1
|
Luo X, Yuan Y, Ma X, Luo X, Chen J, Chen C, Yang X, Yang J, Zhu X, Li M, Liu Y, Zhang P, Liu C. Diacylglycerol O-acyltransferase 2, a Novel Target of Flavivirus NS2B3 Protease, Promotes Zika Virus Replication by Regulating Lipid Droplet Formation. RESEARCH (WASHINGTON, D.C.) 2024; 7:0511. [PMID: 39449854 PMCID: PMC11499588 DOI: 10.34133/research.0511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024]
Abstract
Various lipid metabolism-related factors are essential for Zika virus (ZIKV) replication. In this study, we revealed a crucial role of diacylglycerol O-acyltransferase 2 (DGAT2) in ZIKV replication using a short hairpin RNA-based gene knockdown technique. The replication of ZIKV was significantly inhibited by DGAT2 depletion in multiple cell lines and restored by trans-complementation with DGAT2. Mechanistically, DGAT2 is recruited in the viral replication complex by interacting with non-structural (NS) proteins. Among them, both human and murine DGAT2s can be cleaved by NS2B3 at the 122R-R-S124 site. Interestingly, the cleavage product of DGAT2 becomes more stable and is sufficient to promote the lipid droplet (LD) formation independent of its enzymatic activity. This work identifies DGAT2 as a novel target of the viral protease NS2B3 and elucidates that DGAT2 is recruited by viral proteins into the replication complex, thereby playing a proviral role by promoting LD formation, which advances our understanding of host-flavivirus interaction.
Collapse
Affiliation(s)
- Xiaotong Luo
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
- Department of Immunology and Microbiology,
Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yunxiang Yuan
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
- Department of Immunology and Microbiology,
Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiaocao Ma
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
- Department of Immunology and Microbiology,
Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xin Luo
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
- Department of Immunology and Microbiology,
Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jiannan Chen
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
- Department of Immunology and Microbiology,
Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Cancan Chen
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiaoyi Yang
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
- Department of Immunology and Microbiology,
Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jinna Yang
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
- Department of Immunology and Microbiology,
Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xuanfeng Zhu
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
- Department of Immunology and Microbiology,
Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Meiyu Li
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
- Experimental Teaching Center,
Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yang Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine,
The University of Hong Kong, Hong Kong SAR, China
| | - Ping Zhang
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
- Department of Immunology and Microbiology,
Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chao Liu
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
- Department of Immunology and Microbiology,
Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
2
|
Chen X, Li RT, Chen RY, Shi PD, Liu ZX, Lou YN, Wu M, Zhang RR, Tang W, Li XF, Qin CF. The subgenomic flaviviral RNA suppresses RNA interference through competing with siRNAs for binding RISC components. J Virol 2024; 98:e0195423. [PMID: 38289102 PMCID: PMC10878275 DOI: 10.1128/jvi.01954-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 02/21/2024] Open
Abstract
During the life cycle of mosquito-borne flaviviruses, substantial subgenomic flaviviral RNA (sfRNA) is produced via incomplete degradation of viral genomic RNA by host XRN1. Zika virus (ZIKV) sfRNA has been detected in mosquito and mammalian somatic cells. Human neural progenitor cells (hNPCs) in the developing brain are the major target cells of ZIKV, and antiviral RNA interference (RNAi) plays a critical role in hNPCs. However, whether ZIKV sfRNA was produced in ZIKV-infected hNPCs as well as its function remains not known. In this study, we demonstrate that abundant sfRNA was produced in ZIKV-infected hNPCs. RNA pulldown and mass spectrum assays showed ZIKV sfRNA interacted with host proteins RHA and PACT, both of which are RNA-induced silencing complex (RISC) components. Functionally, ZIKV sfRNA can antagonize RNAi by outcompeting small interfering RNAs (siRNAs) in binding to RHA and PACT. Furthermore, the 3' stem loop (3'SL) of sfRNA was responsible for RISC components binding and RNAi inhibition, and 3'SL can