1
|
Yang X, Lei C, Peng X, Min Y, Hu J, Sun X. Genotypic diversity and biological characterization of Alphabaculovirus mabrassicae isolates from a wide host range. PEST MANAGEMENT SCIENCE 2025; 81:2215-2224. [PMID: 39791309 DOI: 10.1002/ps.8620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/27/2024] [Accepted: 12/08/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Baculoviruses are ideal biological insecticides, providing long-lasting pest control and environmental benefits. Alphabaculovirus mabrassicae stains, with their broad host range, have been effective in agricultural pest management. Various A. mabrassicae isolates (MbMNPV-CHb1/CTa/K1/QD, MyseMNPV-Hb, HearMNPV and MacoNPV-B) have been identified in different hosts. Identifying more effective A. mabrassicae strains with detailed genetic information is crucial for commercial use. RESULTS Laboratory bioassays showed that the median lethal concentration (LC50) of MyseMNPV-Hb against Mythimna separata was significantly lower than those against Helicoverpa armigera and Spodoptera exigua, but higher than the LC50 of MbMNPV-CHb1, MbMNPV-QD and HearMNPV against H. armigera or S. exigua. Comparative genomic analysis revealed significant differences in genomic composition and single-nucleotide polymorphisms between MyseMNPV-Hb and the other isolates. A piggyBac-like element, likely to have been from Alcis repandata (Lepidoptera: Geometridae), was identified in the genomes of these isolates. Eight genes in the A. mabrassicae genomes were found to be under positive selection. CONCLUSION Alphabaculovirus mabrassicae isolates exhibit different infectivity in various pests, indicating the need for selecting appropriate isolates specific target pests. This study elucidates the genetic factors contributing to the differential infectivity of A. mabrassicae isolates and extends knowledge on its population characteristics. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoqin Yang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengfeng Lei
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaowei Peng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yuanqin Min
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jia Hu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiulian Sun
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
2
|
Mo M, Chen J, Yang Y, Yu Y, Wu W, Yang K, Yuan M. Autographa californica multiple nucleopolyhedrovirus ac106 is required for the nuclear egress of nucleocapsids and intranuclear microvesicle formation. J Virol 2024; 98:e0113524. [PMID: 39431847 PMCID: PMC11575290 DOI: 10.1128/jvi.01135-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf106 (ac106) is highly conserved in baculoviruses. Previous studies have shown that ac106 is required for the production of infectious budded virions (BVs). However, the functional role of ac106 in virion morphogenesis remains unknown. In this report, an ac106 knockout virus and an ac106 repair virus were constructed. The effect of ac106 deletion on virion morphogenesis was investigated, and the expression and subcellular localization of the Ac106 protein were characterized. Our data indicated that ac106 is required for the nuclear egress of nucleocapsids and intranuclear microvesicle formation, as well as subsequent BV and occlusion-derived virion (ODV) production and the embedding of ODVs into polyhedra. Ac106 is a baculovirus late protein that is concentrated in discrete foci of virus-induced membrane structures in the intranuclear ring zone of virus-infected cells. Further studies on the relationship between Ac106 and four other proteins that are also required for intranuclear microvesicle formation, Ac75, Ac76, Ac93, and P48 (Ac103), revealed that Ac106 is associated with Ac75, Ac76, Ac93, P48, and itself. Ac106 is required for Ac75, Ac93, and P48 accumulation in foci of virus-induced intranuclear membrane structures and the intranuclear transport of Ac76. Analysis of the subcellular localization of ODV integral envelope proteins upon deletion of the genes required for intranuclear microvesicle formation indicated that intranuclear microvesicle formation may be essential for ODV integral envelope protein transport into the nucleus, supporting the hypothesis that intranuclear microvesicles originate from the nuclear membrane.IMPORTANCEBaculovirus occlusion-derived virions (ODVs) are known to acquire their envelopes from virus-induced intranuclear microvesicles within the nucleoplasm, and this strategy of intranuclear envelopment of nucleocapsids to form virions is unique among viruses. However, the mechanism of ODV morphogenesis, particularly intranuclear microvesicle formation, remains unclear. In this study, we identified ac106 as the fifth gene, in addition to ac75, ac76, ac93, and p48 (ac103), which are required for intranuclear microvesicle formation. Further studies on the relationship between ac106 and the other four genes, as well as the effect of ac106 or ac75 deletion on the localization of ODV integral envelope proteins, indicated that intranuclear microvesicle formation may be essential for the transport of ODV integral envelope proteins into the nucleus, which strongly supports the hypothesis that intranuclear microvesicles originate from the nuclear membrane. These findings greatly enhance our understanding of the molecular mechanism of baculovirus ODV morphogenesis.
