1
|
Landry SJ, Mettu RR, Kolls JK, Aberle JH, Norton E, Zwezdaryk K, Robinson J. Structural Framework for Analysis of CD4+ T-Cell Epitope Dominance in Viral Fusion Proteins. Biochemistry 2023; 62:2517-2529. [PMID: 37554055 PMCID: PMC10483696 DOI: 10.1021/acs.biochem.3c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Indexed: 08/10/2023]
Abstract
Antigen conformation shapes CD4+ T-cell specificity through mechanisms of antigen processing, and the consequences for immunity may rival those from conformational effects on antibody specificity. CD4+ T cells initiate and control immunity to pathogens and cancer and are at least partly responsible for immunopathology associated with infection, autoimmunity, and allergy. The primary trigger for CD4+ T-cell maturation is the presentation of an epitope peptide in the MHC class II antigen-presenting protein (MHCII), most commonly on an activated dendritic cell, and then the T-cell responses are recalled by subsequent presentations of the epitope peptide by the same or other antigen-presenting cells. Peptide presentation depends on the proteolytic fragmentation of the antigen in an endosomal/lysosomal compartment and concomitant loading of the fragments into the MHCII, a multistep mechanism called antigen processing and presentation. Although the role of peptide affinity for MHCII has been well studied, the role of proteolytic fragmentation has received less attention. In this Perspective, we will briefly summarize evidence that antigen resistance to unfolding and proteolytic fragmentation shapes the specificity of the CD4+ T-cell response to selected viral envelope proteins, identify several remarkable examples in which the immunodominant CD4+ epitopes most likely depend on the interaction of processing machinery with antigen conformation, and outline how knowledge of antigen conformation can inform future efforts to design vaccines.
Collapse
Affiliation(s)
- Samuel J. Landry
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Ramgopal R. Mettu
- Department
of Computer Science, Tulane University, New Orleans, Louisiana 70118, United States
| | - Jay K. Kolls
- John
W. Deming Department of Internal Medicine, Center for Translational
Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Judith H. Aberle
- Center
for Virology, Medical University of Vienna, 1090 Vienna, Austria
| | - Elizabeth Norton
- Department
of Microbiology & Immunology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Kevin Zwezdaryk
- Department
of Microbiology & Immunology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - James Robinson
- Department
of Pediatrics, Tulane University School
of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
2
|
Biavasco R, De Giovanni M. The Relative Positioning of B and T Cell Epitopes Drives Immunodominance. Vaccines (Basel) 2022; 10:vaccines10081227. [PMID: 36016115 PMCID: PMC9413633 DOI: 10.3390/vaccines10081227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 12/05/2022] Open
Abstract
Humoral immunity is crucial for protection against invading pathogens. Broadly neutralizing antibodies (bnAbs) provide sterilizing immunity by targeting conserved regions of viral variants and represent the goal of most vaccination approaches. While antibodies can be selected to bind virtually any region of a given antigen, the consistent induction of bnAbs in the context of influenza and HIV has represented a major roadblock. Many possible explanations have been considered; however, none of the arguments proposed to date seem to fully recapitulate the observed counter-selection for broadly protective antibodies. Antibodies can influence antigen presentation by enhancing the processing of CD4 epitopes adjacent to the binding region while suppressing the overlapping ones. We analyze the relative positioning of dominant B and T cell epitopes in published antigens that elicit strong and poor humoral responses. In strong immunogenic antigens, regions bound by immunodominant antibodies are frequently adjacent to CD4 epitopes, potentially boosting their presentation. Conversely, poorly immunogenic regions targeted by bnAbs in HIV and influenza overlap with clusters of dominant CD4 epitopes, potentially conferring an intrinsic disadvantage for bnAb-bearing B cells in germinal centers. Here, we propose the theory of immunodominance relativity, according to which the relative positioning of immunodominant B and CD4 epitopes within a given antigen drives immunodominance. Thus, we suggest that the relative positioning of B-T epitopes may be one additional mechanism that cooperates with other previously described processes to influence immunodominance. If demonstrated, this theory can improve the current understanding of immunodominance, provide a novel explanation for HIV and influenza escape from humoral responses, and pave the way for a new rational design of universal vaccines.
