1
|
Koonin EV, Fischer MG, Kuhn JH, Krupovic M. The polinton-like supergroup of viruses: evolution, molecular biology, and taxonomy. Microbiol Mol Biol Rev 2024; 88:e0008623. [PMID: 39023254 PMCID: PMC11426020 DOI: 10.1128/mmbr.00086-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
SUMMARYPolintons are 15-20 kb-long self-synthesizing transposons that are widespread in eukaryotic, and in particular protist, genomes. Apart from a transposase and a protein-primed DNA polymerase, polintons encode homologs of major and minor jelly-roll capsid proteins, DNA-packaging ATPases, and proteases involved in capsid maturation of diverse eukaryotic viruses of kingdom Bamfordvirae. Given the conservation of these structural and morphogenetic proteins among polintons, these elements are predicted to alternate between transposon and viral lifestyles and, although virions have thus far not been detected, are classified as viruses (class Polintoviricetes) in the phylum Preplasmiviricota. Related to polintoviricetes are vertebrate adenovirids; unclassified polinton-like viruses (PLVs) identified in various environments or integrated into diverse protist genomes; virophages (Maveriviricetes), which are part of tripartite hyperparasitic systems including protist hosts and giant viruses; and capsid-less derivatives, such as cytoplasmic linear DNA plasmids of fungi and transpovirons. Phylogenomic analysis indicates that the polinton-like supergroup of viruses bridges bacterial tectivirids (preplasmiviricot class Tectiliviricetes) to the phylum Nucleocytoviricota that includes large and giant eukaryotic DNA viruses. Comparative structural analysis of proteins encoded by polinton-like viruses led to the discovery of previously undetected functional domains, such as terminal proteins and distinct proteases implicated in DNA polymerase processing, and clarified the evolutionary relationships within Polintoviricetes. Here, we leverage these insights into the evolution of the polinton-like supergroup to develop an amended megataxonomy that groups Polintoviricetes, PLVs (new class 'Aquintoviricetes'), and virophages (renamed class 'Virophaviricetes') together with Adenoviridae (new class 'Pharingeaviricetes') in a preplasmiviricot subphylum 'Polisuviricotina' sister to a subphylum including Tectiliviricetes ('Prepoliviricotina').
Collapse
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthias G. Fischer
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
| |
Collapse
|
2
|
A Bioinformatics Approach to Mine the Microbial Proteomic Profile of COVID-19 Mass Spectrometry Data. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2010010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mass spectrometry (MS) is one of the key technologies used in proteomics. The majority of studies carried out using proteomics have focused on identifying proteins in biological samples such as human plasma to pin down prognostic or diagnostic biomarkers associated with particular conditions or diseases. This study aims to quantify microbial (viral and bacterial) proteins in healthy human plasma. MS data of healthy human plasma were searched against the complete proteomes of all available viruses and bacteria. With this baseline established, the same strategy was applied to characterize the metaproteomic profile of different SARS-CoV-2 disease stages in the plasma of patients. Two SARS-CoV-2 proteins were detected with a high confidence and could serve as the early markers of SARS-CoV-2 infection. The complete bacterial and viral protein content in SARS-CoV-2 samples was compared for the different disease stages. The number of viral proteins was found to increase significantly with the progression of the infection, at the expense of bacterial proteins. This strategy can be extended to aid in the development of early diagnostic tests for other infectious diseases based on the presence of microbial biomarkers in human plasma samples.
Collapse
|
3
|
Perrin A, Gosselin-Grenet AS, Rossignol M, Ginibre C, Scheid B, Lagneau C, Chandre F, Baldet T, Ogliastro M, Bouyer J. Variation in the susceptibility of urban Aedes mosquitoes infected with a densovirus. Sci Rep 2020; 10:18654. [PMID: 33122748 PMCID: PMC7596516 DOI: 10.1038/s41598-020-75765-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022] Open
Abstract
Urban Aedes mosquitoes are vectors of many viruses affecting human health such as dengue, chikungunya and Zika viruses. Insecticide resistance and environmental toxicity risks hamper the effectiveness of chemical control against these mosquito vectors. Alternative control methods, such as the use of mosquito-specific entomopathogenic viruses should be explored. Numerous studies have focused on evaluating the potential of different densoviruses species as biological control agents. However, knowledge on the extent of inter- and intra-specific variations in the susceptibility of Aedes mosquitoes to infection by different densoviruses remains insufficient. In this study, we compared infection and mortality rates induced by the Aedes albopictus densovirus 2 in different strains of Aedes albopictus and Aedes aegypti mosquitoes. The two Aedes species were different in terms of susceptibility to viral infection. Under laboratory conditions, Aedes albopictus densovirus 2 appeared more virulent for the different strains of Aedes aegypti tested than for those of Aedes albopictus. In addition, we also found significant intra-specific variation in infection and mortality rates. Thus, although even if Aedes albopictus densoviruses could be powerful biocontrol agents used in the management of urban Aedes populations, our results also call into question the use of single viral isolate as biocontrol agents.
Collapse
Affiliation(s)
- Aurélie Perrin
- UMR MIVEGEC, CNRS, IRD, Univ Montpellier, Montpellier, France.
| | | | - Marie Rossignol
- UMR MIVEGEC, CNRS, IRD, Univ Montpellier, Montpellier, France
| | - Carole Ginibre
- UMR MIVEGEC, CNRS, IRD, Univ Montpellier, Montpellier, France
| | | | - Christophe Lagneau
- EID-med, Entente Interdépartementale pour la Démoustication du littoral méditerranéen, Montpellier, France
| | - Fabrice Chandre
- UMR MIVEGEC, CNRS, IRD, Univ Montpellier, Montpellier, France
| | - Thierry Baldet
- ASTRE, Cirad, INRAE, Univ Montpellier, Montpellier, France
| | | | - Jérémy Bouyer
- ASTRE, Cirad, INRAE, Univ Montpellier, Montpellier, France
- Insect Pest Control Sub-Programme, Joint Food and Agriculture Organization/International Atomic Energy Agency, Programme of Nuclear Techniques in Food and Agriculture, 1400, Vienna, Austria
| |
Collapse
|
4
|
Papp T, Marschang RE. Detection and Characterization of Invertebrate Iridoviruses Found in Reptiles and Prey Insects in Europe over the Past Two Decades. Viruses 2019; 11:E600. [PMID: 31269721 PMCID: PMC6669658 DOI: 10.3390/v11070600] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/05/2023] Open
Abstract
Invertebrate iridoviruses (IIVs), while mostly described in a wide range of invertebrate hosts, have also been repeatedly detected in diagnostic samples from poikilothermic vertebrates including reptiles and amphibians. Since iridoviruses from invertebrate and vertebrate hosts differ strongly from one another based not only on host range but also on molecular characteristics, a series of molecular studies and bioassays were performed to characterize and compare IIVs from various hosts and evaluate their ability to infect a vertebrate host. Eight IIV isolates from reptilian and orthopteran hosts collected over a period of six years were partially sequenced. Comparison of eight genome portions (total over 14 kbp) showed that these were all very similar to one another and to an earlier described cricket IIV isolate, thus they were given the collective name lizard-cricket IV (Liz-CrIV). One isolate from a chameleon was also subjected to Illumina sequencing and almost the entire genomic sequence was obtained. Comparison of this longer genome sequence showed several differences to the most closely related IIV, Invertebrateiridovirus6 (IIV6), the type species of the genus Iridovirus, including several deletions and possible recombination sites, as well as insertions of genes of non-iridoviral origin. Three isolates from vertebrate and invertebrate hosts were also used for comparative studies on pathogenicity in crickets (Gryllusbimaculatus) at 20 and 30 °C. Finally, the chameleon isolate used for the genome sequencing studies was also used in a transmission study with bearded dragons. The transmission studies showed large variability in virus replication and pathogenicity of the three tested viruses in crickets at the two temperatures. In the infection study with bearded dragons, lizards inoculated with a Liz-CrIV did not become ill, but the virus was detected in numerous tissues by qPCR and was also isolated in cell culture from several tissues. Highest viral loads were measured in the gastro-intestinal organs and in the skin. These studies demonstrate that Liz-CrIV circulates in the pet trade in Europe. This virus is capable of infecting both invertebrates and poikilothermic vertebrates, although its involvement in disease in the latter has not been proven.
Collapse
Affiliation(s)
- Tibor Papp
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungaria krt 21, H-1143 Budapest, Hungary
| | - Rachel E Marschang
- Cell Culture Lab, Microbiology Department, Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany.
| |
Collapse
|
5
|
Penny E, Brunetti CR. Localization of Frog Virus 3 Conserved Viral Proteins 88R, 91R, and 94L. Viruses 2019; 11:v11030276. [PMID: 30893834 PMCID: PMC6466111 DOI: 10.3390/v11030276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/28/2019] [Accepted: 03/15/2019] [Indexed: 11/25/2022] Open
Abstract
The characterization of the function of conserved viral genes is central to developing a greater understanding of important aspects of viral replication or pathogenesis. A comparative genomic analysis of the iridoviral genomes identified 26 core genes conserved across the family Iridoviridae. Three of those conserved genes have no defined function; these include the homologs of frog virus 3 (FV3) open reading frames (ORFs) 88R, 91R, and 94L. Conserved viral genes that have been previously identified are known to participate in a number of viral activities including: transcriptional regulation, DNA replication/repair/modification/processing, protein modification, and viral structural proteins. To begin to characterize the conserved FV3 ORFs 88R, 91R, and 94L, we cloned the genes and determined their intracellular localization. We demonstrated that 88R localizes to the cytoplasm of the cell while 91R localizes to the nucleus and 94L localizes to the endoplasmic reticulum (ER).