Collapse
Affiliation(s)
- Mei Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiannan Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yushan Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yinyin Yu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenbi Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Kai Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Meijin Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Li J, Xu S, Gu C, Fan X, Zhang X, Miao M, Yu W. Acetylation of DnaJ facilitates the proliferation of BmNPV by affecting the transport of nucleocapsids. Microb Pathog 2024; 197:107050. [PMID: 39442813 DOI: 10.1016/j.micpath.2024.107050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/30/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
DnaJ (Orf40), a late-expressed factor of Bombyx mori nucleopolyhedrovirus (BmNPV), is essential for the budding of virions and influences the transfer of the nucleocapsid from the nucleus to the cytoplasm. Previous studies showed that the knockdown of dnaj could prevent the nucleocapsid from exiting the nucleus, but the underlying regulatory mechanism remains unknown. In our previous acetylomic analysis of BmN cells infected with wild-type BmNPV, we found that a lysine residue (K17) was acetylated 36h post-infection, and the acetylation level of this site was upregulated about 3.5-fold. Here, we found that deacetylation of DnaJ K17 significantly inhibited viral proliferation without affecting viral DNA replication. Furthermore, deacetylation of DnaJ K17 affected the interaction with two nucleocapsid-associated proteins, Ac66 and VP80, which in turn affected the production of nucleocapsids, as well as their transport within the nucleus along F-actin fibers, leading to a decrease in the export of nucleocapsids from the nucleus. The reduced amount of nucleocapsids in the cytoplasm ultimately led to a decrease in the production of budded virions and consequently inhibited viral proliferation. In conclusion, acetylation of DnaJ affects nucleocapsid production and transport, thereby influencing viral proliferation.
Collapse
Affiliation(s)
- Jiaqi Li
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, Hangzhou, 310018, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, PR China
| | - Siqi Xu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, Hangzhou, 310018, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, PR China
| | - Chaoguang Gu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, Hangzhou, 310018, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, PR China
| | - Xinyi Fan
- Faculty of Arts and Science, University of Toronto, Toronto, ON, M5S1A1, Canada
| | - Xizhen Zhang
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, Hangzhou, 310018, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, PR China
| | - Meng Miao
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, Hangzhou, 310018, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, PR China
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, Hangzhou, 310018, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, PR China.
| |
Collapse
|
4
|
Bai L, Sun Y, Yue X, Ji N, Yan F, Yang T, Feng G, Guo Y, Li Z. Multifaceted interactions between host ESCRT-III and budded virus-related proteins involved in entry and egress of the baculovirus Autographa californica multiple nucleopolyhedrovirus. J Virol 2024; 98:e0190023. [PMID: 38289107 PMCID: PMC10878073 DOI: 10.1128/jvi.01900-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) is a conserved protein machine mediating membrane remodeling and scission. In the context of viral infection, different components of the ESCRT-III complex, which serve as the core machinery to catalyze membrane fission, are involved in diverse viruses' entry, replication, and/or budding. However, the interplay between ESCRT-III and viral factors in the virus life cycle, especially for that of large enveloped DNA viruses, is largely unknown. Recently, the ESCRT-III components Vps2B, Vps20, Vps24, Snf7, Vps46, and Vps60 were determined for entry and/or egress of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). Here, we identified the final three ESCRT-III components Chm7, Ist1, and Vps2A of Spodoptera frugiperda. Overexpression of the dominant-negative forms of these proteins or RNAi downregulation of their transcripts significantly reduced infectious budded viruses (BVs) production of AcMNPV. Quantitative PCR together with confocal and transmission electron microscopy analysis revealed that these proteins were required for internalization and trafficking of BV during entry and egress of nucleocapsids. In infected Sf9 cells, nine ESCRT-III components were distributed on the nuclear envelope and plasma membrane, and except for Chm7, the other components were also localized to the intranuclear ring zone. Y2H and BiFC analysis revealed that 42 out of 64 BV-related proteins including 35 BV structural proteins and 7 non-BV structural proteins interacted with single or multiple ESCRT-III components. By further mapping the interactome of 64 BV-related proteins, we established the interaction networks of ESCRT-III and the viral protein complexes involved in BV entry and egress.IMPORTANCEFrom archaea to eukaryotes, the endosomal sorting complex required for transport (ESCRT)-III complex is hijacked by many enveloped and nonenveloped DNA or RNA viruses for efficient replication. However, the mechanism of ESCRT-III recruitment, especially for that of large enveloped DNA viruses, remains elusive. Recently, we found the ESCRT-III components Vps2B, Vps20, Vps24, Snf7, Vps46, and Vps60 are necessary for the entry and/or egress of budded viruses (BVs) of Autographa californica multiple nucleopolyhedrovirus. Here, we demonstrated that the other three ESCRT-III components Chm7, Ist1, and Vps2A play similar roles in BV infection. By determining the subcellular localization of ESCRT-III components in infected cells and mapping the interaction of nine ESCRT-III components and 64 BV-related proteins, we built the interaction networks of ESCRT-III and the viral protein complexes involved in BV entry and egress. These studies provide a fundamental basis for understanding the mechanism of the ESCRT-mediated membrane remodeling for replication of baculoviruses.
