1
|
Saribas AS, Coric P, Bouaziz S, Safak M. Expression of novel proteins by polyomaviruses and recent advances in the structural and functional features of agnoprotein of JC virus, BK virus, and simian virus 40. J Cell Physiol 2018; 234:8295-8315. [PMID: 30390301 DOI: 10.1002/jcp.27715] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/18/2018] [Indexed: 12/30/2022]
Abstract
Polyomavirus family consists of a highly diverse group of small DNA viruses. The founding family member (MPyV) was first discovered in the newborn mouse in the late 1950s, which induces solid tumors in a wide variety of tissue types that are the epithelial and mesenchymal origin. Later, other family members were also isolated from a number of mammalian, avian and fish species. Some of these viruses significantly contributed to our current understanding of the fundamentals of modern biology such as transcription, replication, splicing, RNA editing, and cell transformation. After the discovery of first two human polyomaviruses (JC virus [JCV] and BK virus [BKV]) in the early 1970s, there has been a rapid expansion in the number of human polyomaviruses in recent years due to the availability of the new technologies and brought the present number to 14. Some of the human polyomaviruses cause considerably serious human diseases, including progressive multifocal leukoencephalopathy, polyomavirus-associated nephropathy, Merkel cell carcinoma, and trichodysplasia spinulosa. Emerging evidence suggests that the expression of the polyomavirus genome is more complex than previously thought. In addition to encoding universally expressed regulatory and structural proteins (LT-Ag, Sm t-Ag, VP1, VP2, and VP3), some polyomaviruses express additional virus-specific regulatory proteins and microRNAs. This review summarizes the recent advances in polyomavirus genome expression with respect to the new viral proteins and microRNAs other than the universally expressed ones. In addition, a special emphasis is devoted to the recent structural and functional discoveries in the field of polyomavirus agnoprotein which is expressed only by JCV, BKV, and simian virus 40 genomes.
Collapse
Affiliation(s)
- A Sami Saribas
- Laboratory of Molecular Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Pascale Coric
- Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, Sorbonne Paris Cité, UMR 8015 CNRS, Paris, France
| | - Serge Bouaziz
- Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, Sorbonne Paris Cité, UMR 8015 CNRS, Paris, France
| | - Mahmut Safak
- Laboratory of Molecular Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Abstract
Viroporins are short polypeptides encoded by viruses. These small membrane proteins assemble into oligomers that can permeabilize cellular lipid bilayers, disrupting the physiology of the host to the advantage of the virus. Consequently, efforts during the last few decades have been focused towards the discovery of viroporin channel inhibitors, but in general these have not been successful to produce licensed drugs. Viroporins are also involved in viral pathogenesis by engaging in critical interactions with viral proteins, or disrupting normal host cellular pathways through coordinated interactions with host proteins. These protein-protein interactions (PPIs) may become alternative attractive drug targets for the development of antivirals. In this sense, while thus far most antiviral molecules have targeted viral proteins, focus is moving towards targeting host proteins that are essential for virus replication. In principle, this largely would overcome the problem of resistance, with the possibility of using repositioned existing drugs. The precise role of these PPIs, their strain- and host- specificities, and the structural determination of the complexes involved, are areas that will keep the fields of virology and structural biology occupied for years to come. In the present review, we provide an update of the efforts in the characterization of the main PPIs for most viroporins, as well as the role of viroporins in these PPIs interactions.