Collapse
Affiliation(s)
- Emily Penny
- Biology Department, Trent University, 1600 West Bank Dr, Peterborough, ON K9J 7B8, Canada.
| | - Craig R Brunetti
- Biology Department, Trent University, 1600 West Bank Dr, Peterborough, ON K9J 7B8, Canada.
| |
Collapse
|
6
|
Ascovirus P64 Homologs: A Novel Family of Large Cationic Proteins That Condense Viral Genomic DNA for Encapsidation. BIOLOGY 2018; 7:biology7030044. [PMID: 30208603 PMCID: PMC6163548 DOI: 10.3390/biology7030044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/01/2018] [Accepted: 09/07/2018] [Indexed: 01/05/2023]
Abstract
Eukaryotic dsDNA viruses use small basic protamine-like proteins or histones, typically <15 kDa, to condense and encapsidate their genomic (g)DNAs during virogenesis. Ascoviruses are large dsDNA (~100⁻200 kbp) viruses that are pathogenic to lepidopteran larvae. Little is known about the molecular basis for condensation and encapsidation of their gDNAs. Previous proteomic analysis showed that Spodoptera frugiperda ascovirus (SfAV-1a) virions contain a large unique DNA-binding protein (P64; 64 kDa, pI = 12.2) with a novel architecture proposed to condense its gDNA. Here we used physical, biochemical, and transmission electron microscopy techniques to demonstrate that P64's basic C-terminal domain condenses SfAV-1a gDNA. Moreover, we demonstrate that only P64 homologs in other ascovirus virions are unique in stably binding DNA. As similar protein families or subfamilies were not identified in extensive database searches, our collective data suggest that ascovirus P64 homologs comprise a novel family of atypical large viral gDNA condensing proteins.
Collapse
|
7
|
Invertebrate Iridoviruses: A Glance over the Last Decade. Viruses 2018; 10:v10040161. [PMID: 29601483 PMCID: PMC5923455 DOI: 10.3390/v10040161] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 02/06/2023] Open
Abstract
Members of the family Iridoviridae (iridovirids) are large dsDNA viruses that infect both invertebrate and vertebrate ectotherms and whose symptoms range in severity from minor reductions in host fitness to systemic disease and large-scale mortality. Several characteristics have been useful for classifying iridoviruses; however, novel strains are continuously being discovered and, in many cases, reliable classification has been challenging. Further impeding classification, invertebrate iridoviruses (IIVs) can occasionally infect vertebrates; thus, host range is often not a useful criterion for classification. In this review, we discuss the current classification of iridovirids, focusing on genomic and structural features that distinguish vertebrate and invertebrate iridovirids and viral factors linked to host interactions in IIV6 (Invertebrate iridescent virus 6). In addition, we show for the first time how complete genome sequences of viral isolates can be leveraged to improve classification of new iridovirid isolates and resolve ambiguous relations. Improved classification of the iridoviruses may facilitate the identification of genus-specific virulence factors linked with diverse host phenotypes and host interactions.
Collapse
|
8
|
Toenshoff ER, Fields PD, Bourgeois YX, Ebert D. The End of a 60-year Riddle: Identification and Genomic Characterization of an Iridovirus, the Causative Agent of White Fat Cell Disease in Zooplankton. G3 (BETHESDA, MD.) 2018; 8:1259-1272. [PMID: 29487186 PMCID: PMC5873915 DOI: 10.1534/g3.117.300429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/08/2018] [Indexed: 12/11/2022]
Abstract
The planktonic freshwater crustacean of the genus Daphnia are a model system for biomedical research and, in particular, invertebrate-parasite interactions. Up until now, no virus has been characterized for this system. Here we report the discovery of an iridovirus as the causative agent of White Fat Cell Disease (WFCD) in Daphnia WFCD is a highly virulent disease of Daphnia that can easily be cultured under laboratory conditions. Although it has been studied from sites across Eurasia for more than 60 years, its causative agent had not been described, nor had an iridovirus been connected to WFCD before now. Here we find that an iridovirus-the Daphnia iridescent virus 1 (DIV-1)-is the causative agent of WFCD. DIV-1 has a genome sequence of about 288 kbp, with 39% G+C content and encodes 367 predicted open reading frames. DIV-1 clusters together with other invertebrate iridoviruses but has by far the largest genome among all sequenced iridoviruses. Comparative genomics reveal that DIV-1 has apparently recently lost a substantial number of unique genes but has also gained genes by horizontal gene transfer from its crustacean host. DIV-1 represents the first invertebrate iridovirus that encodes proteins to purportedly cap RNA, and it contains unique genes for a DnaJ-like protein, a membrane glycoprotein and protein of the immunoglobulin superfamily, which may mediate host-pathogen interactions and pathogenicity. Our findings end a 60-year search for the causative agent of WFCD and add to our knowledge of iridovirus genomics and invertebrate-virus interactions.
Collapse
Affiliation(s)
- Elena R Toenshoff
- Basel University, Department of Environmental Sciences, Zoology, Vesalgasse 1, CH-4051 Basel, Switzerland
| | - Peter D Fields
- Basel University, Department of Environmental Sciences, Zoology, Vesalgasse 1, CH-4051 Basel, Switzerland
| | - Yann X Bourgeois
- Basel University, Department of Environmental Sciences, Zoology, Vesalgasse 1, CH-4051 Basel, Switzerland
| | - Dieter Ebert
- Basel University, Department of Environmental Sciences, Zoology, Vesalgasse 1, CH-4051 Basel, Switzerland
| |
Collapse
|
9
|
Chinchar V, Waltzek TB, Subramaniam K. Ranaviruses and other members of the family Iridoviridae: Their place in the virosphere. Virology 2017. [DOI: 10.1016/j.virol.2017.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Li F, Xu L, Yang F. Genomic characterization of a novel iridovirus from redclaw crayfish Cherax quadricarinatus: evidence for a new genus within the family Iridoviridae. J Gen Virol 2017; 98:2589-2595. [DOI: 10.1099/jgv.0.000904] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Fang Li
- State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, SOA, Xiamen 361005, PR China
| | - Limei Xu
- State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, SOA, Xiamen 361005, PR China
| | - Feng Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, SOA, Xiamen 361005, PR China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| |
Collapse
|
11
|
İnce İA, Pijlman GP, Vlak JM, van Oers MM. Hairpin structures with conserved sequence motifs determine the 3' ends of non-polyadenylated invertebrate iridovirus transcripts. Virology 2017; 511:344-353. [PMID: 28709684 DOI: 10.1016/j.virol.2017.06.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
Abstract
Previously, we observed that the transcripts of Invertebrate iridescent virus 6 (IIV6) are not polyadenylated, in line with the absence of canonical poly(A) motifs (AATAAA) downstream of the open reading frames (ORFs) in the genome. Here, we determined the 3' ends of the transcripts of fifty-four IIV6 virion protein genes in infected Drosophila Schneider 2 (S2) cells. By using ligation-based amplification of cDNA ends (LACE) it was shown that the IIV6 mRNAs often ended with a CAUUA motif. In silico analysis showed that the 3'-untranslated regions of IIV6 genes have the ability to form hairpin structures (22-56 nt in length) and that for about half of all IIV6 genes these 3' sequences contained complementary TAATG and CATTA motifs. We also show that a hairpin in the 3' flanking region with conserved sequence motifs is a conserved feature in invertebrate-infecting iridoviruses (genus Iridovirus and Chloriridovirus).
Collapse
Affiliation(s)
- İkbal Agah İnce
- Department of Medical Microbiology, Acıbadem University Medical School, Atasehir, 34752 Istanbul, Turkey.
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Just M Vlak
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
12
|
Diversity of large DNA viruses of invertebrates. J Invertebr Pathol 2017; 147:4-22. [DOI: 10.1016/j.jip.2016.08.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 11/17/2022]
|
13
|
Xu L, Wang T, Li F, Yang F. Isolation and preliminary characterization of a new pathogenic iridovirus from redclaw crayfish Cherax quadricarinatus. DISEASES OF AQUATIC ORGANISMS 2016; 120:17-26. [PMID: 27304867 DOI: 10.3354/dao03007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report the preliminary characterization of a new iridovirus detected in diseased Cherax quadricarinatus collected from a farm in Fujian, China. Transmission electron microscopy identified numerous icosahedral particles (~150 nm in diameter) in the cytoplasm and budding from the plasma membrane of hematopoietic tissue cells. SDS-PAGE of virions semi-purified from the hemolymph of moribund C. quadricarinatus identified 24 proteins including a 50 kDa major capsid protein (MCP). By summing the sizes of DNA restriction endonuclease fragments, the viral genome was estimated to be ~150 kb in length. A 34 amino acid sequence deduced from a 103 bp MCP gene region amplified by PCR using degenerate primers targeted to MCP gene regions conserved among iridoviruses and chloriridoviruses was most similar (55% identity) to Sergestid iridovirus. Based on virion morphology, protein composition, DNA genome length, and MCP sequence relatedness, the virus identified has tentatively been named Cherax quadricarinatus iridovirus (CQIV). In addition, experimental infection of healthy C. quadricarinatus, Procambarus clarkii, and Litopenaeus vannamei with CQIV caused the same disease and high mortality, suggesting that CQIV poses a potential threat to cultured and wild crayfish and shrimp.
