1
|
Tian Y, Fang Y, Zhang K, Zhai Z, Yang Y, He M, Cao X. Applications of Virus-Induced Gene Silencing in Cotton. PLANTS (BASEL, SWITZERLAND) 2024; 13:272. [PMID: 38256825 PMCID: PMC10819639 DOI: 10.3390/plants13020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024]
Abstract
Virus-induced gene silencing (VIGS) is an RNA-mediated reverse genetics technique that has become an effective tool to investigate gene function in plants. Cotton is one of the most important economic crops globally. In the past decade, VIGS has been successfully applied in cotton functional genomic studies, including those examining abiotic and biotic stress responses and vegetative and reproductive development. This article summarizes the traditional vectors used in the cotton VIGS system, the visible markers used for endogenous gene silencing, the applications of VIGS in cotton functional genomics, and the limitations of VIGS and how they can be addressed in cotton.
Collapse
Affiliation(s)
- Yue Tian
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Yao Fang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Kaixin Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Zeyang Zhai
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Yujie Yang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Meiyu He
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Xu Cao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| |
Collapse
|
2
|
Rajabu CA, Dallas MM, Chiunga E, De León L, Ateka EM, Tairo F, Ndunguru J, Ascencio-Ibanez JT, Hanley-Bowdoin L. SEGS-1 a cassava genomic sequence increases the severity of African cassava mosaic virus infection in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1250105. [PMID: 37915512 PMCID: PMC10616593 DOI: 10.3389/fpls.2023.1250105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023]
Abstract
Cassava is a major crop in Sub-Saharan Africa, where it is grown primarily by smallholder farmers. Cassava production is constrained by Cassava mosaic disease (CMD), which is caused by a complex of cassava mosaic begomoviruses (CMBs). A previous study showed that SEGS-1 (sequences enhancing geminivirus symptoms), which occurs in the cassava genome and as episomes during viral infection, enhances CMD symptoms and breaks resistance in cassava. We report here that SEGS-1 also increases viral disease severity in Arabidopsis thaliana plants that are co-inoculated with African cassava mosaic virus (ACMV) and SEGS-1 sequences. Viral disease was also enhanced in Arabidopsis plants carrying a SEGS-1 transgene when inoculated with ACMV alone. Unlike cassava, no SEGS-1 episomal DNA was detected in the transgenic Arabidopsis plants during ACMV infection. Studies using Nicotiana tabacum suspension cells showed that co-transfection of SEGS-1 sequences with an ACMV replicon increases viral DNA accumulation in the absence of viral movement. Together, these results demonstrated that SEGS-1 can function in a heterologous host to increase disease severity. Moreover, SEGS-1 is active in a host genomic context, indicating that SEGS-1 episomes are not required for disease enhancement.
Collapse
Affiliation(s)
- Cyprian A. Rajabu
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Mary M. Dallas
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Evangelista Chiunga
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Leandro De León
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| | - Elijah M. Ateka
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Fred Tairo
- Tanzania Agricultural Research Institute-Mikocheni, Dar Es Salaam, Tanzania
| | - Joseph Ndunguru
- Tanzania Agricultural Research Institute-Mikocheni, Dar Es Salaam, Tanzania
| | - Jose T. Ascencio-Ibanez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
3
|
Dye AE, Muga B, Mwangi J, Hoyer JS, Ly V, Rosado Y, Sharpee W, Mware B, Wambugu M, Labadie P, Deppong D, Jackai L, Jacobson A, Kennedy G, Ateka E, Duffy S, Hanley-Bowdoin L, Carbone I, Ascencio-Ibáñez JT. Cassava begomovirus species diversity changes during plant vegetative cycles. Front Microbiol 2023; 14:1163566. [PMID: 37303798 PMCID: PMC10248227 DOI: 10.3389/fmicb.2023.1163566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/17/2023] [Indexed: 06/13/2023] Open
Abstract