enhance the replication of a viral suppressor of RNAi (VSR)-deficient virus in a RHA- and PACT-dependent manner. More importantly, the ability of binding to RISC components is conversed among multiple flaviviral 3'SLs. Together, our results identified flavivirus 3'SL as a potent VSR in RNA format, highlighting the complexity in virus-host interaction during flavivirus infection.IMPORTANCEZika virus (ZIKV) infection mainly targets human neural progenitor cells (hNPCs) and induces cell death and dysregulated cell-cycle progression, leading to microcephaly and other central nervous system abnormalities. RNA interference (RNAi) plays critical roles during ZIKV infections in hNPCs, and ZIKV has evolved to encode specific viral proteins to antagonize RNAi. Herein, we first show that abundant sfRNA was produced in ZIKV-infected hNPCs in a similar pattern to that in other cells. Importantly, ZIKV sfRNA acts as a potent viral suppressor of RNAi (VSR) by competing with siRNAs for binding RISC components, RHA and PACT. The 3'SL of sfRNA is responsible for binding RISC components, which is a conserved feature among mosquito-borne flaviviruses. As most known VSRs are viral proteins, our findings highlight the importance of viral non-coding RNAs during the antagonism of host RNAi-based antiviral innate immunity.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Rui-Ting Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ru-Yi Chen
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Pan-Deng Shi
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zi-Xin Liu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ya-Nan Lou
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mei Wu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Rong-Rong Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wei Tang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiao-Feng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
RNA Helicase A Regulates the Replication of RNA Viruses. Viruses 2021; 13:v13030361. [PMID: 33668948 PMCID: PMC7996507 DOI: 10.3390/v13030361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/20/2023] Open
Abstract
The RNA helicase A (RHA) is a member of DExH-box helicases and characterized by two double-stranded RNA binding domains at the N-terminus. RHA unwinds double-stranded RNA in vitro and is involved in RNA metabolisms in the cell. RHA is also hijacked by a variety of RNA viruses to facilitate virus replication. Herein, this review will provide an overview of the role of RHA in the replication of RNA viruses.
Collapse
|
4
|
Wang Y, Huo Z, Lin Q, Lin Y, Chen C, Huang Y, Huang C, Zhang J, He J, Liu C, Zhang P. Positive Feedback Loop of Long Noncoding RNA OASL-IT1 and Innate Immune Response Restricts the Replication of Zika Virus in Epithelial A549 Cells. J Innate Immun 2021; 13:179-193. [PMID: 33626545 PMCID: PMC8138224 DOI: 10.1159/000513606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
Expression of host noncoding RNAs and coding mRNAs is significantly altered by viral infection. In the current study, we screened the transcriptional profile of human lung epithelial A549 cells infected with Zika virus (ZIKV) by microarray assay. Seventy-nine long noncoding RNAs (lncRNAs) and 140 mRNAs were differentially expressed (DE). The bioinformatics analysis revealed that the mRNAs adjacent to the DE lncRNAs were closely related to the host responses to viral infection. We selected 7 lncRNAs from the top 50 hits for validation. The quantitative real-time PCR data confirmed that expression of selected lncRNAs was induced by ZIKV infection. Moreover, the expression of 7 lncRNAs was induced by infection of dengue virus, Japanese encephalitis virus, or vesicular stomatitis virus, or by treatment of poly(I:C) and IFN-β. Furthermore, loss of innate immune adaptor IPS-1 or receptor IFNAR1 resulted in lower induction levels of several lncRNAs by ZIKV. Overexpression of 3 lncRNAs (RPL27-OT1, OASL-IT1, and REC8-OT3) reduced the virus yields of ZIKV. Knockout of OASL-IT1 significantly enhanced ZIKV replication. In OASL-IT1 knockout cells, the levels of interferons (IFNs) and the activation of 3 innate immune signaling pathways triggered by ZIKV were dramatically reduced. Collectively, our work found a positive feedback loop in the IFN system, in which IFNs and OASL-IT1 regulate each other, thereby promoting establishment of antiviral defense.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Tropical Disease Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhiting Huo
- Key Laboratory of Tropical Disease Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Quanshi Lin
- Key Laboratory of Tropical Disease Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuxia Lin
- Key Laboratory of Tropical Disease Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Cancan Chen