Collapse
Affiliation(s)
- Lisha Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaorong Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Ning Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Fanye Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Tian Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Guozhong Feng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Ya Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhaofei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Identification and characterization of coiled-coil motifs across Autographa californica multiple nucleopolyhedrovirus genome. Heliyon 2022; 8:e10588. [PMID: 36132175 PMCID: PMC9483598 DOI: 10.1016/j.heliyon.2022.e10588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/15/2022] [Accepted: 09/05/2022] [Indexed: 12/02/2022] Open
Abstract
Coiled coils (CCs) are protein structural motifs universally found in proteins and mediate a plethora of biological interactions, and thus their reliable annotation is crucial for studies of protein structure and function. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a large double-stranded DNA (dsDNA) virus and encodes 154 proteins. In this study, genome-wide scans of previously uncharacterized CC motifs throughout AcMNPV was conducted using CC prediction software. In total, 24 CC motifs in 19 CC proteins with high confidence were identified. The characteristic of viral CC motifs were analyzed. The CC proteins could be divided into 12 viral structural proteins and 7 non-structural proteins, including viral membrane fusion proteins, enzymes, and transcription factors. Moreover, CC motifs are conserved in the baculoviral orthologs of 14 of the 19 proteins. It is noted that five CC proteins, including Ac51, Ac66, Exon0, Ac13, and GP16, were previously identified to function in the nuclear egress of nucleocapsids, and Ac66 contains multiple CC motifs, the longest of which comprises 252 amino acids, suggesting a role of CC motifs in this process. Taken together, the CC motifs identified in this study are valuable resource for studying protein function and protein interaction networks during virus replication.
Collapse
|
6
|
Harrison RL, Rowley DL. The complete genome sequence of an alphabaculovirus from the brown tussock moth, Olene mendosa Hübner, expands our knowledge of lymantriine baculovirus diversity and evolution. Virus Genes 2022; 58:227-237. [PMID: 35380378 DOI: 10.1007/s11262-022-01899-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/25/2022] [Indexed: 11/24/2022]
Abstract
The complete genome sequence was determined for an apparent alphabaculovirus isolated from larval cadavers of the brown tussock moth, Olene mendosa Hübner, collected during an epizootic in Coimbatore, India. The genome was determined to be a circular 142,291 bp molecule, and 147 ORFs and nine homologous regions were annotated for the sequence. Analysis of the sequence confirmed that this virus, Olene mendosa nucleopolyhedrovirus (OlmeNPV), was a member of genus Alphabaculovirus in family Baculoviridae. Phylogenies inferred from nucleotide and amino acid alignments indicated that OlmeNPV was part of a group of viruses that infect moths of genus Lymantria, suggesting that OlmeNPV may have shifted hosts from a Lymantria species to an ancestral Olene species at some point during its evolutionary history. OlmeNPV was most closely related to Lymantria xylina multiple nucleopolyhedrovirus isolate 5 (LyxyMNPV-5). The genomes of OlmeNPV and LyxyMNPV-5 were distinguished not only by differences in ORF content, but by a 27 kbp region of the genome that is inverted in LyxyMNPV-5 relative to OlmeNPV. Pairwise nucleotide distances between OlmeNPV and other Lymantria spp. alphabaculoviruses indicate that OlmeNPV represents a new baculovirus species.