Collapse
Affiliation(s)
- Limei Xu
- Key Laboratory of Marine Genetic Resources, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | | | | | | |
Collapse
|
14
|
Epstein B, Storfer A. Comparative Genomics of an Emerging Amphibian Virus. G3 (BETHESDA, MD.) 2015; 6:15-27. [PMID: 26530419 PMCID: PMC4704714 DOI: 10.1534/g3.115.023762] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/22/2015] [Indexed: 11/18/2022]
Abstract
Ranaviruses, a genus of the Iridoviridae, are large double-stranded DNA viruses that infect cold-blooded vertebrates worldwide. Ranaviruses have caused severe epizootics in commercial frog and fish populations, and are currently classified as notifiable pathogens in international trade. Previous work shows that a ranavirus that infects tiger salamanders throughout Western North America (Ambystoma tigrinum virus, or ATV) is in high prevalence among salamanders in the fishing bait trade. Bait ATV strains have elevated virulence and are transported long distances by humans, providing widespread opportunities for pathogen pollution. We sequenced the genomes of 15 strains of ATV collected from tiger salamanders across western North America and performed phylogenetic and population genomic analyses and tests for recombination. We find that ATV forms a monophyletic clade within the rest of the Ranaviruses and that it likely emerged within the last several thousand years, before human activities influenced its spread. We also identify several genes under strong positive selection, some of which appear to be involved in viral virulence and/or host immune evasion. In addition, we provide support for the pathogen pollution hypothesis with evidence of recombination among ATV strains, and potential bait-endemic strain recombination.
Collapse
Affiliation(s)
- Brendan Epstein
- School of Biological Sciences, Washington State University, Pullman, Washington 99164
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, Washington 99164
| |
Collapse
|
15
|
Abergel C, Legendre M, Claverie JM. The rapidly expanding universe of giant viruses: Mimivirus, Pandoravirus, Pithovirus and Mollivirus. FEMS Microbiol Rev 2015; 39:779-96. [PMID: 26391910 DOI: 10.1093/femsre/fuv037] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2015] [Indexed: 12/31/2022] Open
Abstract
More than a century ago, the term 'virus' was introduced to describe infectious agents that are invisible by light microscopy and capable of passing through sterilizing filters. In addition to their extremely small size, most viruses have minimal genomes and gene contents, and rely almost entirely on host cell-encoded functions to multiply. Unexpectedly, four different families of eukaryotic 'giant viruses' have been discovered over the past 10 years with genome sizes, gene contents and particle dimensions overlapping with that of cellular microbes. Their ongoing analyses are challenging accepted ideas about the diversity, evolution and origin of DNA viruses.
Collapse
Affiliation(s)
- Chantal Abergel
- Structural and Genomic Information Laboratory, UMR 7256 (IMM FR 3479) Centre National de la Recherche Scientifique & Aix-Marseille University, 13288 Marseille, France
| | - Matthieu Legendre
- Structural and Genomic Information Laboratory, UMR 7256 (IMM FR 3479) Centre National de la Recherche Scientifique & Aix-Marseille University, 13288 Marseille, France
| | - Jean-Michel Claverie
- Structural and Genomic Information Laboratory, UMR 7256 (IMM FR 3479) Centre National de la Recherche Scientifique & Aix-Marseille University, 13288 Marseille, France Assistance Publique des Hôpitaux de Marseille, La Timone, 13005 Marseille, France
| |
Collapse
|
16
|
Singapore Grouper Iridovirus ORF75R is a Scaffold Protein Essential for Viral Assembly. Sci Rep 2015; 5:13151. [PMID: 26286371 PMCID: PMC4541339 DOI: 10.1038/srep13151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 06/04/2015] [Indexed: 12/11/2022] Open
Abstract
Singapore Grouper Iridovirus (SGIV) is a member of nucleo cytoplasmic large DNA viruses (NCLDV). This paper reports the functional analysis of ORF75R, a major structural protein of SGIV. Immuno fluorescence studies showed that the protein was accumulated in the viral assembly site. Immunogold-labelling indicated that it was localized between the viral capsid shell and DNA core. Knockdown of ORF75R by morpholinos resulted in the reduction of coreshell thickness, the failure of DNA encapsidation, and the low yield of infectious particles. Comparative proteomics further identified the structural proteins affected by ORF75R knockdown. Two-dimensional gel electrophoresis combined with proteomics demonstrated that ORF75R was phosphorylated at multiple sites in SGIV-infected cell lysate and virions, but the vast majority of ORF75R in virions was the dephosphorylated isoform. A kinase assay showed that ORF75R could be phosphorylated in vitro by the SGIV structural protein ORF39L. Addition of ATP and Mg2+ into purified virions prompted extensive phosphorylation of structural proteins and release of ORF75R from virions. These data suggest that ORF75R is a novel scaffold protein important for viral assembly and DNA encapsidation, but its phosphorylation facilitates virion disassembly. Compared to proteins from other viruses, we found that ORF75R shares common features with herpes simplex virus VP22.
Collapse
|
17
|
Huang Y, Li S, Zhao Q, Pei G, An X, Guo X, Zhou H, Zhang Z, Zhang J, Tong Y. Isolation and characterization of a novel invertebrate iridovirus from adult Anopheles minimus (AMIV) in China. J Invertebr Pathol 2015; 127:1-5. [PMID: 25637833 DOI: 10.1016/j.jip.2015.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 12/01/2022]
Abstract
An invertebrate iridovirus (designated AMIV) was isolated from adult wild-captured Anopheles minimus mosquitoes in China. AMIV was pathologically and morphologically characterized and sequenced using the Ion Torrent™ sequencing platform. Phylogenetic analysis based on both the major capsid protein and core genes revealed that AMIV differs from all the members of the family Iridoviridae. The AMIV negatively strained virion has a diameter of about 130nm. AMIV contains a linear DNA molecule of 163,023bp, with 39% G+C content and 148 coding sequences. The genome analysis revealed that AMIV genome encodes a high content of replication associated genes including BRO-like genes. This is the ninth complete genome of IIV reported.
Collapse
Affiliation(s)
- Yong Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai District, Beijing 100071, China
| | - Shasha Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai District, Beijing 100071, China
| | - Qiumin Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai District, Beijing 100071, China
| | - Guangqian Pei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai District, Beijing 100071, China
| | - Xiaoping An
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai District, Beijing 100071, China
| | - Xiaofang Guo
- Yunnan Institute of Parasitic Diseases, Pu'er, Yunnan, China
| | - Hongning Zhou
- Yunnan Institute of Parasitic Diseases, Pu'er, Yunnan, China
| | - Zhiyi Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai District, Beijing 100071, China
| | - Jiusong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai District, Beijing 100071, China.
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai District, Beijing 100071, China.
| |
Collapse
|
18
|
Piégu B, Asgari S, Bideshi D, Federici BA, Bigot Y. Evolutionary relationships of iridoviruses and divergence of ascoviruses from invertebrate iridoviruses in the superfamily Megavirales. Mol Phylogenet Evol 2015; 84:44-52. [PMID: 25562178 DOI: 10.1016/j.ympev.2014.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 10/09/2014] [Accepted: 12/19/2014] [Indexed: 12/29/2022]
Abstract
The family Iridoviridae of the superfamily Megavirales currently consists of five genera. Three of these, Lymphocystivirus, Megalocytivirus and Ranavirus, are composed of species that infect vertebrates, and the other two, Chloriridovirus and Iridovirus, contain species that infect invertebrates. Until recently, the lack of genomic sequence data limited investigation of the evolutionary relationships between the invertebrate iridoviruses (IIVs) and vertebrate iridoviruses (VIVs), as well as the relationship of these viruses to those of the closely related family Ascoviridae, which only contains species that infect insects. To help clarify the phylogenetic relationships of these viruses, we recently published the annotated genome sequences of five additional IIV isolates. Here, using classical approaches of phylogeny via maximum likelihood, a Bayesian approach, and resolution of a core protein tree, we demonstrate that the invertebrate and vertebrate IV species constitute two lineages that diverged early during the evolution of the family Iridoviridae, before the emergence of the four IIV clades, previously referred to as Chloriridoviruses, Polyiridoviruses, Oligoiridoviruses and Crustaceoiridoviruses. In addition, we provide evidence that species of the family Ascoviridae have a more recent origin than most iridoviruses, emerging just before the differentiation between the Oligoiridoviruses and Crustaceoiridovirus clades. Our results also suggest that after emergence, based on their molecular clock, the ascoviruses evolved more quickly than their closest iridovirus relatives.