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanxia Huang
- Key Laboratory of Tropical Disease Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Changbai Huang
- Key Laboratory of Tropical Disease Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Junsong Zhang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Junfang He
- Key Laboratory of Tropical Disease Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chao Liu
- Key Laboratory of Tropical Disease Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ping Zhang
- Key Laboratory of Tropical Disease Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Lu ZY, Cheng MH, Yu CY, Lin YS, Yeh TM, Chen CL, Chen CC, Wan SW, Chang CP. Dengue Nonstructural Protein 1 Maintains Autophagy through Retarding Caspase-Mediated Cleavage of Beclin-1. Int J Mol Sci 2020; 21:E9702. [PMID: 33352639 PMCID: PMC7766445 DOI: 10.3390/ijms21249702] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 01/07/2023] Open
Abstract
Dengue virus (DENV) infection is a significant public health threat in tropical and subtropical regions; however, there is no specific antiviral drug. Accumulated studies have revealed that DENV infection induces several cellular responses, including autophagy and apoptosis. The crosstalk between autophagy and apoptosis is associated with the interactions among components of these two pathways, such as apoptotic caspase-mediated cleavage of autophagy-related proteins. Here, we show that DENV-induced autophagy inhibits early cell apoptosis and hence enhances DENV replication. Later, the apoptotic activities are elevated to suppress autophagy through cleavage of Beclin-1, an essential autophagy-related protein. Inhibition of cleavage of Beclin-1 by a pan-caspase inhibitor, Z-VAD, increases both autophagy and viral replication. Regarding the mechanism, we further found that DENV nonstructural protein 1 (NS1) is able to interact with Beclin-1 during DENV infection. The interaction between Beclin-1 and NS1 attenuates Beclin-1 cleavage and facilitates autophagy to prevent cell apoptosis. Our study suggests a novel mechanism whereby NS1 preserves Beclin-1 for maintaining autophagy to antagonize early cell apoptosis; however, elevated caspases trigger apoptosis by degrading Beclin-1 in the late stage of infection. These findings suggest implications for anti-DENV drug design.
Collapse
Affiliation(s)
- Zi-Yi Lu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (Z.-Y.L.); (Y.-S.L.)
| | - Miao-Huei Cheng
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan;
| | - Chia-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350, Taiwan;
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (Z.-Y.L.); (Y.-S.L.)
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan;
| | - Trai-Ming Yeh
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan;
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | - Shu-Wen Wan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan;
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan;
- Department of Medical Laboratory Science, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan
| | - Chih-Peng Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (Z.-Y.L.); (Y.-S.L.)
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan;
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
6
|
Inositol-Requiring Enzyme 1α Promotes Zika Virus Infection through Regulation of Stearoyl Coenzyme A Desaturase 1-Mediated Lipid Metabolism. J Virol 2020; 94:JVI.01229-20. [PMID: 32967957 DOI: 10.1128/jvi.01229-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022] Open
Abstract
Zika virus (ZIKV) is an emerging mosquito-borne flavivirus which has become a global epidemic threat due to its rapid spread and association with serious consequences of infection, including neonatal microcephaly. Inositol-requiring enzyme 1α (IRE1α) is an endoplasmic reticulum (ER)-related transmembrane protein that mediates unfolded protein response (UPR) pathway and has been indicated to play an important role in flavivirus replication. However, the mechanism of how IRE1α affects ZIKV replication remains unknown. In this study, we explored the role of IRE1α in ZIKV infection in vitro and in vivo by using CRISPR/Cas9-based gene knockout and RNA interference-based gene knockdown techniques. Both knockout and knockdown of IRE1α dramatically reduced ZIKV replication levels, including viral RNA levels, protein expression, and titers in different human cell lines. Trans-complementation with IRE1α restored viral replication levels decreased by IRE1α depletion. Furthermore, the proviral effect of IRE1α was dependent on its kinase and RNase activities. Importantly, we found that IRE1α promoted the replication of ZIKV through upregulating the accumulation of monounsaturated fatty acid (MUFA) rate-limiting enzyme stearoyl coenzyme A (stearoyl-CoA) desaturase 1 (SCD1), which further affected