Collapse
Affiliation(s)
- Robert L Harrison
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center, USDA Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Daniel L Rowley
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center, USDA Agricultural Research Service, Beltsville, MD, 20705, USA
| |
Collapse
|
7
|
Wang Y, He J, Mo M, Cai Q, Wu W, Yuan M, Yang K. The amino acids of Autographa californica multiple nucleopolyhedrovirus P48 critical for the association with Ac93 are important for the nuclear egress of nucleocapsids and efficient formation of intranuclear microvesicles. Virus Res 2022; 308:198644. [PMID: 34813875 DOI: 10.1016/j.virusres.2021.198644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 11/24/2022]
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) undergoes a biphasic life cycle with the production of two physically and functionally distinct virions: budded virions (BVs) and occlusion-derived virions (ODVs). Nuclear egress of nucleocapsids and intranuclear microvesicle formation are critical for the morphogenesis of BVs and ODVs, respectively, but the mechanisms and details of these two processes remain unknown. Our previous studies have shown that AcMNPV p48 (ac103) gene is essential for the nuclear egress of nucleocapsids and efficient formation of intranuclear microvesicles, and protein P48 associates with Ac93, which is also involved in the above processes in virion morphogenesis. In this study, we present evidence that alanine substitution for residues N318, V319, C320, R321, and I323 of P48 disrupted the association with Ac93. Moreover, mutation of these residues blocked the nuclear egress of nucleocapsids and efficient formation of intranuclear microvesicles, and subsequent BV formation, as well as ODV envelopment and embedding of ODVs into polyhedra. These results suggested that the association between P48 and Ac93 may be important for both BV and ODV morphogenesis.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Junjie He
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Mei Mo
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qingyun Cai
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenbi Wu
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Meijin Yuan
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Kai Yang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Wang J, Li K, Fu Y. Ac106/107 affects production of infectious progeny BV by regulating transcription of late viral genes and host cell energy metabolism. PEST MANAGEMENT SCIENCE 2021; 77:4758-4769. [PMID: 34148283 DOI: 10.1002/ps.6520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/20/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AcMNPV is a model organism of baculovirus, and Spodoptera frugiperda is one of its hosts. Disclosing the role of ac106/107 in AcMNPV infecting Spodoptera frugiperda 9 (Sf9) cells is of great significance for modifying AcMNPV as a microbial insecticide. This work constructed recombinant baculovirus that knocking out, repairment and overexpression of ac106/107 and explored the effects of Ac106/107 on the proliferation of progeny viruses. Moreover, the potential mechanism and targets of ac106/107 were further revealed. RESULTS First, compared with the Bacmid-EGFP transfection group, the progeny virus does not proliferate after knocking out of ac106/107, and the proliferation ability increases by 14.5% at 72 h post transfection (h p.t.) when overexpression of ac106/107. However, knockout, repairment and overexpression of ac106/107 have no effect on viral DNA replication. Secondly, Ac106/107-EGFP was located in the cytoplasm and nucleus. Transcription level of late viral genes and viral RNA polymerase subunit genes in the Bacmidac106/107KO -EGFP transfection group and Bacmid-Ac106/107-EGFP transfection group was reduced and increased, respectively. Thirdly, AcMNPV would increase the glucose utilization and lactate consumption of the host Sf9 cells, and Bacmidac106/107KO -EGFP transfection group had lower glucose consumption and lactic acid accumulation than Bacmid-EGFP, Bacmidac106/107KO -Ac106/107(rep)-EGFP and Bacmid-Ac106/107-EGFP transfection groups. CONCLUSION Ac106/107 can enter the nucleus and affect transcription of viral RNA polymerase subunit genes, which in turn affects the transcription of late genes, and ultimately affects virus proliferation and energy metabolism in host cells. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingli Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, PR China
| | - Ke Li
- Zhejiang Academy of Science & Technology for Inspection & Quarantine, Hangzhou, PR China
| | - Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, PR China
| |
Collapse
|
9
|
Chen T, Duan X, Hu H, Shang Y, Hu Y, Deng F, Wang H, Wang M, Hu Z. Systematic Analysis of 42 Autographa Californica Multiple Nucleopolyhedrovirus Genes Identifies An Additional Six Genes Involved in the Production of Infectious Budded Virus. Virol Sin 2021; 36:762-773. [PMID: 33683665 PMCID: PMC8379328 DOI: 10.1007/s12250-021-00355-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/29/2020] [Indexed: 01/15/2023] Open
Abstract
Baculoviruses have been widely used as a vector for expressing foreign genes. Among numerous baculoviruses, Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the most frequently used and it encodes 155 open reading frames (ORFs). Here, we systematically investigated the impact of 42 genes of AcMNPV on the production of infectious budded viruses (BVs) by constructing gene-knockout bacmids and subsequently conducting transfection and infection assays. The results showed that among the 39 functionally unverified genes and 3 recently reported genes, 36 are dispensable for infectious BV production, as the one-step growth curves of the gene-knockout viruses were not significantly different from those of the parental virus. Three genes (ac62, ac82 and ac106/107) are essential for infectious BV production, as deletions thereof resulted in complete loss of infectivity while the repaired viruses showed no significant difference in comparison to the parental virus. In addition, three genes (ac13, ac51 and ac120) are important but not essential for infectious BV production, as gene-knockout viruses produced significantly lower BV levels than that of the parental virus or repaired viruses. We then grouped the 155 AcMNPV genes into three categories (Dispensable, Essential, or Important for infectious BV production). Based on our results and previous publications, we constructed a schematic diagram of a potential mini-genome of AcMNPV, which contains only essential and important genes. The results shed light on our understanding of functional genomics of baculoviruses and provide fundamental information for future engineering of baculovirus expression system.