Collapse
Affiliation(s)
| | - David Bhella
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
3
|
Saribas AS, Coric P, Hamazaspyan A, Davis W, Axman R, White MK, Abou-Gharbia M, Childers W, Condra JH, Bouaziz S, Safak M. Emerging From the Unknown: Structural and Functional Features of Agnoprotein of Polyomaviruses. J Cell Physiol 2016; 231:2115-27. [PMID: 26831433 DOI: 10.1002/jcp.25329] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/01/2016] [Indexed: 12/15/2022]
Abstract
Agnoprotein is an important regulatory protein of polyomaviruses, including JCV, BKV, and SV40. In the absence of its expression, these viruses are unable to sustain their productive life cycle. It is a highly basic phosphoprotein that localizes mostly to the perinuclear area of infected cells, although a small amount of the protein is also found in nucleus. Much has been learned about the structure and function of this important regulatory protein in recent years. It forms highly stable dimers/oligomers in vitro and in vivo through its Leu/Ile/Phe-rich domain. Structural NMR studies revealed that this domain adopts an alpha-helix conformation and plays a critical role in the stability of the protein. It associates with cellular proteins, including YB-1, p53, Ku70, FEZ1, HP1α, PP2A, AP-3, PCNA, and α-SNAP; and viral proteins, including small t antigen, large T antigen, HIV-1 Tat, and JCV VP1; and significantly contributes the viral transcription and replication. This review summarizes the recent advances in the structural and functional properties of this important regulatory protein. J. Cell. Physiol. 231: 2115-2127, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- A Sami Saribas
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Pascale Coric
- Université Paris Descartes, Sorbonne Paris Cité, Laboratoire de Cristallographie et RMN Biologiques, 4 av. de l'Observatoire, Paris, France
| | - Anahit Hamazaspyan
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - William Davis
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Rachel Axman
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Martyn K White
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Magid Abou-Gharbia
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Wayne Childers
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Jon H Condra
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Serge Bouaziz
- Université Paris Descartes, Sorbonne Paris Cité, Laboratoire de Cristallographie et RMN Biologiques, 4 av. de l'Observatoire, Paris, France
| | - Mahmut Safak
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Delbue S, Elia F, Signorini L, Bella R, Villani S, Marchioni E, Ferrante P, Phan TG, Delwart E. Human polyomavirus 6 DNA in the cerebrospinal fluid of an HIV-positive patient with leukoencephalopathy. J Clin Virol 2015; 68:24-7. [PMID: 26071330 DOI: 10.1016/j.jcv.2015.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Leukoencephalopathies in HAART-treated, HIV-positive patients include progressive multifocal leukoencephalopathy (PML), a result of lytic infection oligodendrocytes by JC polyomavirus (JCV), and another form characterized by the absence of JCV genome in cerebrospinal fluid (CSF). OBJECTIVES To test the potential viral etiology of JCV-negative leukoencephalopathy. STUDY DESIGN CSF was collected from 43 HIV-positive patients with MRI suggestive of leukoencephalopathies. DNA was isolated and real-time PCR assays for neurotropic viruses (Herpes Simplex Viruses 1/2, Varicella Zoster Virus, Epstein Barr Virus, Human Cytomegalovirus, Human Herpesvirus 6, JCV and HIV) were conducted. CSF from 14 non-reactive cases were subjected to random nucleic acid amplification, deep sequencing, and in silico search for viral sequences. RESULTS JCV genome was detected in the CSF of 19/43 PML patients, HIV genome in the CSF of 5 PML patients including 2 JCV negative patients, and no viruses were detected in 22 patients. Human Polyomavirus 6 (HPyV6) DNA was detected by deep sequencing in one JCV-negative leukoencephalopathy CSF sample. CONCLUSIONS HPyV6 DNA was detected in CSF of a case of demyelinating disease. HPyV6 has not been previously reported in CSF or associated with any disease. Demonstrating a causative role will require further studies.
Collapse
Affiliation(s)
- Serena Delbue
- Laboratory of Translational Medicine, Department of Biomedical, Surgical and Dental Sciences, University of Milano, Italy.
| | - Francesca Elia
- Laboratory of Translational Medicine, Department of Biomedical, Surgical and Dental Sciences, University of Milano, Italy
| | - Lucia Signorini
- Laboratory of Translational Medicine, Department of Biomedical, Surgical and Dental Sciences, University of Milano, Italy
| | - Ramona Bella
- Laboratory of Translational Medicine, Department of Biomedical, Surgical and Dental Sciences, University of Milano, Italy
| | - Sonia Villani
- Laboratory of Translational Medicine, Department of Biomedical, Surgical and Dental Sciences, University of Milano, Italy