Collapse
Affiliation(s)
- Riccardo Biavasco
- Department of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Marco De Giovanni
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Correspondence:
| |
Collapse
|
3
|
Charles T, Moss DL, Bhat P, Moore PW, Kummer NA, Bhattacharya A, Landry SJ, Mettu RR. CD4+ T-Cell Epitope Prediction by Combined Analysis of Antigen Conformational Flexibility and Peptide-MHCII Binding Affinity. Biochemistry 2022; 61:1585-1599. [PMID: 35834502 PMCID: PMC9352311 DOI: 10.1021/acs.biochem.2c00237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Antigen processing in the class II MHC pathway depends
on conventional
proteolytic enzymes, potentially acting on antigens in native-like
conformational states. CD4+ epitope dominance arises from a competition
among antigen folding, proteolysis, and MHCII binding. Protease-sensitive
sites, linear antibody epitopes, and CD4+ T-cell epitopes were mapped
in plague vaccine candidate F1-V to evaluate the various contributions
to CD4+ epitope dominance. Using X-ray crystal structures, antigen
processing likelihood (APL) predicts CD4+ epitopes with significant
accuracy for F1-V without considering peptide-MHCII binding affinity.
We also show that APL achieves excellent performance over two benchmark
antigen sets. The profiles of conformational flexibility derived from
the X-ray crystal structures of the F1-V proteins, Caf1 and LcrV,
were similar to the biochemical profiles of linear antibody epitope
reactivity and protease sensitivity, suggesting that the role of structure
in proteolysis was captured by the analysis of the crystal structures.
The patterns of CD4+ T-cell epitope dominance in C57BL/6, CBA, and
BALB/c mice were compared to epitope predictions based on APL, MHCII
binding, or both. For a sample of 13 diverse antigens, the accuracy
of epitope prediction by the combination of APL and I-Ab-MHCII-peptide affinity reached 36%. When MHCII allele specificity
was also diverse, such as in human immunity, prediction of dominant
epitopes by APL alone reached 42% when using a stringent scoring threshold.
Because dominant CD4+ epitopes tend to occur in conformationally stable
antigen domains, crystal structures typically are available for analysis
by APL, and thus, the requirement for a crystal structure is not a
severe limitation.
Collapse
Affiliation(s)
- Tysheena Charles
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Daniel L Moss
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Pawan Bhat
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Peyton W Moore
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Nicholas A Kummer
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Avik Bhattacharya
- Department of Computer Science, Tulane University, New Orleans, Louisiana 70118, United States
| | - Samuel J Landry
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Ramgopal R Mettu
- Department of Computer Science, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
4
|
Cassotta A, Paparoditis P, Geiger R, Mettu RR, Landry SJ, Donati A, Benevento M, Foglierini M, Lewis DJM, Lanzavecchia A, Sallusto F. Deciphering and predicting CD4+ T cell immunodominance of influenza virus hemagglutinin. J Exp Med 2021; 217:151933. [PMID: 32644114 PMCID: PMC7537397 DOI: 10.1084/jem.20200206] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/21/2020] [Accepted: 05/29/2020] [Indexed: 01/07/2023] Open
Abstract
The importance of CD4+ T helper (Th) cells is well appreciated in view of their essential role in the elicitation of antibody and cytotoxic T cell responses. However, the mechanisms that determine the selection of immunodominant epitopes within complex protein antigens remain elusive. Here, we used ex vivo stimulation of memory T cells and screening of naive and memory T cell libraries, combined with T cell cloning and TCR sequencing, to dissect the human naive and memory CD4+ T cell repertoire against the influenza pandemic H1 hemagglutinin (H1-HA). We found that naive CD4+ T cells have a broad repertoire, being able to recognize naturally processed as well as cryptic peptides spanning the whole H1-HA sequence. In contrast, memory Th cells were primarily directed against just a few immunodominant peptides that were readily detected by mass spectrometry–based MHC-II peptidomics and predicted by structural accessibility analysis. Collectively, these findings reveal the presence of a broad repertoire of naive T cells specific for cryptic H1-HA peptides and demonstrate that antigen processing represents a major constraint determining immunodominance.
