1
|
Schimmich C, Vabret A, Zientara S, Valle-Casuso JC. Equine Infectious Anemia Virus Cellular Partners Along the Viral Cycle. Viruses 2024; 17:5. [PMID: 39861793 PMCID: PMC11769393 DOI: 10.3390/v17010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/21/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025] Open
Abstract
Equine infectious anemia virus (EIAV) is the simplest described lentivirus within the Retroviridae family, related to the human immunodeficiency viruses (HIV-1 and HIV-2). There is an important interplay between host cells and viruses. Viruses need to hijack cellular proteins for their viral cycle completion and some cellular proteins are antiviral agents interfering with viral replication. HIV cellular partners have been extensively studied and described, with a special attention to host proteins able to inhibit specific steps of the viral cycle, called restriction factors. Viruses develop countermeasures against these restriction factors. Here, we aim to describe host cellular protein partners of EIAV viral replication, being proviral or antiviral. A comprehensive vision of the interactions between the virus and specific host's proteins can help with the discovery of new targets for the design of therapeutics. Studies performed on HIV-1 can provide insights into the functioning of EIAV, as well as differences, as both types of virus research can benefit from each other.
Collapse
Affiliation(s)
- Cécile Schimmich
- ANSES Animal Health Laboratory, PhEED Unit, 14430 Goustranville, France;
| | - Astrid Vabret
- Department of Virology, University of Caen Normandy, Dynamicure INSERM UMR 1311, Centre Hospitalo Universitaire (CHU) Caen, 14000 Caen, France;
| | - Stéphan Zientara
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France;
| | - José Carlos Valle-Casuso
- ANSES Animal Health Laboratory, PhEED Unit, 14430 Goustranville, France;
- Mixed Technological Unit “Equine Health and Welfare—Organisation and Traceability of the Equine Industry” (UMT SABOT), 14430 Goustranville, France
| |
Collapse
|
2
|
Fan J, Zhang J, Wang F, Miao F, Zhang H, Jiang Y, Qi Y, Zhang Y, Hui L, Zhang D, Yue H, Zhou X, Li Q, Wang Y, Chen T, Hu R. Identification of L11L and L7L as virulence-related genes in the African swine fever virus genome. Front Microbiol 2024; 15:1345236. [PMID: 38328426 PMCID: PMC10848158 DOI: 10.3389/fmicb.2024.1345236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Introduction African swine fever (ASF) is an infectious disease that causes considerable economic losses in pig farming. The agent of this disease, African swine fever virus (ASFV), is a double-stranded DNA virus with a capsid membrane and a genome that is 170-194 kb in length encoding over 150 proteins. In recent years, several live attenuated strains of ASFV have been studied as vaccine candidates, including the SY18ΔL7-11. This strain features deletion of L7L, L8L, L9R, L10L and L11L genes and was found to exhibit significantly reduced pathogenicity in pigs, suggesting that these five genes play key roles in virulence. Methods Here, we constructed and evaluated the virulence of ASFV mutations with SY18ΔL7, SY18ΔL8, SY18ΔL9, SY18ΔL10, and SY18ΔL11L. Results Our findings did not reveal any significant differences in replication efficiency between the single-gene deletion strains and the parental strains. Pigs inoculated with SY18ΔL8L, SY18ΔL9R and SY18ΔL10L exhibited clinical signs similar to those inoculated with the parental strains. Survival rate of pigs inoculated with 103.0TCID50 of SY18ΔL7L was 25%, while all pigs inoculated with 103.0TCID50 of SY18ΔL11L survived, and 50% inoculated with 106.0TCID50 SY18ΔL11L survived. Discussion The results indicate that L8L, L9R and L10L do not affect ASFV SY18 virulence, while the L7L and L11L are associated with virulence.
Collapse
Affiliation(s)
- Jiaqi Fan
- College of Life Sciences, Ningxia University, Yinchuan, Ningxia, China
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Jingyuan Zhang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Fengjie Wang
- College of Life Sciences, Ningxia University, Yinchuan, Ningxia, China
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Faming Miao
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Han Zhang
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Yiqian Jiang
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Yu Qi
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Yanyan Zhang
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Lili Hui
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Dan Zhang
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Huixian Yue
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Xintao Zhou
- College of Life Sciences, Ningxia University, Yinchuan, Ningxia, China
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Qixuan Li
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Yu Wang
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Teng Chen
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Rongliang Hu
- College of Life Sciences, Ningxia University, Yinchuan, Ningxia, China
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| |
Collapse
|
3
|
Wang XF, Zhang X, Ma W, Li J, Wang X. Host cell restriction factors of equine infectious anemia virus. Virol Sin 2023; 38:485-496. [PMID: 37419416 PMCID: PMC10436108 DOI: 10.1016/j.virs.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023] Open
Abstract
Equine infectious anemia virus (EIAV) is a member of the lentivirus genus in the Retroviridae family and is considered an animal model for HIV/AIDS research. An attenuated EIAV vaccine, which was successfully developed in the 1970s by classical serial passage techniques, is the first and only lentivirus vaccine that has been widely used to date. Restriction factors are cellular proteins that provide an early line of defense against viral replication and spread by interfering with various critical steps in the viral replication cycle. However, viruses have evolved specific mechanisms to overcome these host barriers through adaptation. The battle between the viruses and restriction factors is actually a natural part of the viral replication process, which has been well studied in human immunodeficiency virus type 1 (HIV-1). EIAV has the simplest genome composition of all lentiviruses, making it an intriguing subject for understanding how the virus employs its limited viral proteins to overcome restriction factors. In this review, we summarize the current literature on the interactions between equine restriction factors and EIAV. The features of equine restriction factors and the mechanisms by which the EIAV counteract the restriction suggest that lentiviruses employ diverse strategies to counteract innate immune restrictions. In addition, we present our insights on whether restriction factors induce alterations in the phenotype of the attenuated EIAV vaccine.
Collapse
Affiliation(s)
- Xue-Feng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiangmin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Weiwei Ma
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jiwei Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiaojun Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|