the production of oleic acid (OA) and lipid droplet. Finally, our data demonstrated that in the brain tissues of ZIKV-infected mice, the replication levels of ZIKV and virus-related lesions were significantly suppressed by both the kinase and RNase inhibitors of IRE1α. Taken together, our results identified IRE1α as a ZIKV dependency factor which promotes viral replication through affecting SCD1-mediated lipid metabolism, potentially providing a novel molecular target for the development of anti-ZIKV agents.IMPORTANCE Zika virus (ZIKV) has been linked to serious neurologic disorders and causes widespread concern in the field of global public health. Inositol requiring enzyme 1α (IRE1α) is an ER-related transmembrane protein that mediates unfolded protein response (UPR) pathway. Here, we revealed that IRE1α is a proviral factor for ZIKV replication both in culture cells and mice model, which relies on its kinase and RNase activities. Importantly, we further provided evidence that upon ZIKV infection, IRE1α is activated and splices XBP1 mRNA which enhances the expression of monounsaturated fatty acids rate-limiting enzyme stearoyl coenzyme A (stearoyl-CoA) desaturase 1 (SCD1) and subsequent lipid droplet production. Our data uncover a novel mechanism of IRE1α proviral effect by modulating lipid metabolism, providing the first evidence of a close relationship between IRE1α-mediated UPR, lipid metabolism, and ZIKV replication and indicating IRE1α inhibitors as potentially effective anti-ZIKV agents.
Collapse
|
7
|
Lin Q, Zhou S, Huang Y, Huo Z, Chen C, Luo X, He J, Liu C, Zhang P. ANKS4B Restricts Replication of Zika Virus by Downregulating the Autophagy. Front Microbiol 2020; 11:1745. [PMID: 32793175 PMCID: PMC7387654 DOI: 10.3389/fmicb.2020.01745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022] Open
Abstract
Infection of Zika virus (ZIKV) has become a severe threaten to global health while no specific drug is available. In this study, we explored the relationship between ZIKV and a cellular protein, ankyrin repeat and sterile motif domain containing 4b (ANKS4B). Our data revealed that the expression of ANKS4B in cultured cells and in neonatal mice was downregulated by ZIKV infection. The reduction of ANKS4B upon ZIKV infection was caused by decrease of two hepatocyte nuclear factors HNF1α and HNF4α. Through CRISPR/Cas9 gene editing system, we generated two ANKS4B knockout (KO) cell clones in A549 and Huh7 cells respectively. In the ANKS4B-KO cells, the viral replication levels including viral RNA, protein, and titer were significantly enhanced, which was reversed by trans-complementation of ANKS4B. ANKS4B did not affect the viral entry step, but impaired the autophagy induced by ZIKV infection. Furthermore, our data showed that inhibition of autophagy led to similar replication levels of ZIKV in ANKS4B-sufficient and ANKS4B-deficient cells, suggesting the antiviral effect of ANKS4B relied on its modulation on the autophagy. Therefore, our work identified ANKS4B as a new restriction factor of ZIKV.
Collapse
Affiliation(s)
- Quanshi Lin
- Key Laboratory of Tropical Disease Control, Zhongshan School of Medicine, Sun Yat-sen University, Ministry of Education, Guangzhou, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shili Zhou
- Key Laboratory of Tropical Disease Control, Zhongshan School of Medicine, Sun Yat-sen University, Ministry of Education, Guangzhou, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yanxia Huang
- Key Laboratory of Tropical Disease Control, Zhongshan School of Medicine, Sun Yat-sen University, Ministry of Education, Guangzhou, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhiting Huo
- Key Laboratory of Tropical Disease Control, Zhongshan School of Medicine, Sun Yat-sen University, Ministry of Education, Guangzhou, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Cancan Chen
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xin Luo
- Key Laboratory of Tropical Disease Control, Zhongshan School of Medicine, Sun Yat-sen University, Ministry of Education, Guangzhou, China.,Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Junfang He
- Key Laboratory of Tropical Disease Control, Zhongshan School of Medicine, Sun Yat-sen University, Ministry of Education, Guangzhou, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chao Liu
- Key Laboratory of Tropical Disease Control, Zhongshan School of Medicine, Sun Yat-sen University, Ministry of Education, Guangzhou, China.,Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ping Zhang