Collapse
Affiliation(s)
- Benoît Piégu
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France
| | - Sassan Asgari
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France; School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dennis Bideshi
- California Baptist University, Department of Natural and Mathematical Sciences, 8432 Magnolia Avenue, Riverside, CA 92504, USA; Department of Entomology and Developmental Biology, University of California, Riverside, CA 92521, USA
| | - Brian A Federici
- Department of Entomology and Developmental Biology, University of California, Riverside, CA 92521, USA; Interdepartmental Graduate Programs in Microbiology and Cell, Molecular and Developmental Biology, University of California, Riverside, CA 92521, USA
| | - Yves Bigot
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France.
| |
Collapse
|
19
|
Complete genome sequence of invertebrate iridovirus IIV-25 isolated from a blackfly larva. Arch Virol 2014; 159:1181-5. [PMID: 24232916 DOI: 10.1007/s00705-013-1918-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 11/03/2013] [Indexed: 10/26/2022]
Abstract
Members of the family Iridoviridae are animal viruses that infect only invertebrates and poikilothermic vertebrates. Invertebrate iridovirus 25 (IIV-25) was originally isolated from the larva of a blackfly (Simulium spp., order Diptera) found in the Ystwyth river near Aberystwyth, Wales. IIV-25 virions are icosahedral, have a diameter of ~130 nm, and contain a dsDNA genome of 204.8 kbp, with a G+C content of 30.32 %, that codes for 177 proteins. Here, we describe the complete genome sequence of this virus and its annotation. This is the fifth genome sequence of an invertebrate iridovirus reported.
Collapse
|
20
|
Piégu B, Guizard S, Yeping T, Cruaud C, Couloux A, Bideshi DK, Federici BA, Bigot Y. Complete genome sequence of invertebrate iridovirus IIV22A, a variant of IIV22, isolated originally from a blackfly larva. Stand Genomic Sci 2014; 9:940-7. [PMID: 25197475 PMCID: PMC4149023 DOI: 10.4056/sigs.5059132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the family Iridoviridae are animal viruses that infect only invertebrates and poikilothermic vertebrates. The invertebrate iridoviruses 22 (IIV22) and 25 (IIV25) were originally isolated from a single sample of blackfly larva (Simulium spp., order Diptera) collected from the Ystwyth river near Aberystwyth, Wales. Recently, the genomes of IIV22 (197.7 kbp) and IIV25 (204.8 kbp) were sequenced and reported. Here, we describe the complete genome sequence of IIV22A, a variant that was isolated from the same pool of virions collected from the blackfly larva from which the IIV22 virion genome originated. The IIV22A genome, 196.5 kbp, is smaller than IIV22. Nevertheless, it contains 7 supplementary putative ORFs. Its analysis enables evaluation of the degree of genomic polymorphisms within an IIV isolate. Despite the occurrence of this IIV variant with IIV22 and IIV25 in a single blackfly larva and the features of their DNA polymerase, we found no evidence of lateral genetic transfers between the genomes of these two IIV species.
Collapse
Affiliation(s)
- Benoît Piégu
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, Nouzilly, France
| | | | | | | | | | | | | | - Yves Bigot
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, Nouzilly, France
| |
Collapse
|
21
|
Piégu B, Guizard S, Yeping T, Cruaud C, Asgari S, Bideshi DK, Federici BA, Bigot Y. Genome sequence of a crustacean iridovirus, IIV31, isolated from the pill bug, Armadillidium vulgare. J Gen Virol 2014; 95:1585-1590. [PMID: 24722681 DOI: 10.1099/vir.0.066076-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Members of the family Iridoviridae are animal viruses that infect only invertebrates and poikilothermic vertebrates. The invertebrate iridovirus 31 (IIV31) was originally isolated from adult pill bugs, Armadillidium vulgare (class Crustacea, order Isopoda, suborder Oniscidea), found in southern California on the campus of the University of California, Riverside, USA. IIV31 virions are icosahedral, have a diameter of about 135 nm, and contain a dsDNA genome 220.222 kbp in length, with 35.09 mol % G+C content and 203 ORFs. Here, we describe the complete genome sequence of this virus and its annotation. This is the eighth genome sequence of an IIV reported.
Collapse
Affiliation(s)
- Benoît Piégu
- UMR INRA-CNRS 7247, PRC, Centre INRA Val de Loire, 37380 Nouzilly, France
| | - Sébastien Guizard
- UMR INRA-CNRS 7247, PRC, Centre INRA Val de Loire, 37380 Nouzilly, France
| | - Tan Yeping
- Interdepartmental Graduate Programs in Cell, Molecular and Developmental Biology, University of California, Riverside, CA 92521, USA.,Department of Entomology, Molecular and Developmental Biology, University of California, Riverside, CA 92521, USA
| | - Corinne Cruaud
- CEA/Institut de Génomique GENOSCOPE, 2 Rue Gaston Crémieux, CP 5706, 91057 Evry CEDEX, France
| | - Sassan Asgari
- School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Dennis K Bideshi
- California Baptist University, Department of Natural and Mathematical Sciences, 8432 Magnolia Avenue, Riverside, CA 92504, USA.,Department of Entomology, Molecular and Developmental Biology, University of California, Riverside, CA 92521, USA
| | - Brian A Federici
- Interdepartmental Graduate Programs in Cell, Molecular and Developmental Biology, University of California, Riverside, CA 92521, USA.,Department of Entomology, Molecular and Developmental Biology, University of California, Riverside, CA 92521, USA
| | - Yves Bigot
- UMR INRA-CNRS 7247, PRC, Centre INRA Val de Loire, 37380 Nouzilly, France
| |
Collapse
|
22
|
Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc Natl Acad Sci U S A 2014; 111:4274-9. [PMID: 24591590 DOI: 10.1073/pnas.1320670111] [Citation(s) in RCA: 332] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The largest known DNA viruses infect Acanthamoeba and belong to two markedly different families. The Megaviridae exhibit pseudo-icosahedral virions up to 0.7 μm in diameter and adenine-thymine (AT)-rich genomes of up to 1.25 Mb encoding a thousand proteins. Like their Mimivirus prototype discovered 10 y ago, they entirely replicate within cytoplasmic virion factories. In contrast, the recently discovered Pandoraviruses exhibit larger amphora-shaped virions 1 μm in length and guanine-cytosine-rich genomes up to 2.8 Mb long encoding up to 2,500 proteins. Their replication involves the host nucleus. Whereas the Megaviridae share some general features with the previously described icosahedral large DNA viruses, the Pandoraviruses appear unrelated to them. Here we report the discovery of a third type of giant virus combining an even larger pandoravirus-like particle 1.5 μm in length with a surprisingly smaller 600 kb AT-rich genome, a gene content more similar to Iridoviruses and Marseillevirus, and a fully cytoplasmic replication reminiscent of the Megaviridae. This suggests that pandoravirus-like particles may be associated with a variety of virus families more diverse than previously envisioned. This giant virus, named Pithovirus sibericum, was isolated from a >30,000-y-old radiocarbon-dated sample when we initiated a survey of the virome of Siberian permafrost. The revival of such an ancestral amoeba-infecting virus used as a safe indicator of the possible presence of pathogenic DNA viruses, suggests that the thawing of permafrost either from global warming or industrial exploitation of circumpolar regions might not be exempt from future threats to human or animal health.
Collapse
|
23
|
Piégu B, Guizard S, Spears T, Cruaud C, Couloux A, Bideshi DK, Federici BA, Bigot Y. Complete genome sequence of invertebrate iridovirus IIV30 isolated from the corn earworm, Helicoverpa zea. J Invertebr Pathol 2014; 116:43-7. [PMID: 24394746 DOI: 10.1016/j.jip.2013.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/19/2013] [Accepted: 12/26/2013] [Indexed: 11/18/2022]
Abstract
Members of the family Iridoviridae are animal viruses that infect only invertebrates and poikilothermic vertebrates. The invertebrate iridovirus 30 (IIV30) was originally isolated from a larva of the corn earworm, Helicoverpa zea (order lepidoptera, Family Noctuidae) in western Australia. The IIV30 virions are icosahedral, have a diameter of about 130nm, and contain a dsDNA genome of 198.5kbp with 28.11% in GC content and 177 coding sequences. Here we describe its complete genome sequence and annotate the genes for which we could assign a putative function. This is the sixth genome sequence of an invertebrate iridovirus reported.