| | - Enrico Marchioni
- Department of General Neurology, IRCCS National Neurological Institute C. Mondino Foundation, Pavia, Italy
| | - Pasquale Ferrante
- Laboratory of Translational Medicine, Department of Biomedical, Surgical and Dental Sciences, University of Milano, Italy
| | - Tung Gia Phan
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA 94118, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA 94118, USA
| |
Collapse
|
5
|
Alosaimi B, Hampson L, He X, Maranga IO, Oliver AW, Hampson IN. Increased prevalence of JC polyomavirus in cervical carcinomas from women infected with HIV. J Med Virol 2013; 86:672-7. [DOI: 10.1002/jmv.23868] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Bandar Alosaimi
- Viral Oncology Laboratories; University of Manchester Institute of Cancer Sciences; Manchester UK
| | - Lynne Hampson
- Viral Oncology Laboratories; University of Manchester Institute of Cancer Sciences; Manchester UK
| | - Xiaotong He
- Viral Oncology Laboratories; University of Manchester Institute of Cancer Sciences; Manchester UK
| | - Innocent O. Maranga
- Department of Obstetrics and Gynaecology; University of Nairobi, Kenyatta National Hospital; Nairobi Kenya
| | - Anthony. W. Oliver
- Viral Oncology Laboratories; University of Manchester Institute of Cancer Sciences; Manchester UK
| | - Ian N. Hampson
- Viral Oncology Laboratories; University of Manchester Institute of Cancer Sciences; Manchester UK
| |
Collapse
|
6
|
Beltrami S, Gordon J. Immune surveillance and response to JC virus infection and PML. J Neurovirol 2013; 20:137-49. [PMID: 24297501 DOI: 10.1007/s13365-013-0222-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/06/2013] [Accepted: 11/13/2013] [Indexed: 01/16/2023]
Abstract
The ubiquitous human polyomavirus JC virus (JCV) is the established etiological agent of the debilitating and often fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Most healthy individuals have been infected with JCV and generate an immune response to the virus, yet remain persistently infected at subclinical levels. The onset of PML is rare in the general population, but has become an increasing concern in immunocompromised patients, where reactivation of JCV leads to uncontrolled replication in the CNS. Understanding viral persistence and the normal immune response to JCV provides insight into the circumstances which could lead to viral resurgence. Further, clues on the potential mechanisms of reactivation may be gleaned from the crosstalk among JCV and HIV-1, as well as the impact of monoclonal antibody therapies used for the treatment of autoimmune disorders, including multiple sclerosis, on the development of PML. In this review, we will discuss what is known about viral persistence and the immune response to JCV replication in immunocompromised individuals to elucidate the deficiencies in viral containment that permit viral reactivation and spread.
Collapse
Affiliation(s)
- Sarah Beltrami
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA, 19140, USA
| | | |
Collapse
|
7
|
Kim J, Yoon JH, Kim YS. HIV-1 Tat interacts with and regulates the localization and processing of amyloid precursor protein. PLoS One 2013; 8:e77972. [PMID: 24312169 PMCID: PMC3843664 DOI: 10.1371/journal.pone.0077972] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 09/07/2013] [Indexed: 12/22/2022] Open
Abstract
HIV-1 Tat protein plays various roles in virus proliferation and in the regulation of numerous host cell functions. Accumulating evidence suggests that HIV-1 Tat also plays an important role in HIV-associated neurocognitive disorders (HAND) by disrupting intracellular communication. Amyloid beta (Aβ) is generated from amyloid precursor protein (APP) and accumulates in the senile plaques of Alzheimer's disease patients. This study demonstrates that Tat interacts with APP both in vitro and in vivo, and increases the level of Aβ42 by recruiting APP into lipid rafts. Co-localization of Tat with APP in the cytosol was observed in U-87 MG cells that expressed high levels of Tat, and redistribution of APP into lipid rafts, a site of increased β- and γ-secretase activity, was demonstrated by discontinuous sucrose density gradient ultracentrifugation in the presence of Tat. Furthermore, Tat enhanced the cleavage of APP by β-secretase in vitro, resulting in 5.5-fold higher levels of Aβ42. This was consistent with increased levels of β-C-terminal fragment (β-CTF) and reduced levels of α-CTF. Moreover, stereotaxic injection of a lentiviral Tat expression construct into the hippocampus of APP/presenilin-1 (PS1) transgenic mice resulted in increased Tat-mediated production and processing of Aβ in vivo. Increased levels of Aβ42, as well as an increase in the number and size of Aβ plaques, were observed in the hippocampus following injection of Tat virus compared with mock virus. These results suggest that HIV-1 Tat may contribute to HAND by interacting with and modifying APP processing, thereby increasing Aβ production.
