1
|
Heinz JL, Swagemakers SMA, von Hofsten J, Helleberg M, Thomsen MM, De Keukeleere K, de Boer JH, Ilginis T, Verjans GMGM, van Hagen PM, van der Spek PJ, Mogensen TH. Whole exome sequencing of patients with varicella-zoster virus and herpes simplex virus induced acute retinal necrosis reveals rare disease-associated genetic variants. Front Mol Neurosci 2023; 16:1253040. [PMID: 38025266 PMCID: PMC10630912 DOI: 10.3389/fnmol.2023.1253040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Herpes simplex virus (HSV) and varicella-zoster virus (VZV) are neurotropic human alphaherpesviruses endemic worldwide. Upon primary infection, both viruses establish lifelong latency in neurons and reactivate intermittently to cause a variety of mild to severe diseases. Acute retinal necrosis (ARN) is a rare, sight-threatening eye disease induced by ocular VZV or HSV infection. The virus and host factors involved in ARN pathogenesis remain incompletely described. We hypothesize an underlying genetic defect in at least part of ARN cases. Methods We collected blood from 17 patients with HSV-or VZV-induced ARN, isolated DNA and performed Whole Exome Sequencing by Illumina followed by analysis in Varseq with criteria of CADD score > 15 and frequency in GnomAD < 0.1% combined with biological filters. Gene modifications relative to healthy control genomes were filtered according to high quality and read-depth, low frequency, high deleteriousness predictions and biological relevance. Results We identified a total of 50 potentially disease-causing genetic variants, including missense, frameshift and splice site variants and on in-frame deletion in 16 of the 17 patients. The vast majority of these genes are involved in innate immunity, followed by adaptive immunity, autophagy, and apoptosis; in several instances variants within a given gene or pathway was identified in several patients. Discussion We propose that the identified variants may contribute to insufficient viral control and increased necrosis ocular disease presentation in the patients and serve as a knowledge base and starting point for the development of improved diagnostic, prophylactic, and therapeutic applications.
Collapse
Affiliation(s)
- Johanna L. Heinz
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Sigrid M. A. Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Joanna von Hofsten
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Ophthalmology, Halland Hospital Halmstad, Halmstad, Sweden
| | - Marie Helleberg
- Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michelle M. Thomsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Kerstin De Keukeleere
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Joke H. de Boer
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Tomas Ilginis
- Department of Ophthalmology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Georges M. G. M. Verjans
- HerpeslabNL, Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Peter M. van Hagen
- Department of Internal Medicine and Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Peter J. van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Trine H. Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
2
|
Van Breedam E, Buyle-Huybrecht T, Govaerts J, Meysman P, Bours A, Boeren M, Di Stefano J, Caers T, De Reu H, Dirkx L, Schippers J, Bartholomeus E, Lebrun M, Sadzot-Delvaux C, Rybakowska P, Alarcón-Riquelme ME, Marañón C, Laukens K, Delputte P, Ogunjimi B, Ponsaerts P. Lack of strong innate immune reactivity renders macrophages alone unable to control productive Varicella-Zoster Virus infection in an isogenic human iPSC-derived neuronal co-culture model. Front Immunol 2023; 14:1177245. [PMID: 37287975 PMCID: PMC10241998 DOI: 10.3389/fimmu.2023.1177245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023] Open
Abstract
With Varicella-Zoster Virus (VZV) being an exclusive human pathogen, human induced pluripotent stem cell (hiPSC)-derived neural cell culture models are an emerging tool to investigate VZV neuro-immune interactions. Using a compartmentalized hiPSC-derived neuronal model allowing axonal VZV infection, we previously demonstrated that paracrine interferon (IFN)-α2 signalling is required to activate a broad spectrum of interferon-stimulated genes able to counteract a productive VZV infection in hiPSC-neurons. In this new study, we now investigated whether innate immune signalling by VZV-challenged macrophages was able to orchestrate an antiviral immune response in VZV-infected hiPSC-neurons. In order to establish an isogenic hiPSC-neuron/hiPSC-macrophage co-culture model, hiPSC-macrophages were generated and characterised for phenotype, gene expression, cytokine production and phagocytic capacity. Even though immunological competence of hiPSC-macrophages was shown following stimulation with the poly(dA:dT) or treatment with IFN-α2, hiPSC-macrophages in co-culture with VZV-infected hiPSC-neurons were unable to mount an antiviral immune response capable of suppressing a productive neuronal VZV infection. Subsequently, a comprehensive RNA-Seq analysis confirmed the lack of strong immune responsiveness by hiPSC-neurons and hiPSC-macrophages upon, respectively, VZV infection or challenge. This may suggest the need of other cell types, like T-cells or other innate immune cells, to (co-)orchestrate an efficient antiviral immune response against VZV-infected neurons.