- Key Laboratory of Tropical Disease Control, Zhongshan School of Medicine, Sun Yat-sen University, Ministry of Education, Guangzhou, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Ma X, Luo X, Zhou S, Huang Y, Chen C, Huang C, Shen L, Zhang P, Liu C. Hydroxycarboxylic Acid Receptor 2 Is a Zika Virus Restriction Factor That Can Be Induced by Zika Virus Infection Through the IRE1-XBP1 Pathway. Front Cell Infect Microbiol 2020; 9:480. [PMID: 32039055 PMCID: PMC6990111 DOI: 10.3389/fcimb.2019.00480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) is an emerging arthropod-borne virus and belongs to the Flaviviridae family. The infection of ZIKV has become the global health crisis because of its rapid spread and association with severe neurological disorders, including congenital microcephaly and Guillain-Barre Syndrome. To identify host factors contributing to ZIKV pathogenesis, transcriptomic landscape in ZIKV-infected cells was examined with mRNA microarray analysis and we observed that the expression of hydroxycarboxylic acid receptor 2 (HCAR2) could be significantly induced by ZIKV infection. By utilizing two IRE1 inhibitors and XBP1-specific shRNAs, we revealed that the up-regulation of HCAR2 expression induced by ZIKV was dependent on the IRE1-XBP1 pathway. Through the CRISPR/Cas9 system, we generated HCAR2-deficient cell clones in two cell types (human lung carcinoma epithelial A549 cell and human hepatoma Huh7.5 cell). We found that the depletion of HCAR2 significantly increased the replication level of ZIKV, including RNA levels, protein expression levels, and viral titers. In addition, our data demonstrated that the antiviral effect of HCAR2 was not involved in viral entry process and was not dependent on its antilipolytic effect on nicotinic acid/HCAR2-mediated signaling pathway. Taken together, our results indicated that HCAR2 could function as a restriction factor in control of ZIKV replication, potentially providing a novel molecular target for anti-ZIKV therapeutics.
Collapse
Affiliation(s)
- Xiaocao Ma
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xin Luo
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shili Zhou
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yanxia Huang
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Cancan Chen
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Changbai Huang
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Li Shen
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ping Zhang
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chao Liu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Zhou S, Yang C, Zhao F, Huang Y, Lin Y, Huang C, Ma X, Du J, Wang Y, Long G, He J, Liu C, Zhang P. Double-stranded RNA deaminase ADAR1 promotes the Zika virus replication by inhibiting the activation of protein kinase PKR. J Biol Chem 2019; 294:18168-18180. [PMID: 31636123 DOI: 10.1074/jbc.ra119.009113] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/03/2019] [Indexed: 12/14/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that has emerged as a threat to global health. The family of adenosine deaminases acting on dsRNA (ADARs) are human host factors important for the genetic diversity and evolution of ZIKV. Here, we further investigated the role of ADAR1 in ZIKV replication by utilizing CRISPR/Cas9-based gene editing and RNAi-based gene knockdown techniques. Both ADAR1 knockout and knockdown significantly reduced ZIKV RNA synthesis, protein levels, and viral titers in several human cell lines. Trans-complementation with the full-length ADAR1 form p150 or the shorter form p110 lacking the Zα domain restored viral replication levels suppressed by the ADAR1 knockout. Moreover, we observed that the nuclear p110 form was redistributed to the cytoplasm in response to ZIKV infection. ADAR1 was not involved in viral entry but promoted viral protein translation by impairing ZIKV-induced activation of protein kinase regulated by dsRNA (PKR). Of note, the RNA-editing activity of ADAR1 was not required to promote ZIKV replication. We also found that the proviral role of ADAR1 was partially mediated through its ability to suppress IFN production and PKR activation. Our work identifies ADAR1 as a proviral factor involved in ZIKV replication, suggesting that ADAR1 could be a potential antiviral target.
Collapse
Affiliation(s)
- Shili Zhou
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Chao Yang
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Fanfan Zhao
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanxia Huang
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuxia Lin
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Changbai Huang
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaocao Ma
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingjie Du
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Yi Wang
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Gang Long
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junfang He
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Chao Liu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ping Zhang
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|