Collapse
Affiliation(s)
- Benoît Piégu
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France
| | - Sébastien Guizard
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France
| | - Tatsinda Spears
- Department of Entomology, Molecular and Developmental Biology, University of California, Riverside, CA 92521, USA; Interdepartmental Graduate Programs in Cell, Molecular and Developmental Biology, University of California, Riverside, CA 92521, USA
| | - Corinne Cruaud
- Interdepartmental Graduate Programs in Cell, Molecular and Developmental Biology, University of California, Riverside, CA 92521, USA
| | - Arnault Couloux
- CEA/Institut de Génomique GENOSCOPE, 2 rue Gaston Crémieux, CP 5706, 91057 Evry Cedex, France
| | - Dennis K Bideshi
- Department of Entomology, Molecular and Developmental Biology, University of California, Riverside, CA 92521, USA; California Baptist University, Department of Natural and Mathematical Sciences, 8432 Magnolia Avenue Riverside, CA 92504, USA
| | - Brian A Federici
- Department of Entomology, Molecular and Developmental Biology, University of California, Riverside, CA 92521, USA; Interdepartmental Graduate Programs in Cell, Molecular and Developmental Biology, University of California, Riverside, CA 92521, USA
| | - Yves Bigot
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France.
| |
Collapse
|
24
|
Rud YP, Buchatski LP, Kravchenko VM, Mogylchak KY, Vesel’skiy SP, Yashchuk VM. Spectral properties of mosquito Aedes flavescens iridovirus. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s0006350914010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
25
|
Weber EPS. Itchy fish and viral dermatopathies: sampling, diagnosis, and management of common viral diseases. Vet Clin North Am Exot Anim Pract 2013; 16:687-703. [PMID: 24018032 DOI: 10.1016/j.cvex.2013.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Viral dermatopathies of fish bear clinical signs similar to those of dermatopathies from other causes. This article offers an overview to approaching dermatologic presentations in fish, with an emphasis on sampling, diagnosis, and management of viral dermatopathies, building on previous publications. It is vital to recognize clinical signs associated with viral dermatopathies because there are currently no treatments available. Avoidance and prevention is the key to controlling viral diseases in fish. Optimizing husbandry practices and providing appropriate quarantine procedures can help prevent viral disease outbreaks in collection and aquaculture stocks.
Collapse
Affiliation(s)
- E P Scott Weber
- VM: Medicine and Epidemiology, University of California, Davis, 2108 Tupper Hall, Davis, CA 95616, USA.
| |
Collapse
|
26
|
Piégu B, Guizard S, Spears T, Cruaud C, Couloux A, Bideshi DK, Federici BA, Bigot Y. Complete genome sequence of invertebrate iridescent virus 22 isolated from a blackfly larva. J Gen Virol 2013; 94:2112-2116. [PMID: 23804567 DOI: 10.1099/vir.0.054213-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Members of the family Iridoviridae are animal viruses that infect only invertebrates and poikilothermic vertebrates. Invertebrate iridescent virus 22 (IIV-22) was originally isolated from the larva of a blackfly (Simulium sp., order Diptera) found in the Ystwyth river, near Aberystwyth, Wales, UK. IIV-22 virions are icosahedral, with a diameter of about 130 nm and contain a dsDNA genome that is 197.7 kb in length, has a G+C content of 28.05 mol% and contains 167 coding sequences. Here, we describe the complete genome sequence of this virus and its annotation. This is the fourth genome sequence of an invertebrate iridovirus to be reported.
Collapse
Affiliation(s)
- Benoît Piégu
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France
| | - Sébastien Guizard
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France
| | - Tatsinda Spears
- Interdepartmental Graduate Programs in Cell, Molecular and Developmental Biology, University of California, Riverside, CA 92521, USA.,Department of Entomology, Molecular and Developmental Biology, University of California, Riverside, CA 92521, USA
| | - Corinne Cruaud
- CEA/Institut de Génomique GENOSCOPE, 2 rue Gaston Crémieux, CP 5706, 91057 Evry CEDEX, France
| | - Arnault Couloux
- CEA/Institut de Génomique GENOSCOPE, 2 rue Gaston Crémieux, CP 5706, 91057 Evry CEDEX, France
| | - Dennis K Bideshi
- California Baptist University, Department of Natural and Mathematical Sciences, 8432 Magnolia Avenue Riverside, CA 92504, USA.,Department of Entomology, Molecular and Developmental Biology, University of California, Riverside, CA 92521, USA
| | - Brian A Federici
- Interdepartmental Graduate Programs in Cell, Molecular and Developmental Biology, University of California, Riverside, CA 92521, USA.,Department of Entomology, Molecular and Developmental Biology, University of California, Riverside, CA 92521, USA
| | - Yves Bigot
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France
| |
Collapse
|
27
|
Zhang BC, Zhang M, Sun BG, Fang Y, Xiao ZZ, Sun L. Complete genome sequence and transcription profiles of the rock bream iridovirus RBIV-C1. DISEASES OF AQUATIC ORGANISMS 2013; 104:203-214. [PMID: 23759558 DOI: 10.3354/dao02587] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The family Iridoviridae consists of 5 genera of double-stranded DNA viruses, including the genus Megalocytivirus, which contains species that are important fish pathogens. In a previous study, we isolated the first rock bream iridovirus from China (RBIV-C1) and identified it as a member of the genus Megalocytivirus. In this report, we determined the complete genomic sequence of RBIV-C1 and examined its in vivo expression profiles. The genome of RBIV-C1 is 112333 bp in length, with a GC content of 55% and a coding density of 92%. RBIV-C1 contains 4584 simple sequence repeats, 89.8% of which are distributed among coding regions. A total of 119 potential open reading frames (ORFs) were identified in RBIV-C1, including the 26 core iridovirus genes; 41 ORFs encode proteins that are predicted to be associated with essential biological functions. RBIV-C1 exhibits the highest degree of sequence conservation and colinear arrangement of genes with orange-spotted grouper iridovirus (OSGIV) and rock bream iridovirus (RBIV). The pairwise nucleotide identities are 99.49% between RBIV-C1 and OSGIV and 98.69% between RBIV-C1 and RBIV. Compared to OSGIV, RBIV-C1 contains 11 insertions, 13 deletions, and 103 single nucleotide mutations. Whole-genome transcription analysis showed that following experimental infection of rock bream with RBIV-C1, all but 1 of the 119 ORFs were expressed at different time points and clustered into 3 hierarchical groups based on their expression patterns. These results provide new insights into the genetic nature and gene expression features of megalocytiviruses.
Collapse
Affiliation(s)
- Bao-Cun Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, People's Republic of China
| | | | | | | | | | | |
Collapse
|
28
|
Clouthier SC, Vanwalleghem E, Copeland S, Klassen C, Hobbs G, Nielsen O, Anderson ED. A new species of nucleo-cytoplasmic large DNA virus (NCLDV) associated with mortalities in Manitoba lake sturgeon Acipenser fulvescens. DISEASES OF AQUATIC ORGANISMS 2013; 102:195-209. [PMID: 23446969 DOI: 10.3354/dao02548] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A newly discovered virus, Namao virus, associated with morbidity and mortality, was detected among juvenile lake sturgeon Acipenser fulvescens being propagated by a conservation stocking program for this endangered species in Manitoba, Canada. The outbreaks resulted in cumulative mortalities of 62 to 99.6% among progeny of wild Winnipeg River or Nelson River lake sturgeon and occurred at 2 geographically separate facilities. Namao virus was detected in almost 94% of the moribund or dead lake sturgeon according to a conventional polymerase chain reaction (cPCR) test that is based upon amplification of a 219 bp fragment of the virus major capsid protein (MCP). The virus itself was large (242 to 282 nm) and icosahedral-shaped with 2 capsids and a condensed bar-shaped core. It was found in virus factories within the host cell cytoplasm and displayed a tropism for the integument. Namao virus caused cellular changes characterized by enlarged eosinophilic epithelial cells in the gills and skin. Samples suspected of containing Namao virus did not have cytopathic effects on primary lake sturgeon or established white sturgeon cell lines. However, viral nucleic acid was detected in the former after prolonged incubation periods. Using primers designed from conserved regions of the MCP from NCLDVs, an estimated 95 to 96% of the Namao virus MCP open reading frame was captured. Phylogenetic analysis using the MCP of Namao virus and 27 other NCLDVs suggested that Namao virus and white sturgeon iridovirus share a common evolutionary past and might be members of the family Mimiviridae or a new, as yet unrecognized, virus family.
Collapse
Affiliation(s)
- Sharon C Clouthier
- Freshwater Institute, Fisheries & Oceans Canada, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Dizman YA, Demirbag Z, Ince IA, Nalcacioglu R. Transcriptomic analysis of Chilo iridescent virus immediate early promoter. Virus Res 2012; 167:353-7. [PMID: 22698875 DOI: 10.1016/j.virusres.2012.05.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 05/31/2012] [Accepted: 05/31/2012] [Indexed: 11/19/2022]
Abstract
Chilo iridescent virus (CIV) is an insect virus belonging to the Iridoviridae. The DNA genome (212,482 base pairs) is entirely sequenced, however very little is known about viral gene regulation, expression and function. The structure and transcriptional regulation of the CIV 012L gene is investigated in this study. Infection of Bombyx mori SPC-BM-36 cells in the presence of Ara-C (inhibits DNA replication) or cycloheximide (inhibits protein synthesis), followed by RT-PCR on isolated total RNA, showed that CIV 012L is transcribed as an immediate-early gene. Detecting the RNA transcript of the CIV 012L early in infection confirmed the data about the temporal class of the gene obtained with the inhibitors. Time course transcription of the gene showed that the transcription starts immediately after infection and reach up to maximum level at 4h p.i. 5' RACE analysis on RNA isolated from CIV-infected BM cells showed that the transcription initiation site is located 30 nucleotides upstream of the translational start codon. To map the limits of the putative promoter of this gene, upstream sequences of various lengths were cloned in front of a firefly luciferase reporter gene. The resulting plasmid constructs were tested in a transfection assay, in which the baculovirus IE-l promoter fused to Renilla luciferase was used as an internal control for transfection efficiency. A gradual reduction in luciferase expression occurred as the deletions extended from -200 to -10, relative to the transcription start site. It is clearly shown that sequences between -20 and -10 relative to the transcription start site have key promoter activity for CIV 012L gene. However this key sequence could not be found at the upstream region of CIV's other potential immediate early genes.