Collapse
Affiliation(s)
- Elise Van Breedam
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Tamariche Buyle-Huybrecht
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Jonas Govaerts
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Pieter Meysman
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Network Antwerp (Biomina), University of Antwerp, Antwerp, Belgium
| | - Andrea Bours
- Biomedical Informatics Research Network Antwerp (Biomina), University of Antwerp, Antwerp, Belgium
| | - Marlies Boeren
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Julia Di Stefano
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Thalissa Caers
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Hans De Reu
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Flow Cytometry and Cell Sorting Core Facility (FACSUA), Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Laura Dirkx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Jolien Schippers
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Esther Bartholomeus
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Marielle Lebrun
- Laboratory of Virology and Immunology, Interdisciplinary Research Institute in the Biomedical Sciences GIGA-Infection, Inflammation and Immunity, University of Liège, Liège, Belgium
| | - Catherine Sadzot-Delvaux
- Laboratory of Virology and Immunology, Interdisciplinary Research Institute in the Biomedical Sciences GIGA-Infection, Inflammation and Immunity, University of Liège, Liège, Belgium
| | - Paulina Rybakowska
- Department of Genomic Medicine, Centre for Genomics and Oncological Research (GENYO), Pfizer-University of Granada-Junta de Andalucía, Parque Tecnológico de la Salud (PTS), Granada, Spain
| | - Marta E. Alarcón-Riquelme
- Department of Genomic Medicine, Centre for Genomics and Oncological Research (GENYO), Pfizer-University of Granada-Junta de Andalucía, Parque Tecnológico de la Salud (PTS), Granada, Spain
| | - Concepción Marañón
- Department of Genomic Medicine, Centre for Genomics and Oncological Research (GENYO), Pfizer-University of Granada-Junta de Andalucía, Parque Tecnológico de la Salud (PTS), Granada, Spain
| | - Kris Laukens
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Network Antwerp (Biomina), University of Antwerp, Antwerp, Belgium
| | - Peter Delputte
- Biomedical Informatics Research Network Antwerp (Biomina), University of Antwerp, Antwerp, Belgium
- Infla-Med, University of Antwerp, Antwerp, Belgium
| | - Benson Ogunjimi
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Centre for Health Economics Research & Modelling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Department of Paediatrics, Antwerp University Hospital, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Flow Cytometry and Cell Sorting Core Facility (FACSUA), Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
3
|
Goldstein RS, Kinchington PR. Varicella Zoster Virus Neuronal Latency and Reactivation Modeled in Vitro. Curr Top Microbiol Immunol 2021; 438:103-134. [PMID: 34904194 DOI: 10.1007/82_2021_244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Latency and reactivation in neurons are critical aspects of VZV pathogenesis that have historically been difficult to investigate. Viral genomes are retained in many human ganglia after the primary infection, varicella; and about one-third of the naturally infected VZV seropositive population reactivates latent virus, which most often clinically manifests as herpes zoster (HZ or Shingles). HZ is frequently complicated by acute and chronic debilitating pain for which there remains a need for more effective treatment options. Understanding of the latent state is likely to be essential in the design of strategies to reduce reactivation. Experimentally addressing VZV latency has been difficult because of the strict human species specificity of VZV and the fact that until recently, experimental reactivation had not been achieved. We do not yet know the neuron subtypes that harbor latent genomes, whether all can potentially reactivate, what the drivers of VZV reactivation are, and how immunity interplays with the latent state to control reactivation. However, recent advances have enabled a picture of VZV latency to start to emerge. The first is the ability to detect the latent viral genome and its expression in human ganglionic tissues with extraordinary sensitivity. The second, the subject of this chapter, is the development of in vitro human neuron systems permitting the modeling of latent states that can be experimentally reactivated. This review will summarize recent advances of in vitro models of neuronal VZV latency and reactivation, the limitations of the current systems, and discuss outstanding questions and future directions regarding these processes using these and yet to be developed models. Results obtained from the in vitro models to date will also be discussed in light of the recent data gleaned from studies of VZV latency and gene expression learned from human cadaver ganglia, especially the discovery of VZV latency transcripts that seem to parallel the long-studied latency-associated transcripts of other neurotropic alphaherpesviruses.