Collapse
Affiliation(s)
- Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Faculty of Biomedical Sciences, Bellinzona, Switzerland.,Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Philipp Paparoditis
- Institute for Research in Biomedicine, Università della Svizzera italiana, Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Roger Geiger
- Institute for Research in Biomedicine, Università della Svizzera italiana, Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Ramgopal R Mettu
- Department of Computer Science, Tulane University, New Orleans, LA
| | - Samuel J Landry
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA
| | - Alessia Donati
- Institute for Research in Biomedicine, Università della Svizzera italiana, Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Marco Benevento
- Institute for Research in Biomedicine, Università della Svizzera italiana, Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Mathilde Foglierini
- Institute for Research in Biomedicine, Università della Svizzera italiana, Faculty of Biomedical Sciences, Bellinzona, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - David J M Lewis
- Surrey Clinical Research Centre, University of Surrey, Guildford, UK
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Faculty of Biomedical Sciences, Bellinzona, Switzerland.,Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
5
|
Koblischke M, Spitzer FS, Florian DM, Aberle SW, Malafa S, Fae I, Cassaniti I, Jungbauer C, Knapp B, Laferl H, Fischer G, Baldanti F, Stiasny K, Heinz FX, Aberle JH. CD4 T Cell Determinants in West Nile Virus Disease and Asymptomatic Infection. Front Immunol 2020; 11:16. [PMID: 32038660 PMCID: PMC6989424 DOI: 10.3389/fimmu.2020.00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022] Open
Abstract
West Nile (WN) virus infection of humans is frequently asymptomatic, but can also lead to WN fever or neuroinvasive disease. CD4 T cells and B cells are critical in the defense against WN virus, and neutralizing antibodies, which are directed against the viral glycoprotein E, are an accepted correlate of protection. For the efficient production of these antibodies, B cells interact directly with CD4 helper T cells that recognize peptides from E or the two other structural proteins (capsid-C and membrane-prM/M) of the virus. However, the specific protein sites yielding such helper epitopes remain unknown. Here, we explored the CD4 T cell response in humans after WN virus infection using a comprehensive library of overlapping peptides covering all three structural proteins. By measuring T cell responses in 29 individuals with either WN virus disease or asymptomatic infection, we showed that CD4 T cells focus on peptides in specific structural elements of C and at the exposed surface of the pre- and postfusion forms of the E protein. Our data indicate that these immunodominant epitopes are recognized in the context of multiple different HLA molecules. Furthermore, we observed that immunodominant antigen regions are structurally conserved and similarly targeted in other mosquito-borne flaviviruses, including dengue, yellow fever, and Zika viruses. Together, these findings indicate a strong impact of virion protein structure on epitope selection and antigenicity, which is an important issue to consider in future vaccine design.
Collapse
Affiliation(s)
| | | | - David M Florian
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Stephan W Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Stefan Malafa
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Ingrid Fae
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Christof Jungbauer
- Blood Service for Vienna, Lower Austria and Burgenland, Austrian Red Cross, Vienna, Austria
| | | | - Hermann Laferl
- Sozialmedizinisches Zentrum Süd, Kaiser-Franz-Josef-Spital, Vienna, Austria
| | - Gottfried Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Franz X Heinz
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Judith H Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Ho JKT, Jeevan-Raj B, Netter HJ. Hepatitis B Virus (HBV) Subviral Particles as Protective Vaccines and Vaccine Platforms. Viruses 2020; 12:v12020126. [PMID: 31973017 PMCID: PMC7077199 DOI: 10.3390/v12020126] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B remains one of the major global health problems more than 40 years after the identification of human hepatitis B virus (HBV) as the causative agent. A critical turning point in combating this virus was the development of a preventative vaccine composed of the HBV surface (envelope) protein (HBsAg) to reduce the risk of new infections. The isolation of HBsAg sub-viral particles (SVPs) from the blood of asymptomatic HBV carriers as antigens for the first-generation vaccines, followed by the development of recombinant HBsAg SVPs produced in yeast as the antigenic components of the second-generation vaccines, represent landmark advancements in biotechnology and medicine. The ability of the HBsAg SVPs to accept and present foreign antigenic sequences provides the basis of a chimeric particulate delivery platform, and resulted in the development of a vaccine against malaria (RTS,S/AS01, MosquirixTM), and various preclinical vaccine candidates to overcome infectious diseases for which there are no effective vaccines. Biomedical modifications of the HBsAg subunits allowed the identification of strategies to enhance the HBsAg SVP immunogenicity to build potent vaccines for preventative and possibly therapeutic applications. The review provides an overview of the formation and assembly of the HBsAg SVPs and highlights the utilization of the particles in key effective vaccines.
Collapse
Affiliation(s)
- Joan Kha-Tu Ho
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia; (J.K.-T.H.); (B.J.-R.)
| | - Beena Jeevan-Raj
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia; (J.K.-T.H.); (B.J.-R.)
| | - Hans-Jürgen Netter
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia; (J.K.-T.H.); (B.J.-R.)