Collapse
Affiliation(s)
- Tong Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Xiaoyan Duan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Hengrui Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Yu Shang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
10
|
Chen X, Yang J, Yang X, Lei C, Sun X, Hu J. A Conserved Phenylalanine Residue of Autographa Californica Multiple Nucleopolyhedrovirus AC75 Protein Is Required for Occlusion Body Formation. Front Microbiol 2021; 12:663506. [PMID: 33897676 PMCID: PMC8060461 DOI: 10.3389/fmicb.2021.663506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf75 (ac75) is a highly conserved gene that is essential for AcMNPV propagation. However, the key domains or residues of the AC75 protein that play a role in viral propagation have not been identified. In this study, sequence alignment revealed that residues Phe-54 and Gln-81 of AC75 were highly conserved among alphabaculoviruses and betabaculoviurses. Thus, Phe-54 and Gln-81 AC75 mutation bacmids were constructed. We found that Gln-81 was not required for viral propagation, whereas mutating Phe-54 reduced budded virus production by 10-fold and impaired occlusion body formation when compared with that of the wild-type AcMNPV. Electron microscopy observations showed that the Phe-54 mutation affected polyhedrin assembly and also occlusion-derived virus embedding, whereas western blot analysis revealed that mutating Phe-54 reduced the amount of AC75 but did not affect the localization of AC75 in infected cells. A protein stability assay showed that the Phe-54 mutation affected AC75 stability. Taken together, Phe-54 was identified as an important residue of AC75, and ac75 is a pivotal gene in budding virus production and occlusion body formation.
Collapse
Affiliation(s)
- Xingang Chen
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Yang
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoqin Yang
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengfeng Lei
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Xiulian Sun
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Jia Hu
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
11
|
Chen X, Yang X, Lei C, Qin F, Sun X, Hu J. Autographa Californica Multiple Nucleopolyhedrovirus orf13 Is Required for Efficient Nuclear Egress of Nucleocapsids. Virol Sin 2021; 36:968-980. [PMID: 33721216 DOI: 10.1007/s12250-021-00353-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf13 (ac13) is a conserved gene in all sequenced alphabaculoviruses. However, its function in the viral life cycle remains unknown. In this study, we found that ac13 was a late gene and that the encoded protein, bearing a putative nuclear localization signal motif, colocalized with the nuclear lamina. Deletion of ac13 did not affect viral genome replication, nucleocapsid assembly or occlusion body (OB) formation, but reduced virion budding from infected cells by approximately 400-fold compared with the wild-type virus. Deletion of ac13 substantially impaired the egress of nucleocapsids from the nucleus to the cytoplasm, while the OB morphogenesis was unaffected. Taken together, our results indicated that ac13 was required for efficient nuclear egress of nucleocapsids during virion budding, but was dispensable for OB formation.
Collapse
Affiliation(s)
- Xingang Chen
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqin Yang
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengfeng Lei
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fujun Qin
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiulian Sun
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Jia Hu
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
12
|
Lai Q, Zhu L, Xu L, Yuan M, Wu W, Yang K. AcMNPV PKIP is associated with nucleocapsid of budded virions and involved in nucleocapsid assembly. Virus Res 2019; 268:27-37. [DOI: 10.1016/j.virusres.2019.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
|