Collapse
Affiliation(s)
| | - Paul R Kinchington
- Department of Ophthalmology, and Department of Molecular Microbiology and Genetics, University of Pittsburgh, EEI 1020, 203 Lothrop Street, Pittsburgh, PA, 156213, USA.
| |
Collapse
|
4
|
Depledge DP, Breuer J. Varicella-Zoster Virus-Genetics, Molecular Evolution and Recombination. Curr Top Microbiol Immunol 2021; 438:1-23. [PMID: 34374828 DOI: 10.1007/82_2021_238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This chapter first details the structure, organization and coding content of the VZV genome to provide a foundation on which the molecular evolution of the virus can be projected. We subsequently describe the evolution of molecular profiling approaches from restriction fragment length polymorphisms to single nucleotide polymorphism profiling to modern day high-throughput sequencing approaches. We describe how the application of these methodologies led to our current model of VZV phylogeograpy including the number and structure of geographic clades and the role of recombination in reshaping these.
Collapse
Affiliation(s)
- Daniel P Depledge
- Institute of Virology, Hannover Medical School (MHH), Hannover, Germany. .,Department of Microbiology, NYU School of Medicine, New York, USA.
| | - Judith Breuer
- Department of Infection & Immunology, University College London, London, UK
| |
Collapse
|
5
|
Modulation of Apoptosis and Cell Death Pathways by Varicella-Zoster Virus. Curr Top Microbiol Immunol 2021; 438:59-73. [DOI: 10.1007/82_2021_249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Gerada C, Campbell TM, Kennedy JJ, McSharry BP, Steain M, Slobedman B, Abendroth A. Manipulation of the Innate Immune Response by Varicella Zoster Virus. Front Immunol 2020; 11:1. [PMID: 32038653 PMCID: PMC6992605 DOI: 10.3389/fimmu.2020.00001] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022] Open
Abstract
Varicella zoster virus (VZV) is the causative agent of chickenpox (varicella) and shingles (herpes zoster). VZV and other members of the herpesvirus family are distinguished by their ability to establish a latent infection, with the potential to reactivate and spread virus to other susceptible individuals. This lifelong relationship continually subjects VZV to the host immune system and as such VZV has evolved a plethora of strategies to evade and manipulate the immune response. This review will focus on our current understanding of the innate anti-viral control mechanisms faced by VZV. We will also discuss the diverse array of strategies employed by VZV to regulate these innate immune responses and highlight new knowledge on the interactions between VZV and human innate immune cells.
Collapse
Affiliation(s)
- Chelsea Gerada
- Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Tessa M Campbell
- Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Jarrod J Kennedy
- Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Brian P McSharry
- Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Megan Steain
- Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Barry Slobedman
- Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Allison Abendroth
- Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Depledge DP, Sadaoka T, Ouwendijk WJD. Molecular Aspects of Varicella-Zoster Virus Latency. Viruses 2018; 10:v10070349. [PMID: 29958408 PMCID: PMC6070824 DOI: 10.3390/v10070349] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/19/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
Abstract
Primary varicella-zoster virus (VZV) infection causes varicella (chickenpox) and the establishment of a lifelong latent infection in ganglionic neurons. VZV reactivates in about one-third of infected individuals to cause herpes zoster, often accompanied by neurological complications. The restricted host range of VZV and, until recently, a lack of suitable in vitro models have seriously hampered molecular studies of VZV latency. Nevertheless, recent technological advances facilitated a series of exciting studies that resulted in the discovery of a VZV latency-associated transcript (VLT) and provide novel insights into our understanding of VZV latency and factors that may initiate reactivation. Deducing the function(s) of VLT and the molecular mechanisms involved should now be considered a priority to improve our understanding of factors that govern VZV latency and reactivation. In this review, we summarize the implications of recent discoveries in the VZV latency field from both a virus and host perspective and provide a roadmap for future studies.