Collapse
Affiliation(s)
- Yesim Akturk Dizman
- Karadeniz Technical University, Faculty of Sciences, Department of Biology, 61080 Trabzon, Turkey
| | | | | | | |
Collapse
|
30
|
Muttis E, Miele SAB, Belaich MN, Micieli MV, Becnel JJ, Ghiringhelli PD, García JJ. First record of a mosquito iridescent virus in Culex pipiens L. (Diptera: Culicidae). Arch Virol 2012; 157:1569-71. [PMID: 22543633 DOI: 10.1007/s00705-012-1302-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 03/07/2012] [Indexed: 11/25/2022]
Abstract
The mosquito iridescent viruses (MIVs) are large icosahedral DNA viruses that replicate and assemble in the cytoplasm of the host. Paracrystalline arrangements of virions that accumulate in the cytoplasm produce an iridescent color that is symptomatic of acute infections. In August 2010, we found larvae of Culex pipiens with these symptoms in suburban ditches around the city of La Plata, Argentina. Electron microscope studies, DNA sequencing, and phylogenetic analysis of the major capsid protein confirmed this as the first record of an MIV in C. Pipiens.
Collapse
Affiliation(s)
- Evangelina Muttis
- Centro de Estudios Parasitológicos y Vectores (CEPAVE-CONICET-CCT-La Plata-UNLP), Calle 2 No 584, 1900 La Plata, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
31
|
Waltzek TB, Marty GD, Alfaro ME, Bennett WR, Garver KA, Haulena M, Weber ES, Hedrick RP. Systemic iridovirus from threespine stickleback Gasterosteus aculeatus represents a new megalocytivirus species (family Iridoviridae). DISEASES OF AQUATIC ORGANISMS 2012; 98:41-56. [PMID: 22422128 DOI: 10.3354/dao02415] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Megalocytiviruses have been associated with epizootics resulting in significant economic losses in public aquaria and food-fish and ornamental fish industries, as well as threatening wild fish stocks. The present report describes characteristics of the first megalocytivirus from a wild temperate North American fish, the threespine stickleback Gasterosteus aculeatus. Moribund and dead fish sampled after transfer to quarantine for an aquarium exhibit had amphophilic to basophilic intracytoplasmic inclusions (histopathology) and icosahedral virions (transmission electron microscopy) consistent with an iridovirus infection. Phylogenetic analyses of the major capsid, ATPase, and DNA polymerase genes confirmed the virus as the first known member of the genus Megalocytivirus (family Iridoviridae) from a gasterosteid fish. The unique biologic and genetic properties of this virus are sufficient to establish a new Megalocytivirus species to be formally known as the threespine stickleback iridovirus (TSIV). The threespine stickleback is widely distributed throughout the northern hemisphere in both freshwater and estuarine environments. The presence of megalocytiviruses with broad host specificity and detrimental economic and ecologic impacts among such a widely dispersed fish species indicates the need for sampling of other stickleback populations as well as other North American sympatric marine and freshwater ichthyofauna.
Collapse
Affiliation(s)
- Thomas B Waltzek
- Department of Medicine and Epidemiology, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Susceptibility of mosquito and lepidopteran cell lines to the mosquito iridescent virus (IIV-3) from Aedes taeniorhynchus. J Invertebr Pathol 2011; 108:40-5. [DOI: 10.1016/j.jip.2011.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 06/14/2011] [Accepted: 06/20/2011] [Indexed: 11/21/2022]
|
33
|
Abstract
Iridoviruses (IV) are nuclear cytoplasmic large DNA viruses that are receiving increasing attention as sublethal pathogens of a range of insects. Invertebrate iridovirus type 9 (IIV-9; Wiseana iridovirus) is a member of the major phylogenetic group of iridoviruses for which there is very limited genomic and proteomic information. The genome is 205,791 bp, has a G+C content of 31%, and contains 191 predicted genes, with approximately 20% of its repeat sequences being located predominantly within coding regions. The repeated sequences include 11 proteins with helix-turn-helix motifs and genes encoding related tandem repeat amino acid sequences. Of the 191 proteins encoded by IIV-9, 108 are most closely related to orthologs in IIV-3 (Chloriridovirus genus), and 114 of the 126 IIV-3 genes have orthologs in IIV-9. In contrast, only 97 of 211 IIV-6 genes have orthologs in IIV-9. There is almost no conservation of gene order between IIV-3, IIV-6, and IIV-9. Phylogenetic analysis using a concatenated sequence of 26 core IV genes confirms that IIV-3 is more closely related to IIV-9 than to IIV-6, despite being from a different genus of the Iridoviridae. An interaction between IIV and small RNA regulatory systems is supported by the prediction of seven putative microRNA (miRNA) sequences combined with XRN exonuclease, RNase III, and double-stranded RNA binding activities encoded on the genome. Proteomic analysis of IIV-9 identified 64 proteins in the virus particle and, when combined with infected cell analysis, confirmed the expression of 94 viral proteins. This study provides the first full-genome and consequent proteomic analysis of group II IIV.
Collapse
|
34
|
Bromenshenk JJ, Henderson CB, Wick CH, Stanford MF, Zulich AW, Jabbour RE, Deshpande SV, McCubbin PE, Seccomb RA, Welch PM, Williams T, Firth DR, Skowronski E, Lehmann MM, Bilimoria SL, Gress J, Wanner KW, Cramer RA. Iridovirus and microsporidian linked to honey bee colony decline. PLoS One 2010; 5:e13181. [PMID: 20949138 PMCID: PMC2950847 DOI: 10.1371/journal.pone.0013181] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 08/24/2010] [Indexed: 11/20/2022] Open
Abstract
Background In 2010 Colony Collapse Disorder (CCD), again devastated honey bee colonies in the USA, indicating that the problem is neither diminishing nor has it been resolved. Many CCD investigations, using sensitive genome-based methods, have found small RNA bee viruses and the microsporidia, Nosema apis and N. ceranae in healthy and collapsing colonies alike with no single pathogen firmly linked to honey bee losses. Methodology/Principal Findings We used Mass spectrometry-based proteomics (MSP) to identify and quantify thousands of proteins from healthy and collapsing bee colonies. MSP revealed two unreported RNA viruses in North American honey bees, Varroa destructor-1 virus and Kakugo virus, and identified an invertebrate iridescent virus (IIV) (Iridoviridae) associated with CCD colonies. Prevalence of IIV significantly discriminated among strong, failing, and collapsed colonies. In addition, bees in failing colonies contained not only IIV, but also Nosema. Co-occurrence of these microbes consistently marked CCD in (1) bees from commercial apiaries sampled across the U.S. in 2006–2007, (2) bees sequentially sampled as the disorder progressed in an observation hive colony in 2008, and (3) bees from a recurrence of CCD in Florida in 2009. The pathogen pairing was not observed in samples from colonies with no history of CCD, namely bees from Australia and a large, non-migratory beekeeping business in Montana. Laboratory cage trials with a strain of IIV type 6 and Nosema ceranae confirmed that co-infection with these two pathogens was more lethal to bees than either pathogen alone. Conclusions/Significance These findings implicate co-infection by IIV and Nosema with honey bee colony decline, giving credence to older research pointing to IIV, interacting with Nosema and mites, as probable cause of bee losses in the USA, Europe, and Asia. We next need to characterize the IIV and Nosema that we detected and develop management practices to reduce honey bee losses.
Collapse
Affiliation(s)
- Jerry J Bromenshenk
- Division of Biological Sciences, The University of Montana, Missoula, Montana, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Eaton HE, Ring BA, Brunetti CR. The genomic diversity and phylogenetic relationship in the family iridoviridae. Viruses 2010; 2:1458-1475. [PMID: 21994690 PMCID: PMC3185713 DOI: 10.3390/v2071458] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/12/2010] [Accepted: 07/13/2010] [Indexed: 01/13/2023] Open
Abstract
The Iridoviridae family are large viruses (∼120–200 nm) that contain a linear double-stranded DNA genome. The genomic size of Iridoviridae family members range from 105,903 bases encoding 97 open reading frames (ORFs) for frog virus 3 to 212,482 bases encoding 211 ORFs for Chilo iridescent virus. The family Iridoviridae is currently subdivided into five genera: Chloriridovirus, Iridovirus, Lymphocystivirus, Megalocytivirus, and Ranavirus. Iridoviruses have been found to infect invertebrates and poikilothermic vertebrates, including amphibians, reptiles, and fish. With such a diverse array of hosts, there is great diversity in gene content between different genera. To understand the origin of iridoviruses, we explored the phylogenetic relationship between individual iridoviruses and defined the core-set of genes shared by all members of the family. In order to further explore the evolutionary relationship between the Iridoviridae family repetitive sequences were identified and compared. Each genome was found to contain a set of unique repetitive sequences that could be used in future virus identification. Repeats common to more than one virus were also identified and changes in copy number between these repeats may provide a simple method to differentiate between very closely related virus strains. The results of this paper will be useful in identifying new iridoviruses and determining their relationship to other members of the family.