Collapse
Affiliation(s)
- Jiyoung Kim
- Indang Institute of Molecular Biology, Inje University, Jung-Gu, Seoul, Republic of Korea
| | - Jee-Hyun Yoon
- Department of Smart Foods and Drugs, Inje University, Jung-Gu, Seoul, Republic of Korea
| | - Yeon-Soo Kim
- Indang Institute of Molecular Biology, Inje University, Jung-Gu, Seoul, Republic of Korea
- Department of Smart Foods and Drugs, Inje University, Jung-Gu, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
8
|
Molecular biology, epidemiology, and pathogenesis of progressive multifocal leukoencephalopathy, the JC virus-induced demyelinating disease of the human brain. Clin Microbiol Rev 2012; 25:471-506. [PMID: 22763635 DOI: 10.1128/cmr.05031-11] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a debilitating and frequently fatal central nervous system (CNS) demyelinating disease caused by JC virus (JCV), for which there is currently no effective treatment. Lytic infection of oligodendrocytes in the brain leads to their eventual destruction and progressive demyelination, resulting in multiple foci of lesions in the white matter of the brain. Before the mid-1980s, PML was a relatively rare disease, reported to occur primarily in those with underlying neoplastic conditions affecting immune function and, more rarely, in allograft recipients receiving immunosuppressive drugs. However, with the onset of the AIDS pandemic, the incidence of PML has increased dramatically. Approximately 3 to 5% of HIV-infected individuals will develop PML, which is classified as an AIDS-defining illness. In addition, the recent advent of humanized monoclonal antibody therapy for the treatment of autoimmune inflammatory diseases such as multiple sclerosis (MS) and Crohn's disease has also led to an increased risk of PML as a side effect of immunotherapy. Thus, the study of JCV and the elucidation of the underlying causes of PML are important and active areas of research that may lead to new insights into immune function and host antiviral defense, as well as to potential new therapies.
Collapse
|
9
|
Agnoprotein of mammalian polyomaviruses. Virology 2012; 432:316-26. [PMID: 22726243 PMCID: PMC7111918 DOI: 10.1016/j.virol.2012.05.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/30/2012] [Accepted: 05/29/2012] [Indexed: 11/20/2022]
Abstract
Polyomaviruses are naked viruses with an icosahedral capsid that surrounds a circular double-stranded DNA molecule of about 5000 base-pairs. Their genome encodes at least five proteins: large and small tumor antigens and the capsid proteins VP1, VP2 and VP3. The tumor antigens are expressed during early stages of the viral life cycle and are implicated in the regulation of viral transcription and DNA replication, while the capsid proteins are produced later during infection. Members of the Polyomaviridae family have been isolated in birds (Avipolyomavirus) and mammals (Orthopolyomavirus and Wukipolyomavirus). Some mammalian polyomaviruses encode an additional protein, referred to as agnoprotein, which is a relatively small polypeptide that exerts multiple functions. This review discusses the structure, post-translational modifications, and functions of agnoprotein, and speculates why not all polyomaviruses express this protein.
Collapse
|
10
|
Bingham R, Ahmed N, Rangi P, Johnson M, Tyrer M, Green J. HIV encephalitis despite suppressed viraemia: a case of compartmentalized viral escape. Int J STD AIDS 2012; 22:608-9. [PMID: 21998185 DOI: 10.1258/ijsa.2011.010507] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There is increasing concern that HIV treatment failure may result from inadequate central nervous system (CNS) penetration of antiretroviral drugs, allowing compartmentalized viral replication and development of resistance. We discuss a patient who maintained a suppressed plasma viral load for four years on antiretroviral therapy (ART) before developing HIV encephalitis with a cerebrospinal fluid (CSF) HIV viral load of 861 copies/mL and newly detectable plasma viral load of 68 copies/mL. Identification of major resistance mutations to his combination therapy supported concerns that resistant HIV had developed within the CNS. His ART was changed to optimize CNS penetration, leading to maintained clinical improvement. Imaging presented demonstrates corresponding radiological improvement. The report illustrates the need to exclude CNS viral rebound or incomplete suppression in HIV patients with neurological symptoms, and suggests that the extent of this emerging problem is only beginning to be recognized as the implications of long-term peripheral HIV suppression unfold.
Collapse
Affiliation(s)
- R Bingham
- Department of Thoracic & HIV Medicine, Royal Free Hospital, London, UK.