Collapse
Affiliation(s)
- Daniel P Depledge
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | - Tomohiko Sadaoka
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Werner J D Ouwendijk
- Department of Viroscience, Erasmus Medical Centre, 3015 CN Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Oliveira T, Costa I, Marinho V, Carvalho V, Uchôa K, Ayres C, Teixeira S, Vasconcelos DFP. Human foreskin fibroblasts: from waste bag to important biomedical applications. JOURNAL OF CLINICAL UROLOGY 2018. [DOI: 10.1177/2051415818761526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Circumcision is one of the most performed surgical procedures worldwide, and it is estimated that one in three men worldwide is circumcised, which makes the preputial skin removed after surgery an abundant material for possible applications. In particular, it is possible efficiently to isolate the cells of the foreskin, with fibroblasts being the most abundant cells of the dermis and the most used in biomedical research. This work aimed to review the knowledge and obtain a broad view of the main applications of human foreskin fibroblast cell culture. A literature search was conducted, including clinical trials, preclinical basic research studies, reviews and experimental studies. Several medical and laboratory applications of human foreskin fibroblast cell culture have been described, especially when it comes to the use of human foreskin fibroblasts as feeder cells for the cultivation of human embryonic stem cells, in addition to co-culture with other cell types. The culture of foreskin fibroblasts has also been used to: obtain induced pluripotent stem cells; the diagnosis of Clostridium difficile; to test the toxicity and effect of substances on normal cells, especially the toxicity of possible antineoplastic drugs; in viral culture, mainly of the human cytomegalovirus, study of the pathogenesis of other microorganisms; varied studies of cellular physiology and cellular interactions. Fibroblasts are important for cell models for varied application cultures, demonstrating how the preputial material can be reused, making possible new applications. Level of evidence: Not applicable for this multicentre audit.
Collapse
Affiliation(s)
- Thomaz Oliveira
- Genetics and Molecular Biology Laboratory, Federal University of Piauí (UFPI), Brazil
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI), Brazil
- Biomedical Sciences, Federal University of Piauí (UFPI), Brazil
| | - Ilana Costa
- Biomedical Sciences, Federal University of Piauí (UFPI), Brazil
| | - Victor Marinho
- Genetics and Molecular Biology Laboratory, Federal University of Piauí (UFPI), Brazil
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI), Brazil
- Biomedical Sciences, Federal University of Piauí (UFPI), Brazil
| | - Valécia Carvalho
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI), Brazil
- Biomedical Sciences, Federal University of Piauí (UFPI), Brazil
| | - Karla Uchôa
- Genetics and Molecular Biology Laboratory, Federal University of Piauí (UFPI), Brazil
- Biomedical Sciences, Federal University of Piauí (UFPI), Brazil
| | - Carla Ayres
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI), Brazil
| | - Silmar Teixeira
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI), Brazil
| | | |
Collapse
|
9
|
Varicella-Zoster Virus Expresses Multiple Small Noncoding RNAs. J Virol 2017; 91:JVI.01710-17. [PMID: 29021397 DOI: 10.1128/jvi.01710-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022] Open
Abstract