- Royal Melbourne Institute of Technology (RMIT) University, School of Science, Melbourne, Victoria 3001, Australia
- Correspondence:
| |
Collapse
|
7
|
Koblischke M, Mackroth MS, Schwaiger J, Fae I, Fischer G, Stiasny K, Heinz FX, Aberle JH. Protein structure shapes immunodominance in the CD4 T cell response to yellow fever vaccination. Sci Rep 2017; 7:8907. [PMID: 28827760 PMCID: PMC5566484 DOI: 10.1038/s41598-017-09331-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/17/2017] [Indexed: 12/25/2022] Open
Abstract
The live attenuated yellow fever (YF) vaccine is a highly effective human vaccine and induces long-term protective neutralizing antibodies directed against the viral envelope protein E. The generation of such antibodies requires the help of CD4 T cells which recognize peptides derived from proteins in virus particles internalized and processed by E-specific B cells. The CD4 T helper cell response is restricted to few immunodominant epitopes, but the mechanisms of their selection are largely unknown. Here, we report that CD4 T cell responses elicited by the YF-17D vaccine are focused to hotspots of two helices of the viral capsid protein and to exposed strands and loops of E. We found that the locations of immunodominant epitopes within three-dimensional protein structures exhibit a high degree of overlap between YF virus and the structurally homologous flavivirus tick-borne encephalitis virus, although amino acid sequence identity of the epitope regions is only 15-45%. The restriction of epitopes to exposed E protein surfaces and their strikingly similar positioning within proteins of distantly related flaviviruses are consistent with a strong influence of protein structure that shapes CD4 T cell responses and provide leads for a rational design of immunogens for vaccination.
Collapse
Affiliation(s)
| | - Maria S Mackroth
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Schwaiger
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Ingrid Fae
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Gottfried Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Franz X Heinz
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Judith H Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Mettu RR, Charles T, Landry SJ. CD4+ T-cell epitope prediction using antigen processing constraints. J Immunol Methods 2016; 432:72-81. [PMID: 26891811 DOI: 10.1016/j.jim.2016.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 12/10/2015] [Accepted: 02/11/2016] [Indexed: 02/02/2023]
Abstract
T-cell CD4+ epitopes are important targets of immunity against infectious diseases and cancer. State-of-the-art methods for MHC class II epitope prediction rely on supervised learning methods in which an implicit or explicit model of sequence specificity is constructed using a training set of peptides with experimentally tested MHC class II binding affinity. In this paper we present a novel method for CD4+ T-cell eptitope prediction based on modeling antigen-processing constraints. Previous work indicates that dominant CD4+ T-cell epitopes tend to occur adjacent to sites of initial proteolytic cleavage. Given an antigen with known three-dimensional structure, our algorithm first aggregates four types of conformational stability data in order to construct a profile of stability that allows us to identify regions of the protein that are most accessible to proteolysis. Using this profile, we then construct a profile of epitope likelihood based on the pattern of transitions from unstable to stable regions. We validate our method using 35 datasets of experimentally measured CD4+ T cell responses of mice bearing I-Ab or HLA-DR4 alleles as well as of human subjects. Overall, our results show that antigen processing constraints provide a significant source of predictive power. For epitope prediction in single-allele systems, our approach can be combined with sequence-based methods, or used in instances where little or no training data is available. In multiple-allele systems, sequence-based methods can only be used if the allele distribution of a population is known. In contrast, our approach does not make use of MHC binding prediction, and is thus agnostic to MHC class II genotypes.
Collapse
Affiliation(s)
- Ramgopal R Mettu
- Department of Computer Science, Tulane University, New Orleans, LA, USA; Vector-Borne Infectious Diseases Research Center, Tulane University, New Orleans, LA, USA.