| | | | | | | | | | | |
Collapse
|
11
|
Khiati A, Chaloin O, Muller S, Tardieu M, Horellou P. Induction of monocyte chemoattractant protein-1 (MCP-1/CCL2) gene expression by human immunodeficiency virus-1 Tat in human astrocytes is CDK9 dependent. J Neurovirol 2010; 16:150-67. [PMID: 20370601 DOI: 10.3109/13550281003735691] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) invades the brain early in infection and may cause HIV-associated dementia (HAD), which is characterized by reactive astrocytes, and macrophage and T-cell infiltrates. HIV-1 Tat protein is thought to contribute to HAD by transactivating host genes, such as that encoding monocyte chemoattractant protein-1 (MCP-1/CCL2), although its mechanisms of action are not fully understood. We investigated the molecular pathways involved in Tat-induced MCP-1/CCL2 gene expression in human astrocytes. We found that Tat induced MCP-1/CCL2 synthesis in human astrocytes infected with a lentivirus carrying the gene encoding Tat or treated with a biologically active synthetic Tat protein. The induction of MCP-1/CCL2 was independent of the nuclear factor kappaB (NF-kappaB) classical pathway, but was significantly inhibited by specific cyclin-dependent kinase 9 (cdk9) inhibitors, such as a dominant-negative mutant or siRNA. By contrast, broader-spectrum cdk inhibitors, such as roscovitine, 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRB), and flavopiridol, inhibited MCP-1/CCL2 induction by Tat. We also analyzed the effects of roscovitine, DRB, and flavopiridol on Tat-induced HIV-1 long terminal repeat (LTR) expression following the infection of astrocytes and HeLa cells. Astrocytes showed no inhibition by roscovitine, 59% inhibition by DRB, and 80% inhibition by flavopiridol. In control HeLa cells, high levels of inhibition were observed with roscovitine, DRB, and flavopiridol. We have ascertained the direct implication of cdk9 in Tat-induced MCP-1 expression by performing ChIP assay. These results demonstrate that cdk9 is involved in Tat-induced HIV-1 LTR, MCP-1/CCL2 gene expression.
Collapse
Affiliation(s)
- Abdelkader Khiati
- INSERM U802 and Université Paris-Sud 11, Faculté de médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | | | | | | | | |
Collapse
|
12
|
Lisco A, Vanpouille C, Margolis L. War and peace between microbes: HIV-1 interactions with coinfecting viruses. Cell Host Microbe 2010; 6:403-8. [PMID: 19917495 DOI: 10.1016/j.chom.2009.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 10/28/2009] [Accepted: 10/28/2009] [Indexed: 12/15/2022]
Abstract
HIV-1 disrupts the homeostatic equilibrium between the host and coinfecting microbes, facilitating reactivation of persistent viruses and invasion by new viruses. These viruses usually accelerate HIV disease but occasionally create conditions detrimental for HIV-1. Understanding these phenomena may lead to anti-HIV-1 strategies that specifically target interactions between HIV-1 and coinfecting viruses.
Collapse
Affiliation(s)
- Andrea Lisco
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
13
|
Role of Tat protein in HIV neuropathogenesis. Neurotox Res 2009; 16:205-20. [PMID: 19526283 DOI: 10.1007/s12640-009-9047-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/09/2009] [Accepted: 03/09/2009] [Indexed: 12/13/2022]
Abstract
The Tat protein of the human immunodeficiency virus (HIV) has been implicated in the pathophysiology of the neurocognitive deficits associated with HIV infection. This is the earliest protein to be produced by the proviral DNA in the infected cell. The protein not only drives the regulatory regions of the virus but may also be actively released from the cell and then interact with the cell surface receptors of other uninfected cells in the brain leading to cellular dysfunction. It may also be taken up by these cells and can then activate a number of host genes. The Tat protein is highly potent and has the unique ability to travel along neuronal pathways. Importantly, its production is not impacted by the use of antiretroviral drugs once the proviral DNA has been formed. This article reviews the pleomorphic actions of Tat protein and the evidence supporting its central role in the neuropathogenesis of the HIV infection.
Collapse
|
14
|
Tan CS, Dezube BJ, Bhargava P, Autissier P, Wüthrich C, Miller J, Koralnik IJ. Detection of JC virus DNA and proteins in the bone marrow of HIV-positive and HIV-negative patients: implications for viral latency and neurotropic transformation. J Infect Dis 2009; 199:881-8. [PMID: 19434914 DOI: 10.1086/597117] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND We sought to determine the prevalence of JC virus (JCV) in bone marrow samples from human immunodeficiency virus (HIV)-positive and HIV-negative patients and to determine whether bone marrow is a site of latency and neurotropic transformation of JCV, the agent of progressive multifocal leukoencephalopathy (PML). METHODS We collected bone marrow aspirates, archival bone marrow samples, and blood and urine samples from 75 HIV-negative and 47 HIV-positive patients without PML as well as bone marrow and urine or kidney samples from 8 HIV-negative and 15 HIV-positive patients with PML. Samples were tested for JCV DNA by quantitative polymerase chain reaction and for JCV protein expression by immunohistochemical analysis. JCV regulatory regions (RRs) were characterized by sequencing. RESULTS JCV DNA was detected in bone marrow samples from 10 (13%) of 75 and 22 (47%) of 47 of the HIV-negative and HIV-positive patients without PML, respectively, compared with 3 (38%) of 8 and 4 (27%) of 15 of the HIV-negative and HIV-positive patients with PML. JCV DNA (range, 2-1081 copies/microg of cellular DNA) was detected in multiple leukocyte subpopulations of blood and bone marrow samples. JCV large T antigen, but not VP1 capsid protein, was expressed in bone marrow plasma cells. Bone marrow JCV RR sequences were similar to those usually found in the brains of patients with PML. CONCLUSIONS Bone marrow is an important reservoir and a possible site of neurotropic transformation for JCV.