Many herpesviruses express small noncoding RNAs (sncRNAs), including microRNAs (miRNAs), that may play roles in regulating lytic and latent infections. None have yet been reported in varicella-zoster virus (VZV; also known as human herpesvirus 3 [HHV-3]). Here we analyzed next-generation sequencing (NGS) data for small RNAs in VZV-infected fibroblasts and human embryonic stem cell-derived (hESC) neurons. Two independent bioinformatics analyses identified more than 20 VZV-encoded 20- to 24-nucleotide RNAs, some of which are predicted to have stem-loop precursors potentially representing miRNAs. These sequences are perfectly conserved between viruses from three clades of VZV. One NGS-identified sequence common to both bioinformatics analyses mapped to the repeat regions of the VZV genome, upstream of the predicted promoter of the immediate early gene open reading frame 63 (ORF63). This miRNA candidate was detected in each of 3 independent biological repetitions of NGS of RNA from fibroblasts and neurons productively infected with VZV using TaqMan quantitative PCR (qPCR). Importantly, transfected synthetic RNA oligonucleotides antagonistic to the miRNA candidate significantly enhanced VZV plaque growth rates. The presence of 6 additional small noncoding RNAs was also verified by TaqMan qPCR in productively infected fibroblasts and ARPE19 cells. Our results show VZV, like other human herpesviruses, encodes several sncRNAs and miRNAs, and some may regulate infection of host cells.IMPORTANCE Varicella-zoster virus is an important human pathogen, with herpes zoster being a major health issue in the aging and immunocompromised populations. Small noncoding RNAs (sncRNAs) are recognized as important actors in modulating gene expression, and this study demonstrates the first reported VZV-encoded sncRNAs. Many are clustered to a small genomic region, as seen in other human herpesviruses. At least one VZV sncRNA was expressed in productive infection of neurons and fibroblasts that is likely to reduce viral replication. Since sncRNAs have been suggested to be potential targets for antiviral therapies, identification of these molecules in VZV may provide a new direction for development of treatments for painful herpes zoster.
Collapse
|
10
|
Targeted Genome Sequencing Reveals Varicella-Zoster Virus Open Reading Frame 12 Deletion. J Virol 2017; 91:JVI.01141-17. [PMID: 28747504 DOI: 10.1128/jvi.01141-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/21/2017] [Indexed: 12/19/2022] Open
Abstract
The neurotropic herpesvirus varicella-zoster virus (VZV) establishes a lifelong latent infection in humans following primary infection. The low abundance of VZV nucleic acids in human neurons has hindered an understanding of the mechanisms that regulate viral gene transcription during latency. To overcome this critical barrier, we optimized a targeted capture protocol to enrich VZV DNA and cDNA prior to whole-genome/transcriptome sequence analysis. Since the VZV genome is remarkably stable, it was surprising to detect that VZV32, a VZV laboratory strain with no discernible growth defect in tissue culture, contained a 2,158-bp deletion in open reading frame (ORF) 12. Consequently, ORF 12 and 13 protein expression was abolished and Akt phosphorylation was inhibited. The discovery of the ORF 12 deletion, revealed through targeted genome sequencing analysis, points to the need to authenticate the VZV genome when the virus is propagated in tissue culture.IMPORTANCE Viruses isolated from clinical samples often undergo genetic modifications when cultured in the laboratory. Historically, VZV is among the most genetically stable herpesviruses, a notion supported by more than 60 complete genome sequences from multiple isolates and following multiple in vitro passages. However, application of enrichment protocols to targeted genome sequencing revealed the unexpected deletion of a significant portion of VZV ORF 12 following propagation in cultured human fibroblast cells. While the enrichment protocol did not introduce bias in either the virus genome or transcriptome, the findings indicate the need for authentication of VZV by sequencing when the virus is propagated in tissue culture.
