB, florR, and the small recombinase ISCR2 associated with the sul2 gene preceded by ISAba1.
Collapse
|