Collapse
Affiliation(s)
- Chen S Tan
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Lisco A, Vanpouille C, Margolis L. Coinfecting viruses as determinants of HIV disease. Curr HIV/AIDS Rep 2009; 6:5-12. [PMID: 19149991 DOI: 10.1007/s11904-009-0002-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The human body constitutes a balanced ecosystem of its own cells together with various microbes ("host-microbe ecosystem"). The transmission of HIV-1 and the progression of HIV disease in such an ecosystem are accompanied by de novo infection by other microbes or by activation of microbes that were present in the host in homeostatic equilibrium before HIV-1 infection. In recent years, data have accumulated on the interactions of these coinfecting microbes-viruses in particular-with HIV. Coinfecting viruses generate negative and positive signals that suppress or upregulate HIV-1. We suggest that the signals generated by these viruses may largely affect HIV transmission, pathogenesis, and evolution. The study of the mechanisms of HIV interaction with coinfecting viruses may indicate strategies to suppress positive signals, enhance negative signals, and lead to the development of new and original anti-HIV therapies.
Collapse
|
16
|
Sims HS, Patel S, Barr A. Laryngeal electromyography findings in a patient with HIV, John Cunningham virus and bilateral true vocal fold motion impairment. J Natl Med Assoc 2008; 100:856-8. [PMID: 18672564 DOI: 10.1016/s0027-9684(15)31381-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We present the findings from laryngeal electromyography (EMG) on a 33-year-old HIV-positive male who presented with decreased vocal endurance and a breathy voice. Management considerations were broadened by the history of John Cunningham (JC) virus recovered from his cerebrospinal fluid and the consequent diagnosis of progressive multifocal leukoencephalopathy. We reviewed the available literature on neuropathy, HIV, JC virus and how all these factors relate to voice disturbances. We present laryngeal EMG findings, discuss the benefit of electrodiagnostic studies, and offer an algorithm for interpreting this information and applying it to create the optimal care plan for these patients. As medical management of HIV-related diseases continues to improve, more patients may present with similar circumstances.
Collapse
Affiliation(s)
- H Steven Sims
- Chicago Institute for Voice Care, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
17
|
|
18
|
Kaminski R, Darbinian N, Sawaya BE, Slonina D, Amini S, Johnson EM, Rappaport J, Khalili K, Darbinyan A. Puralpha as a cellular co-factor of Rev/RRE-mediated expression of HIV-1 intron-containing mRNA. J Cell Biochem 2008; 103:1231-45. [PMID: 17722108 PMCID: PMC2575347 DOI: 10.1002/jcb.21503] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To ensure successful replication, HIV-1 has developed a Rev-mediated RNA transport system that promotes the export of unspliced genomic RNA from nuclei to cytoplasm. This process requires the Rev responsive element (RRE) that is positioned in the viral transcript encoding Env protein, as well as in unspliced and singly spliced viral transcripts. We identified Puralpha, a single-stranded nucleic acid binding protein as a cellular partner for Rev that augments the appearance of unspliced viral RNAs in the cytoplasm. A decrease in the level of Puralpha expression by siRNA diminishes the level of Rev-dependent expression of viral RNA. Through its nucleic acid binding domain, Puralpha exhibits the ability to interact with the multimerization and RBD domains of Rev. Similar to Rev, Puralpha associates with RRE and in the presence of Rev forms a complex with slower electrophoretic mobility than those from Rev:RRE and Puralpha:RRE. The interaction of Puralpha with RRE occurs in the cytoplasm where enhanced association of Rev with RRE is observed. Our data indicate that the partnership of Puralpha with Rev is beneficial for Rev-mediated expression of the HIV-1 genome.
Collapse
Affiliation(s)
- Rafal Kaminski
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | | | | | | | | | |
Collapse
|