Collapse
|
11
|
Abstract
Mechanisms of neuronal infection by varicella-zoster virus (VZV) have been challenging to study due to the relatively strict human tropism of the virus and the paucity of tractable experimental models. Cellular mitogen-activated protein kinases (MAPKs) have been shown to play a role in VZV infection of nonneuronal cells, with distinct consequences for infectivity in different cell types. Here, we utilize several human neuronal culture systems to investigate the role of one such MAPK, the c-Jun N-terminal kinase (JNK), in VZV lytic infection and reactivation. We find that the JNK pathway is specifically activated following infection of human embryonic stem cell-derived neurons and that this activation of JNK is essential for efficient viral protein expression and replication. Inhibition of the JNK pathway blocked viral replication in a manner distinct from that of acyclovir, and an acyclovir-resistant VZV isolate was as sensitive to the effects of JNK inhibition as an acyclovir-sensitive VZV isolate in neurons. Moreover, in a microfluidic-based human neuronal model of viral latency and reactivation, we found that inhibition of the JNK pathway resulted in a marked reduction in reactivation of VZV. Finally, we utilized a novel technique to efficiently generate cells expressing markers of human sensory neurons from neural crest cells and established a critical role for the JNK pathway in infection of these cells. In summary, the JNK pathway plays an important role in lytic infection and reactivation of VZV in physiologically relevant cell types and may provide an alternative target for antiviral therapy.IMPORTANCE Varicella-zoster virus (VZV) has infected over 90% of people worldwide. While primary infection leads to the typically self-limiting condition of chickenpox, the virus can remain dormant in the nervous system and may reactivate later in life, leading to shingles or inflammatory diseases of the nervous system and eye with potentially severe consequences. Here, we take advantage of newer stem cell-based technologies to study the mechanisms by which VZV infects human neurons. We find that the c-Jun N-terminal kinase (JNK) pathway is activated by VZV infection and that blockade of this pathway limits lytic replication (as occurs during primary infection). In addition, JNK inhibition limits viral reactivation, exhibiting parallels with herpes simplex virus reactivation. The identification of the role of the JNK pathway in VZV infection of neurons reveals potential avenues for the development of alternate antiviral drugs.
Collapse
|
12
|
Zwezdaryk KJ, Combs JA, Morris CA, Sullivan DE. Regulation of Wnt/β-catenin signaling by herpesviruses. World J Virol 2016; 5:144-154. [PMID: 27878101 PMCID: PMC5105047 DOI: 10.5501/wjv.v5.i4.144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/19/2016] [Accepted: 08/06/2016] [Indexed: 02/05/2023] Open
Abstract
The Wnt/β-catenin signaling pathway is instrumental in successful differentiation and proliferation of mammalian cells. It is therefore not surprising that the herpesvirus family has developed mechanisms to interact with and manipulate this pathway. Successful coexistence with the host requires that herpesviruses establish a lifelong infection that includes periods of latency and reactivation or persistence. Many herpesviruses establish latency in progenitor cells and viral reactivation is linked to host-cell proliferation and differentiation status. Importantly, Wnt/β-catenin is tightly connected to stem/progenitor cell maintenance and differentiation. Numerous studies have linked Wnt/β-catenin signaling to a variety of cancers, emphasizing the importance of Wnt/β-catenin pathways in development, tissue homeostasis and disease. This review details how the alpha-, beta-, and gammaherpesviruses interact and manipulate the Wnt/β-catenin pathway to promote a virus-centric agenda.
Collapse
|
13
|
Sadaoka T, Depledge DP, Rajbhandari L, Venkatesan A, Breuer J, Cohen JI. In vitro system using human neurons demonstrates that varicella-zoster vaccine virus is impaired for reactivation, but not latency. Proc Natl Acad Sci U S A 2016; 113:E2403-12. [PMID: 27078099 PMCID: PMC4855584 DOI: 10.1073/pnas.1522575113] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Varicella-zoster virus (VZV) establishes latency in human sensory and cranial nerve ganglia during primary infection (varicella), and the virus can reactivate and cause zoster after primary infection. The mechanism of how the virus establishes and maintains latency and how it reactivates is poorly understood, largely due to the lack of robust models. We found that axonal infection of neurons derived from hESCs in a microfluidic device with cell-free parental Oka (POka) VZV resulted in latent infection with inability to detect several viral mRNAs by reverse transcriptase-quantitative PCR, no production of infectious virus, and maintenance of the viral DNA genome in endless configuration, consistent with an episome configuration. With deep sequencing, however, multiple viral mRNAs were detected. Treatment of the latently infected neurons with Ab to NGF resulted in production of infectious virus in about 25% of the latently infected cultures. Axonal infection of neurons with vaccine Oka (VOka) VZV resulted in a latent infection similar to infection with POka; however, in contrast to POka, VOka-infected neurons were markedly impaired for reactivation after treatment with Ab to NGF. In addition, viral transcription was markedly reduced in neurons latently infected with VOka compared with POka. Our in vitro system recapitulates both VZV latency and reactivation in vivo and may be used to study viral vaccines for their ability to establish latency and reactivate.