Collapse
Affiliation(s)
| | | | - Craig R. Brunetti
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-705-748-1011; Fax: +1-705-748-1205
| |
Collapse
|
36
|
Shi CY, Jia KT, Yang B, Huang J. Complete genome sequence of a Megalocytivirus (family Iridoviridae) associated with turbot mortality in China. Virol J 2010; 7:159. [PMID: 20630106 PMCID: PMC2912838 DOI: 10.1186/1743-422x-7-159] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Accepted: 07/15/2010] [Indexed: 11/18/2022] Open
Abstract
Background Turbot reddish body iridovirus (TRBIV) causes serious systemic diseases with high mortality in the cultured turbot, Scophthalmus maximus. We here sequenced and analyzed the complete genome of TRBIV, which was identified in Shandong province, China. Results The genome of TRBIV is a linear double-stranded DNA of 110,104 base pairs, comprising 55% G + C. Total 115 open reading frames were identified, encoding polypeptides ranging from 40 to 1168 amino acids. Amino acid sequences analysis revealed that 39 of the 115 potential gene products of TRBIV show significant homology to other iridovirus proteins. Phylogenetic analysis of conserved genes indicated that TRBIV is closely related to infectious spleen and kidney necrosis virus (ISKNV), rock bream iridovirus (RBIV), orange-spotted grouper iridovirus (OSGIV), and large yellow croaker iridovirus (LYCIV). The results indicated that TRBIV belongs to the genus Megalocytivirus (family Iridoviridae). Conclusions The determination of the genome of TRBIV will provide useful information for comparative study of Megalocytivirus and developing strategies to control outbreaks of TRBIV-induced disease.
Collapse
Affiliation(s)
- Cheng-Yin Shi
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resource, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Qingdao 266071, China
| | | | | | | |
Collapse
|
37
|
Ince IA, Boeren SA, van Oers MM, Vervoort JJM, Vlak JM. Proteomic analysis of Chilo iridescent virus. Virology 2010; 405:253-8. [PMID: 20598335 PMCID: PMC7111926 DOI: 10.1016/j.virol.2010.05.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/06/2010] [Accepted: 05/28/2010] [Indexed: 01/01/2023]
Abstract
In this first proteomic analysis of an invertebrate iridovirus, 46 viral proteins were detected in the virions of Chilo iridescent virus (CIV) based on the detection of 2 or more distinct peptides; an additional 8 proteins were found based on a single peptide. Thirty-six of the 54 identified proteins have homologs in another invertebrate and/or in one or more vertebrate iridoviruses. The genes for 5 of the identified proteins, 22L (putative helicase), 118L, 142R (putative RNaseIII), 274L (major capsid protein) and 295L, are shared by all iridoviruses for which the complete nucleotide sequence is known and may therefore be considered as iridovirus core genes. Three identified proteins have homologs only in ascoviruses. The remaining 15 identified proteins are so far unique to CIV. In addition to broadening our insight in the structure and assembly of CIV virions, this knowledge is pivotal to unravel the initial steps in the infection process.
Collapse
Affiliation(s)
- Ikbal Agah Ince
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Evidence for multiple recent host species shifts among the Ranaviruses (family Iridoviridae). J Virol 2009; 84:2636-47. [PMID: 20042506 DOI: 10.1128/jvi.01991-09] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the genus Ranavirus (family Iridoviridae) have been recognized as major viral pathogens of cold-blooded vertebrates. Ranaviruses have been associated with amphibians, fish, and reptiles. At this time, the relationships between ranavirus species are still unclear. Previous studies suggested that ranaviruses from salamanders are more closely related to ranaviruses from fish than they are to ranaviruses from other amphibians, such as frogs. Therefore, to gain a better understanding of the relationships among ranavirus isolates, the genome of epizootic hematopoietic necrosis virus (EHNV), an Australian fish pathogen, was sequenced. Our findings suggest that the ancestral ranavirus was a fish virus and that several recent host shifts have taken place, with subsequent speciation of viruses in their new hosts. The data suggesting several recent host shifts among ranavirus species increase concern that these pathogens of cold-blooded vertebrates may have the capacity to cross numerous poikilothermic species barriers and the potential to cause devastating disease in their new hosts.
Collapse
|
39
|
Ke F, Zhao Z, Zhang Q. Cloning, expression and subcellular distribution of a Rana grylio virus late gene encoding ERV1 homologue. Mol Biol Rep 2009; 36:1651-9. [PMID: 18819018 DOI: 10.1007/s11033-008-9365-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 09/11/2008] [Indexed: 10/21/2022]
Abstract
An essential for respiration and viability (ERV1) homologue, 88R, was cloned and characterized from Rana grylio virus (RGV). Database searches found its homologues in all sequenced iridoviruses, and sequence alignment revealed a highly conserved motif shared by all ERV1 family proteins: Cys-X-X-Cys. RT-PCR and western blot analysis revealed that 88R begins to transcribe and translate at 6 h postinfection (p.i.) and remains detectable at 48 h p.i. during RGV infection course. Furthermore, using drug inhibition analysis by a de novo protein synthesis inhibitor and a viral DNA replication inhibitor, RGV 88R was classified as a late (L) viral gene during the in vitro infection. 88R-EGFP fusion protein was observed in both the cytoplasm and nucleus of pEGFP-N3-88R transfected EPC cells. Although result of immunofluorescence is similar, 88R protein was not detected in viromatrix. Moreover, function of RGV 88R on virus replication were evaluated by RNAi assay. Nevertheless, effect of knockdown of RGV 88R expression on virus replication was not detected in cultured fish cell lines. Collectively, current data indicate that RGV 88R was a late gene of iridovirus encoding protein that distributed both the cytoplasm and nucleus.
Collapse
Affiliation(s)
- Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Wuhan, China
| | | | | |
Collapse
|
40
|
|
41
|
Bigot Y, Renault S, Nicolas J, Moundras C, Demattei MV, Samain S, Bideshi DK, Federici BA. Symbiotic virus at the evolutionary intersection of three types of large DNA viruses; iridoviruses, ascoviruses, and ichnoviruses. PLoS One 2009; 4:e6397. [PMID: 19636425 PMCID: PMC2712680 DOI: 10.1371/journal.pone.0006397] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 05/31/2009] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The ascovirus, DpAV4a (family Ascoviridae), is a symbiotic virus that markedly increases the fitness of its vector, the parasitic ichneumonid wasp, Diadromus puchellus, by increasing survival of wasp eggs and larvae in their lepidopteran host, Acrolepiopsis assectella. Previous phylogenetic studies have indicated that DpAV4a is related to the pathogenic ascoviruses, such as the Spodoptera frugiperda ascovirus 1a (SfAV1a) and the lepidopteran iridovirus (family Iridoviridae), Chilo iridescent virus (CIV), and is also likely related to the ancestral source of certain ichnoviruses (family Polydnaviridae). METHODOLOGY/PRINCIPAL FINDINGS To clarify the evolutionary relationships of these large double-stranded DNA viruses, we sequenced the genome of DpAV4a and undertook phylogenetic analyses of the above viruses and others, including iridoviruses pathogenic to vertebrates. The DpAV4a genome consisted of 119,343 bp and contained at least 119 open reading frames (ORFs), the analysis of which confirmed the relatedness of this virus to iridoviruses and other ascoviruses. CONCLUSIONS Analyses of core DpAV4a genes confirmed that ascoviruses and iridoviruses are evolutionary related. Nevertheless, our results suggested that the symbiotic DpAV4a had a separate origin in the iridoviruses from the pathogenic ascoviruses, and that these two types shared parallel evolutionary paths, which converged with respect to virion structure (icosahedral to bacilliform), genome configuration (linear to circular), and cytopathology (plasmalemma blebbing to virion-containing vesicles). Our analyses also revealed that DpAV4a shared more core genes with CIV than with other ascoviruses and iridoviruses, providing additional evidence that DpAV4a represents a separate lineage. Given the differences in the biology of the various iridoviruses and ascoviruses studied, these results provide an interesting model for how viruses of different families evolved from one another.