| | - Tysheena Charles
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Samuel J Landry
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| |
Collapse
|
9
|
Nguyen HNP, Steede NK, Robinson JE, Landry SJ. Conformational instability governed by disulfide bonds partitions the dominant from subdominant helper T-cell responses specific for HIV-1 envelope glycoprotein gp120. Vaccine 2015; 33:2887-96. [PMID: 25944298 DOI: 10.1016/j.vaccine.2015.04.082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/30/2015] [Accepted: 04/22/2015] [Indexed: 01/07/2023]
Abstract
Most individuals infected with human immunodeficiency virus type 1 (HIV-1) generate a CD4(+) T-cell response that is dominated by a few epitopes. Immunodominance may be counterproductive because a broad CD4(+) T-cell response is associated with reduced viral load. Previous studies indicated that antigen three-dimensional structure controls antigen processing and presentation and therefore CD4(+) T-cell epitope dominance. Dominant epitopes occur adjacent to the V1-V2, V3, and V4 loops because proteolytic antigen processing in the loops promotes presentation of adjacent sequences. In this study, three gp120 (strain JR-FL) variants were constructed, in which deletions of single outer-domain disulfide bonds were expected to introduce local conformational flexibility and promote presentation of additional CD4(+) T-cell epitopes. Following mucosal immunization of C57BL/6 mice with wild-type or variant gp120 lacking the V3-flanking disulfide bond, the typical pattern of dominant epitopes was observed, suggesting that the disulfide bond posed no barrier to antigen presentation. In mice that lacked gamma interferon-inducible lysosomal thioreductase (GILT), proliferative responses to the typically dominant epitopes of gp120 were selectively depressed, and the dominance pattern was rearranged. Deletion of the V3-flanking disulfide bond or one of the V4-flanking disulfide bonds partially restored highly proliferative responses to the typically dominant epitopes. These results reveal an acute dependence of dominant CD4(+) T-cell responses on the native gp120 conformation.
Collapse
Affiliation(s)
- Hong-Nam P Nguyen
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - N Kalaya Steede
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - James E Robinson
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, USA
| | - Samuel J Landry
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| |
Collapse
|
10
|
Comprehensive analysis of contributions from protein conformational stability and major histocompatibility complex class II-peptide binding affinity to CD4+ epitope immunogenicity in HIV-1 envelope glycoprotein. J Virol 2014; 88:9605-15. [PMID: 24920818 DOI: 10.1128/jvi.00789-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED Helper T-cell epitope dominance in human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 is not adequately explained by peptide binding to major histocompatibility complex (MHC) proteins. Antigen processing potentially influences epitope dominance, but few, if any, studies have attempted to reconcile the influences of antigen processing and MHC protein binding for all helper T-cell epitopes of an antigen. Epitopes of gp120 identified in both humans and mice occur on the C-terminal flanks of flexible segments that are likely to be proteolytic cleavage sites. In this study, the influence of gp120 conformation on the dominance pattern in gp120 from HIV strain 89.6 was examined in CBA mice, whose MHC class II protein has one of the most well defined peptide-binding preferences. Only one of six dominant epitopes contained the most conserved element of the I-Ak binding motif, an aspartic acid. Destabilization of the gp120 conformation by deletion of single disulfide bonds preferentially enhanced responses to the cryptic I-Ak motif-containing sequences, as reported by T-cell proliferation or cytokine secretion. Conversely, inclusion of CpG in the adjuvant with gp120 enhanced responses to the dominant CD4+ T-cell epitopes. The gp120 destabilization affected secretion of some cytokines more than others, suggesting that antigen conformation could modulate T-cell functions through mechanisms of antigen processing. IMPORTANCE CD4+ helper T cells play an essential role in protection against HIV and other pathogens. Thus, the sites of helper T-cell recognition, the dominant epitopes, are targets for vaccine design; and the corresponding T cells may provide markers for monitoring infection and immunity. However, T-cell epitopes are difficult to identify and predict. It is also unclear whether CD4+ T cells specific for one epitope are more protective than T cells specific for other epitopes. This work shows that the three-dimensional (3D) structure of an HIV protein partially determines which epitopes are dominant, most likely by controlling the breakdown of HIV into peptides. Moreover, some types of signals from CD4+ T cells are affected by the HIV protein 3D structure; and thus the protectiveness of a particular peptide vaccine could be related to its location in the 3D structure.
