1
|
Krämer N, Mato UG, Krauter S, Büscher N, Afifi A, Herhaus L, Florin L, Plachter B, Zimmermann C. The Autophagy Receptor SQSTM1/p62 Is a Restriction Factor of HCMV Infection. Viruses 2024; 16:1440. [PMID: 39339916 PMCID: PMC11436200 DOI: 10.3390/v16091440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
(1) Background: Intrinsic defense mechanisms are pivotal host strategies to restrict viruses already at early stages of their infection. Here, we addressed the question of how the autophagy receptor sequestome 1 (SQSTM1/p62, hereafter referred to as p62) interferes with human cytomegalovirus (HCMV) infection. (2) Methods: CRISPR/Cas9-mediated genome editing, mass spectrometry and the expression of p62 phosphovariants from recombinant HCMVs were used to address the role of p62 during infection. (3) Results: The knockout of p62 resulted in an increased release of HCMV progeny. Mass spectrometry revealed an interaction of p62 with cellular proteins required for nucleocytoplasmic transport. Phosphoproteomics further revealed that p62 is hyperphosphorylated at position S272 in HCMV-infected cells. Phosphorylated p62 showed enhanced nuclear retention, which is concordant with enhanced interaction with viral proteins relevant for genome replication and nuclear capsid egress. This modification led to reduced HCMV progeny release compared to a non-phosphorylated version of p62. (4) Conclusions: p62 is a restriction factor for HCMV replication. The activity of the receptor appears to be regulated by phosphorylation at position S272, leading to enhanced nuclear localization, viral protein degradation and impaired progeny production.
Collapse
Affiliation(s)
- Nadine Krämer
- Institute for Virology and Forschungszentrum Immuntherapie, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (N.K.); (S.K.); (N.B.); (A.A.); (L.F.); (C.Z.)
| | - Uxía Gestal Mato
- Institute of Biochemistry II (IBC2), Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (U.G.M.); (L.H.)
| | - Steffi Krauter
- Institute for Virology and Forschungszentrum Immuntherapie, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (N.K.); (S.K.); (N.B.); (A.A.); (L.F.); (C.Z.)
| | - Nicole Büscher
- Institute for Virology and Forschungszentrum Immuntherapie, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (N.K.); (S.K.); (N.B.); (A.A.); (L.F.); (C.Z.)
| | - Ahmad Afifi
- Institute for Virology and Forschungszentrum Immuntherapie, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (N.K.); (S.K.); (N.B.); (A.A.); (L.F.); (C.Z.)
| | - Lina Herhaus
- Institute of Biochemistry II (IBC2), Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (U.G.M.); (L.H.)
| | - Luise Florin
- Institute for Virology and Forschungszentrum Immuntherapie, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (N.K.); (S.K.); (N.B.); (A.A.); (L.F.); (C.Z.)
| | - Bodo Plachter
- Institute for Virology and Forschungszentrum Immuntherapie, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (N.K.); (S.K.); (N.B.); (A.A.); (L.F.); (C.Z.)
| | - Christine Zimmermann
- Institute for Virology and Forschungszentrum Immuntherapie, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (N.K.); (S.K.); (N.B.); (A.A.); (L.F.); (C.Z.)
| |
Collapse
|
2
|
Wang Y, Yan M, Zhang P, Wu X, Huang S, Chen S, Rong Y, Sheng Y, Wang Y, Mao G, Chen L, Wang S, Yang B. Structure elucidation and antiviral activity of a cold water-extracted mannogalactofucan Ts1-1A from Trametes sanguinea against human cytomegalovirus in vitro. Carbohydr Polym 2024; 335:122101. [PMID: 38616079 DOI: 10.1016/j.carbpol.2024.122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
In this study, we purified a partially acetylated heteropolysaccharide (Ts1-1A) from the fruit bodies of Trametes sanguinea Lloyd through cold water extraction and serial chromatographic separation. The purified polysaccharide Ts1-1A (12.8 kDa) was characterized as a branched mannogalactofucan with a backbone of alternately connected 1,3-linked α-Fucp and 1,6-linked α-Galp, which was partially substituted by non-reducing end units of β-Manp at O-2 and O-3 positions of 1,6-linked α-Galp. Ts1-1A showed pronounced anti-human cytomegalovirus activity at the concentration of 200 and 500 μg/mL in systematical assessments including morphological changes, western blotting, qPCR, indirect immunofluorescence and tissue culture infective dose assays. Moreover, Ts1-1A exerted its antiviral activity at two distinct stages of viral proliferation manifesting as significantly inhibiting viral protein (IE1/2 and p52) expression and reducing viral gene (UL123, UL44 and UL32) replication in the HCMV-infected WI-38 cells. At viral attachment stage, Ts1-1A interacted with HCMV and prevented HCMV from attaching to its host cells. While at early phase of viral replication stage, Ts1-1A suppressed HCMV replication by downregulating NQO1 and HO-1 proteins related to oxidative stress as an antioxidant. To sum up, Ts1-1A is a promising anti-HCMV agent which could be developed for HCMV infection prevention and therapy.
Collapse
Affiliation(s)
- Yiran Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Mengxia Yan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Panpan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Xinna Wu
- Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310030, PR China
| | - Siyang Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Siru Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Yizhou Rong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Yunjie Sheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Yangyang Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China.
| | - Libing Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China.
| | - Sanying Wang
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China.
| | - Bo Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China.
| |
Collapse
|