Collapse
Affiliation(s)
- Yves Bigot
- Génétique, Immmunothérapie, Chimie et Cancer, UMR CNRS 6239, Université François Rabelais de Tours, UFR des Sciences et Techniques, Parc de Grandmont, Tours, France.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Weber ES, Waltzek TB, Young DA, Twitchell EL, Gates AE, Vagelli A, Risatti GR, Hedrick RP, Frasca S. Systemic iridovirus infection in the Banggai cardinalfish (Pterapogon kauderni Koumans 1933). J Vet Diagn Invest 2009; 21:306-20. [PMID: 19407082 DOI: 10.1177/104063870902100302] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Iridoviruses infect food and ornamental fish species from a wide range of freshwater to marine habitats across the globe. The objective of the current study was to characterize an iridovirus causing systemic infection of wild-caught Pterapogon kauderni Koumans 1933 (Banggai cardinalfish). Freshly frozen and fixed specimens were processed for histopathologic evaluation, transmission electron microscopic examination, virus culture, molecular virologic testing, microbiology, and in situ hybridization (ISH) using riboprobes. Basophilic granular cytoplasmic inclusions were identified in cytomegalic cells often found beneath endothelium, and hexagonal virus particles typical of iridovirus were identified in the cytoplasm of enlarged cells by transmission electron microscopy. Attempts at virus isolation in cell culture were unsuccessful; however, polymerase chain reaction (PCR)-based molecular testing resulted in amplification and sequencing of regions of the DNA polymerase and major capsid protein genes, along with the full-length ATPase gene of the putative iridovirus. Virus gene sequences were then used to infer phylogenetic relationships of the P. kauderni agent to other known systemic iridoviruses from fishes. Riboprobes, which were transcribed from a cloned PCR amplification product from the viral genome generated hybridization signals from inclusions within cytomegalic cells in histologic sections tested in ISH experiments. To the authors' knowledge, this is the first report of a systemic iridovirus from P. kauderni. The pathologic changes induced and the genomic sequence data confirm placement of the Banggai cardinalfish iridovirus in the genus Megalocytivirus family Iridoviridae. The ISH provides an additional molecular diagnostic technique for confirmation of presumptive infections detected in histologic sections from infected fish.
Collapse
|
43
|
Rana grylio virus thymidine kinase gene: an early gene of iridovirus encoding for a cytoplasmic protein. Virus Genes 2009; 38:345-52. [DOI: 10.1007/s11262-008-0318-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 12/18/2008] [Indexed: 11/27/2022]
|
44
|
Abstract
Members of the family Iridoviridae infect a diverse array of invertebrate and cold-blooded vertebrate hosts and are currently viewed as emerging pathogens of fish and amphibians. Iridovirid replication is unique and involves both nuclear and cytoplasmic compartments, a circularly permuted, terminally redundant genome that, in the case of vertebrate iridoviruses, is also highly methylated, and the efficient shutoff of host macromolecular synthesis. Although initially neglected largely due to the perceived lack of health, environmental, and economic concerns, members of the genus Ranavirus, and the newly recognized genus Megalocytivirus, are rapidly attracting growing interest due to their involvement in amphibian population declines and their adverse impacts on aquaculture. Herein we describe the molecular and genetic basis of viral replication, pathogenesis, and immunity, and discuss viral ecology with reference to members from each of the invertebrate and vertebrate genera.
Collapse
|
45
|
Abstract
To prolong cell viability and facilitate replication, viruses have evolved multiple mechanisms to inhibit the host apoptotic response. Cellular proteases such as caspases and serine proteases are instrumental in promoting apoptosis. Thus, these enzymes are logical targets for virus-mediated modulation to suppress cell death. Four major classes of viral inhibitors antagonize caspase function: serpins, p35 family members, inhibitor of apoptosis proteins, and viral FLICE-inhibitory proteins. Viruses also subvert activity of the serine proteases, granzyme B and HtrA2/Omi, to avoid cell death. The combined efforts of viruses to suppress apoptosis suggest that this response should be avoided at all costs. However, some viruses utilize caspases during replication to aid virus protein maturation, progeny release, or both. Hence, a multifaceted relationship exists between viruses and the apoptotic response they induce. Examination of these interactions contributes to our understanding of both virus pathogenesis and the regulation of apoptotic enzymes in normal cellular functions.
Collapse
Affiliation(s)
- Sonja M Best
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA.
| |
Collapse
|
46
|
Pridgeon JW, Zhao L, Becnel JJ, Clark GG, Linthicum KJ. Developmental and environmental regulation of AaeIAP1 transcript in Aedes aegypti. JOURNAL OF MEDICAL ENTOMOLOGY 2008; 45:1071-1079. [PMID: 19058631 DOI: 10.1603/0022-2585(2008)45[1071:daeroa]2.0.co;2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Apoptosis (programmed cell death) is a tightly regulated physiological process. The inhibitors of apoptosis proteins (IAPs) are key regulators for apoptosis. An inhibitor of apoptosis protein gene IAP1 was recently cloned from Aedes aegypti (L.) (AaeIAP1, GenBank accession no. DQ993355); however, it is not clear whether AaeIAP1 is developmentally and environmentally regulated. In this study, we applied quantitative polymerase chain reaction (PCR) to investigate the expression levels of the AaeIAPI transcript in different developmental stages and under different environmental conditions. Our results revealed that the expression of the AaeIAP1 transcript was detectable in all life stages ofAe. aegypti, with significantly higher levels in pupal and adult stages than in larval stages. Furthermore, when Ae. aegypti was exposed to all stressful environmental conditions (e.g., low and high temperatures, UV radiation, acetone, and permethrin insecticide treatment), the expression level of AaeIAP1 transcript was increased significantly. Our results suggest that AaeIAP1 might play an important role in both the physiological development ofAe. aegypti and stress-induced apoptosis.
Collapse
Affiliation(s)
- Julia W Pridgeon
- Center for Medical, Agricultural, and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL 32608, USA.
| | | | | | | | | |
Collapse
|
47
|
Wang Q, Luo Y, Xie J, Dong C, Weng S, Ai H, Lü L, Yang X, Yu X, He J. Identification of two novel membrane proteins from the Tiger frog virus (TFV). Virus Res 2008; 136:35-42. [PMID: 18538433 DOI: 10.1016/j.virusres.2008.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 04/13/2008] [Accepted: 04/14/2008] [Indexed: 10/22/2022]
Abstract
The Tiger frog virus (TFV) belongs to the genus Ranavirus in the family Iridoviridae, and its genome was completely sequenced in 2002. In order to better understand the viral structure and functional genes involved in infection and virus-host interactions, two candidate genes, ORF001L and ORF020R, were selected for our study. ORF001L and ORF020R were analyzed by genomic comparison and by using the TMHMM software. Both genes were conserved in the genus Ranavirus, may encode putative membrane proteins, and were determined as late genes by temporal analysis. In order to identify whether these two proteins were structural proteins or not, ORF001L and ORF020R were cloned and expressed in the pET32a (+) vector. Antisera against the two proteins were prepared by immunization of mice with purified proteins. Western blot analysis suggested that both ORF001L and ORF020R were structural proteins. Indirect immunofluorescence assay (IFA) revealed that the subcellular location of the two proteins was confined to the cytoplasm, especially at the viral assembly site (AS). Immunogold electron microscopy (IEM) further localized these two proteins, showing that they were envelope proteins.
Collapse
Affiliation(s)
- Qing Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
İnce İA, Westenberg M, Vlak JM, Demirbağ Z, Nalçacıoğlu R, van Oers MM. Open reading frame 193R of Chilo iridescent virus encodes a functional inhibitor of apoptosis (IAP). Virology 2008; 376:124-31. [DOI: 10.1016/j.virol.2008.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 02/08/2008] [Accepted: 03/11/2008] [Indexed: 11/28/2022]
|
49
|
Hossain M, Song JY, Kitamura SI, Jung SJ, Oh MJ. Phylogenetic analysis of lymphocystis disease virus from tropical ornamental fish species based on a major capsid protein gene. JOURNAL OF FISH DISEASES 2008; 31:473-479. [PMID: 18471104 DOI: 10.1111/j.1365-2761.2008.00917.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- M Hossain
- Department of Aqualife medicine, Chonnam National University (CNU), Chonnam, Korea
| | | | | | | | | |
Collapse
|
50
|
Pridgeon JW, Zhao L, Becnel JJ, Strickman DA, Clark GG, Linthicum KJ. Topically applied AaeIAP1 double-stranded RNA kills female adults of Aedes aegypti. JOURNAL OF MEDICAL ENTOMOLOGY 2008; 45:414-420. [PMID: 18533434 DOI: 10.1603/0022-2585(2008)45[414:taadrk]2.0.co;2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Aedes aegypti (L.) (Diptera: Culicidae) is the primary vector of both dengue and yellow fever. Use of insecticides is one of the primary ways to control this medically important insect pest. However, few new insecticides have been developed for mosquito control in recent years. As a part of our effort to develop new insecticides to control mosquitoes, an inhibitor of apoptosis protein 1 gene in Aedes aegypti (AaeIAP1) was targeted for the development of molecular pesticides. Herein, for the first time, we report that topically applied AaeIAP1 double-stranded RNA products are able to kill female adults of Ae. aegypti. Our results indicate that critical pathways or genes could be targeted to develop molecular pesticides for the control of medically important diseases vectors.
Collapse
Affiliation(s)
- Julia W Pridgeon
- Center for Medical, Agricultural, and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL 32608, USA.
| | | | | | | | | | | |
Collapse
|