Collapse
|
11
|
Specificities of human CD4+ T cell responses to an inactivated flavivirus vaccine and infection: correlation with structure and epitope prediction. J Virol 2014; 88:7828-42. [PMID: 24789782 DOI: 10.1128/jvi.00196-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis (TBE) virus is endemic in large parts of Europe and Central and Eastern Asia and causes more than 10,000 annual cases of neurological disease in humans. It is closely related to the mosquito-borne yellow fever, dengue, Japanese encephalitis, and West Nile viruses, and vaccination with an inactivated whole-virus vaccine can effectively prevent clinical disease. Neutralizing antibodies are directed to the viral envelope protein (E) and an accepted correlate of immunity. However, data on the specificities of CD4(+) T cells that recognize epitopes in the viral structural proteins and thus can provide direct help to the B cells producing E-specific antibodies are lacking. We therefore conducted a study on the CD4(+) T cell response against the virion proteins in vaccinated people in comparison to TBE patients. The data obtained with overlapping peptides in interleukin-2 (IL-2) enzyme-linked immunosorbent spot (ELISpot) assays were analyzed in relation to the three-dimensional structures of the capsid (C) and E proteins as well as to epitope predictions based on major histocompatibility complex (MHC) class II peptide affinities. In the C protein, peptides corresponding to two out of four alpha helices dominated the response in both vaccinees and patients, whereas in the E protein concordance of immunodominance was restricted to peptides of a single domain (domain III). Epitope predictions were much better for C than for E and were especially erroneous for the transmembrane regions. Our data provide evidence for a strong impact of protein structural features that influence peptide processing, contributing to the discrepancies observed between experimentally determined and computer-predicted CD4(+) T cell epitopes. Importance: Tick-borne encephalitis virus is endemic in large parts of Europe and Asia and causes more than 10,000 annual cases of neurological disease in humans. It is closely related to yellow fever, dengue, Japanese encephalitis, and West Nile viruses, and vaccination with an inactivated vaccine can effectively prevent disease. Both vaccination and natural infection induce the formation of antibodies to a viral surface protein that neutralize the infectivity of the virus and mediate protection. B lymphocytes synthesizing these antibodies require help from other lymphocytes (helper T cells) which recognize small peptides derived from proteins contained in the viral particle. Which of these peptides dominate immune responses to vaccination and infection, however, was unknown. In our study we demonstrate which parts of the proteins contribute most strongly to the helper T cell response, highlight specific weaknesses of currently available approaches for their prediction, and demonstrate similarities and differences between vaccination and infection.
Collapse
|
12
|
The effect of helper epitopes and cellular localization of an antigen on the outcome of gene gun DNA immunization. Gene Ther 2014; 21:225-32. [PMID: 24385146 DOI: 10.1038/gt.2013.81] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/06/2013] [Accepted: 12/03/2013] [Indexed: 11/08/2022]
Abstract
In DNA vaccination, CD4(+) T-cell help can be enhanced by fusion of a gene encoding an immunization protein with a foreign gene or its part providing T(h) epitopes. To study the effect of helper epitope localization in a protein molecule, the influence of the vicinity of the helper epitope, and the impact of chimeric protein cellular localization, we fused the helper epitope p30 from tetanus toxin (TT, aa 947-967) with the N- or C-terminus of the mutated E7 oncoprotein (E7GGG) of human papillomavirus type 16, enlarged the p30 epitope with the flanking residues containing potential protease-sensitive sites and altered the cellular localization of the fusion constructs by signal sequences. The p30 epitope enhanced the E7-specific response, but only in constructs without added signal sequences. After localization of the fusion proteins into the endoplasmic reticulum and endo/lysosomal compartment, the TT-specific T(h)2 response was increased. The synthetic Pan DR epitope (PADRE) induced a stronger E7-specific response than the p30 epitope and its stimulatory effect was not limited to nuclear/cytoplasmic localization of the E7 antigen. These results suggest that in the optimization of immune responses by adding helper epitopes to DNA vaccines delivered by the gene gun, the cellular localization of the antigen needs to be taken into account.
Collapse
|
13
|
Ghosh M, Solanki AK, Roy K, Dhoke RR, Ashish, Roy S. Carrier protein influences immunodominance of a known epitope: implication in peptide vaccine design. Vaccine 2013; 31:4682-8. [PMID: 23928464 DOI: 10.1016/j.vaccine.2013.06.110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/10/2013] [Accepted: 06/14/2013] [Indexed: 11/29/2022]
Abstract
We investigated how the processing of a given antigen by antigen presenting cells (APC) is dictated by the conformation of the antigen and how this governs the immunodominance hierarchy. To address the question, a known immunodominant sequence of bacteriophage lambda repressor N-terminal sequence 12-26 [λR(12-26)] was engineered at the N and C termini of a heterologous leishmanial protein, Kinetoplastid membrane protein-11 (KMP-11); the resulting proteins were defined as N-KMP-11 and C-KMP-11 respectively. The presence of λR(12-26) in N-KMP-11 and C-KMP-11 was established by western blot analysis with antibody to λR(12-26) peptide. N-KMP-11 but not C-KMP-11 could stimulate the anti λR(12-26) T-cell clonal population very efficiently in the presence of APCs. Priming of BALB/c mice with N-KMP-11 or C-KMP-11 generated similar levels of anti-KMP-11 IgG, but anti-λR(12-26) specific IgG was observed only upon priming with N-KMP-11. Interestingly, uptake of both N-KMP-11 and C-KMP-11 by APCs was similar but catabolism of N-KMP-11 but not C-KMP-11 was biphasic and fast at the initial time point. Kratky plots of small angle X-ray scattering showed that while N-KMP-11 adopts flexible Gaussian type of topology, C-KMP-11 prefers Globular nature. To show that KMP-11 is not unique as a carrier protein, an epitope (SPITBTNLBTMBK) of Plasmodium yoelii (PY) apical membrane protein 1[AMA-1 (136-148)], is placed at the C and N terminals of a dominant T-cell epitope of ovalbumin protein OVA(323-339) and the resulting peptides are defined as PY-OVA and OVA-PY respectively. Interestingly, only OVA-PY could stimulate anti-OVA T-cells and produce IgG response upon priming of BALB/c mice with it. Thus for rational design of peptide vaccine it is important to place the dominant epitope appropriately in the context of the carrier protein.