Collapse
Affiliation(s)
- Tomohiko Sadaoka
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Daniel P Depledge
- Division of Infection and Immunity, MRC Centre for Medical Molecular Virology, University College London, London WC1E 6BT, United Kingdom
| | - Labchan Rajbhandari
- Division of Neuroimmunology and Neuroinfectious Diseases, Department of Neurology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD 21287
| | - Arun Venkatesan
- Division of Neuroimmunology and Neuroinfectious Diseases, Department of Neurology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD 21287
| | - Judith Breuer
- Division of Infection and Immunity, MRC Centre for Medical Molecular Virology, University College London, London WC1E 6BT, United Kingdom
| | - Jeffrey I Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
14
|
Kennedy PGE, Rovnak J, Badani H, Cohrs RJ. A comparison of herpes simplex virus type 1 and varicella-zoster virus latency and reactivation. J Gen Virol 2015; 96:1581-602. [PMID: 25794504 DOI: 10.1099/vir.0.000128] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1; human herpesvirus 1) and varicella-zoster virus (VZV; human herpesvirus 3) are human neurotropic alphaherpesviruses that cause lifelong infections in ganglia. Following primary infection and establishment of latency, HSV-1 reactivation typically results in herpes labialis (cold sores), but can occur frequently elsewhere on the body at the site of primary infection (e.g. whitlow), particularly at the genitals. Rarely, HSV-1 reactivation can cause encephalitis; however, a third of the cases of HSV-1 encephalitis are associated with HSV-1 primary infection. Primary VZV infection causes varicella (chickenpox) following which latent virus may reactivate decades later to produce herpes zoster (shingles), as well as an increasingly recognized number of subacute, acute and chronic neurological conditions. Following primary infection, both viruses establish a latent infection in neuronal cells in human peripheral ganglia. However, the detailed mechanisms of viral latency and reactivation have yet to be unravelled. In both cases latent viral DNA exists in an 'end-less' state where the ends of the virus genome are joined to form structures consistent with unit length episomes and concatemers, from which viral gene transcription is restricted. In latently infected ganglia, the most abundantly detected HSV-1 RNAs are the spliced products originating from the primary latency associated transcript (LAT). This primary LAT is an 8.3 kb unstable transcript from which two stable (1.5 and 2.0 kb) introns are spliced. Transcripts mapping to 12 VZV genes have been detected in human ganglia removed at autopsy; however, it is difficult to ascribe these as transcripts present during latent infection as early-stage virus reactivation may have transpired in the post-mortem time period in the ganglia. Nonetheless, low-level transcription of VZV ORF63 has been repeatedly detected in multiple ganglia removed as close to death as possible. There is increasing evidence that HSV-1 and VZV latency is epigenetically regulated. In vitro models that permit pathway analysis and identification of both epigenetic modulations and global transcriptional mechanisms of HSV-1 and VZV latency hold much promise for our future understanding in this complex area. This review summarizes the molecular biology of HSV-1 and VZV latency and reactivation, and also presents future directions for study.
Collapse
Affiliation(s)
- Peter G E Kennedy
- 1Institute of Infection, Immunity and Inflammation, University of Glasgow, Garscube Campus, Glasgow G61 1QH, UK
| | - Joel Rovnak
- 2Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80521, USA
| | - Hussain Badani
- 3Department of Neurology, University of Colorado Medical School, Aurora, CO 80045, USA
| | - Randall J Cohrs
- 3Department of Neurology, University of Colorado Medical School, Aurora, CO 80045, USA 4Department of Microbiology, University of Colorado Medical School, Aurora, CO 80045, USA
| |
Collapse
|