Cassava is a root crop important for global food security and the third biggest source of calories on the African continent. Cassava production is threatened by Cassava mosaic disease (CMD), which is caused by a complex of single-stranded DNA viruses (family: Geminiviridae, genus: Begomovirus) that are transmitted by the sweet potato whitefly (Bemisia tabaci). Understanding the dynamics of different cassava mosaic begomovirus (CMB) species through time is important for contextualizing disease trends. Cassava plants with CMD symptoms were sampled in Lake Victoria and coastal regions of Kenya before transfer to a greenhouse setting and regular propagation. The field-collected and greenhouse samples were sequenced using Illumina short-read sequencing and analyzed on the Galaxy platform. In the field-collected samples, African cassava mosaic virus (ACMV), East African cassava mosaic virus (EACMV), East African cassava mosaic Kenya virus (EACMKV), and East African cassava mosaic virus-Uganda variant (EACMV-Ug) were detected in samples from the Lake Victoria region, while EACMV and East African mosaic Zanzibar virus (EACMZV) were found in the coastal region. Many of the field-collected samples had mixed infections of EACMV and another begomovirus. After 3 years of regrowth in the greenhouse, only EACMV-like viruses were detected in all samples. The results suggest that in these samples, EACMV becomes the dominant virus through vegetative propagation in a greenhouse. This differed from whitefly transmission results. Cassava plants were inoculated with ACMV and another EACMV-like virus, East African cassava mosaic Cameroon virus (EACMCV). Only ACMV was transmitted by whiteflies from these plants to recipient plants, as indicated by sequencing reads and copy number data. These results suggest that whitefly transmission and vegetative transmission lead to different outcomes for ACMV and EACMV-like viruses.
Collapse
Affiliation(s)
- Anna E. Dye
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Brenda Muga
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Jenniffer Mwangi
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - J. Steen Hoyer
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ, United States
| | - Vanessa Ly
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| | - Yamilex Rosado
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| | - William Sharpee
- International Livestock Research Institute (ILRI), Nairobi, Kenya
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Benard Mware
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Mary Wambugu
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Paul Labadie
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - David Deppong
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Louis Jackai
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Alana Jacobson
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - George Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Elijah Ateka
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ, United States
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Ignazio Carbone
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | | |
Collapse
|
4
|
Wu YJ, Liu YM, Li HY, Liu SS, Pan LL. Temporal Dynamic of the Ratio between Monopartite Begomoviruses and Their Associated Betasatellites in Plants, and Its Modulation by the Viral Gene βC1. Viruses 2023; 15:v15040954. [PMID: 37112934 PMCID: PMC10144043 DOI: 10.3390/v15040954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The begomovirus-betasatellite complex constantly threatens crops in Asia. However, the quantitative relationship between begomoviruses and betasatellites remains largely unknown. The quantities of tobacco curly shoot virus (TbCSV) and its betasatellite (TbCSB) and their ratio varied significantly in initial infection, and thereafter, the ratio tended to become constant. The TbCSB/TbCSV ratio in agrobacteria inoculum significantly affected that in plants in the initial infection but not thereafter. Null-mutation of βC1 that encodes a multifunctional protein important for pathogenesis in TbCSB significantly reduced the TbCSB/TbCSV ratio in plants. Viral inoculum plants with higher TbCSB/TbCSV ratios promoted whitefly transmission of the virus. The expression of AV1 encoded by TbCSV, βC1 encoded by TbCSB and the βC1/AV1 ratio varied significantly in the initial infection and thereafter the ratio tended to become constant. Additionally, the temporal dynamics of the ratio between another begomovirus and its betasatellite was similar to that of TbCSV and was positively regulated by βC1. These results indicate that the ratio between monopartite begomoviruses and betasatellites tend to become constant as infection progresses, and is modulated by βC1, but a higher betasatellite/begomovirus ratio in virally inoculated plants promotes virus transmission by whiteflies. Our findings provide novel insights into the association between begomoviruses and betasatellites.
Collapse
Affiliation(s)
- Yi-Jie Wu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi-Ming Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Heng-Yu Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li-Long Pan
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|