Collapse
Affiliation(s)
- Moumita Ghosh
- Division of Infectious diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | | | | | | | | | | |
Collapse
|
14
|
Cheong WS, Hyakumura M, Yuen L, Warner N, Locarnini S, Netter HJ. Modulation of the immunogenicity of virus-like particles composed of mutant hepatitis B virus envelope subunits. Antiviral Res 2012; 93:209-218. [DOI: 10.1016/j.antiviral.2011.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/15/2011] [Accepted: 11/18/2011] [Indexed: 01/05/2023]
|
15
|
Broadly neutralizing DNA vaccine with specific mutation alters the antigenicity and sugar-binding activities of influenza hemagglutinin. Proc Natl Acad Sci U S A 2011; 108:3510-5. [PMID: 21321237 DOI: 10.1073/pnas.1019744108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rapid genetic drift of influenza virus hemagglutinin is an obstacle to vaccine efficacy. Previously, we found that the consensus hemagglutinin DNA vaccine (pCHA5) can only elicit moderate neutralization activities toward the H5N1 clade 2.1 and clade 2.3 viruses. Two approaches were thus taken to improve the protection broadness of CHA5. The first one was to include certain surface amino acids that are characteristic of clade 2.3 viruses to improve the protection profiles. When we immunized mice with CHA5 harboring individual mutations, the antibodies elicited by CHA5 containing P157S elicited higher neutralizing activity against the clade 2.3 viruses. Likewise, the viruses pseudotyped with hemagglutinin containing 157S became more susceptible to neutralization. The second approach was to update the consensus sequence with more recent H5N1 strains, generating a second-generation DNA vaccine pCHA5II. We showed that pCHA5II was able to elicit higher cross-neutralization activities against all H5N1 viruses. Comparison of the neutralization profiles of CHA5 and CHA5II, and the animal challenge studies, revealed that CHA5II induced the broadest protection profile. We concluded that CHA5II combined with electroporation delivery is a promising strategy to induce antibodies with broad cross-reactivities against divergent H5N1 influenza viruses.
Collapse
|
16
|
Influence of disulfide-stabilized structure on the specificity of helper T-cell and antibody responses to HIV envelope glycoprotein gp120. J Virol 2010; 84:3303-11. [PMID: 20089653 DOI: 10.1128/jvi.02242-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD4(+) helper T cells specific for human immunodeficiency virus type 1 (HIV-1) are associated with control of viremia. Nevertheless, vaccines have had limited effectiveness thus far, in part because sequence variability and other structural features of the HIV envelope glycoprotein deflect the immune response. Previous studies indicated that CD4(+) T-cell epitope dominance is controlled by antigen three-dimensional structure through its influence on antigen processing and presentation. In this work, three disulfide bonds in the outer domain of gp120 were individually deleted in order to destabilize the local three-dimensional structure and enhance the presentation of nearby weakly immunogenic epitopes. However, upon immunization of groups of BALB/c mice, the CD4(+) T-cell response was broadly reduced for all three variants, and distinct epitope profiles emerged. For one variant, antibody titers were sharply increased, and the antibody exhibited significant CD4-blocking activity.
Collapse
|
17
|
Peptide microarray-based identification of Mycobacterium tuberculosis epitope binding to HLA-DRB1*0101, DRB1*1501, and DRB1*0401. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 17:168-75. [PMID: 19864486 DOI: 10.1128/cvi.00208-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A more effective vaccine against Mycobacterium tuberculosis is needed, and a number of M. tuberculosis vaccine candidates are currently in preclinical or clinical phase I and II studies. One of the strategies to select M. tuberculosis (protein) targets to elicit a CD8(+) or CD4(+) T-cell response is to gauge the binding of candidate peptides to major histocompatibility complex (MHC) class I or class II molecules, a prerequisite for successful peptide presentation and to expand antigen-specific T cells. We scanned 61 proteins from the M. tuberculosis proteome for potential MHC class II-presented epitopes that could serve as targets for CD4(+) T-cell responses. We constructed a peptide microarray consisting of 7,466 unique peptides derived from 61 M. tuberculosis proteins. The peptides were 15-mers overlapping by 12 amino acids. Soluble recombinant DRB1*0101 (DR1), DRB1*1501 (DR2), and DRB1*0401 (DR4) monomers were used to gauge binding to individual peptide species. Out of 7,466 peptides, 1,282, 674, and 1,854 peptides formed stable complexes with HLA-DR1, -DR2, and -DR4, respectively. Five hundred forty-four peptides bound to all three MHC class II molecules, 609 bound to only two, and 756 bound to only a single MHC class II molecule. This allowed us to rank M. tuberculosis proteins by epitope density. M. tuberculosis proteins contained "hot spots," i.e., regions with enriched MHC class II binding epitopes. Two hundred twenty-two peptides that formed MHC class II-peptide complexes had previously been described as exclusively recognized by IgG in sera from patients with active pulmonary tuberculosis, but not in sera from healthy individuals, suggesting that these peptides serve as B-cell and CD4(+) T-cell epitopes. This work helps to identify not only M. tuberculosis peptides with immunogenic potential, but also the most immunogenic proteins. This information is useful for vaccine design and the development of future tools to explore immune responses to M. tuberculosis.
Collapse
|
18
|
Babon JAB, Cruz J, Orphin L, Pazoles P, Co MDT, Ennis FA, Terajima M. Genome-wide screening of human T-cell epitopes in influenza A virus reveals a broad spectrum of CD4(+) T-cell responses to internal proteins, hemagglutinins, and neuraminidases. Hum Immunol 2009; 70:711-21. [PMID: 19524006 DOI: 10.1016/j.humimm.2009.06.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/01/2009] [Accepted: 06/03/2009] [Indexed: 12/16/2022]
Abstract
We performed a genome-wide screening for T-cell epitopes using synthetic peptides that encompass all of the influenza A viral proteins, including subtype variants for hemagglutinin (HA; H1, H3, and H5) and neuraminidase (NA; human and avian N1 and N2) proteins, based on the sequence information of recently circulating strains. We identified a total of 83 peptides, 54 of them novel, to which specific T cells were detectable in interferon-gamma (IFN-gamma) enzyme-linked immunosorbent spot assays using peripheral blood mononuclear cells from four healthy adult donors. The surface glycoproteins, HA and NA, major components of vaccines, expressed many T-cell epitopes. HA and matrix protein 1 expressed more T-cell epitopes than other viral proteins, most of which were recognized by CD4(+) T cells. We established several cytotoxic CD4(+) T-cell lines from these donors. We also analyzed H1 and H3 HA-specific T-cell responses using the peripheral blood mononuclear cells of 30 hospital workers. Fifty-three percent of donors gave a positive response to H3 HA peptides, whereas 17% gave a positive response to H1 HA peptides. Our genome-wide screening is useful in identifying T-cell epitopes and is complementary to the approach based on the predicted binding peptides to well-studied HLA-A, -B, and -DR alleles.
Collapse
Affiliation(s)
- Jenny Aurielle B Babon
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Melton SJ, Landry SJ. Three dimensional structure directs T-cell epitope dominance associated with allergy. Clin Mol Allergy 2008; 6:9. [PMID: 18793409 PMCID: PMC2553403 DOI: 10.1186/1476-7961-6-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 09/15/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CD4+ T-cell epitope immunodominance is not adequately explained by peptide selectivity in class II major histocompatibility proteins, but it has been correlated with adjacent segments of conformational flexibility in several antigens. METHODS The published T-cell responses to two venom allergens and two aeroallergens were used to construct profiles of epitope dominance, which were correlated with the distribution of conformational flexibility, as measured by crystallographic B factors, solvent-accessible surface, COREX residue stability, and sequence entropy. RESULTS Epitopes associated with allergy tended to be excluded from and lie adjacent to flexible segments of the allergen. CONCLUSION During the initiation of allergy, the N- and/or C-terminal ends of proteolytic processing intermediates were preferentially loaded into antigen presenting proteins for the priming of CD4+ T cells.
Collapse
Affiliation(s)
- Scott J Melton
- Biomedical Sciences Graduate Program, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA.
| | | |
Collapse
|