1
|
Kondo H, Botella L, Suzuki N. Mycovirus Diversity and Evolution Revealed/Inferred from Recent Studies. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:307-336. [PMID: 35609970 DOI: 10.1146/annurev-phyto-021621-122122] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-throughput virome analyses with various fungi, from cultured or uncultured sources, have led to the discovery of diverse viruses with unique genome structures and even neo-lifestyles. Examples in the former category include splipalmiviruses and ambiviruses. Splipalmiviruses, related to yeast narnaviruses, have multiple positive-sense (+) single-stranded (ss) RNA genomic segments that separately encode the RNA-dependent RNA polymerase motifs, the hallmark of RNA viruses (members of the kingdom Orthornavirae). Ambiviruses appear to have an undivided ssRNA genome of 3∼5 kb with two large open reading frames (ORFs) separated by intergenic regions. Another narna-like virus group has two fully overlapping ORFs on both strands of a genomic segment that span more than 90% of the genome size. New virus lifestyles exhibited by mycoviruses include the yado-kari/yado-nushi nature characterized by the partnership between the (+)ssRNA yadokarivirus and an unrelated dsRNA virus (donor of the capsid for the former) and the hadaka nature of capsidless 10-11 segmented (+)ssRNA accessible by RNase in infected mycelial homogenates. Furthermore, dsRNA polymycoviruses with phylogenetic affinity to (+)ssRNA animal caliciviruses have been shown to be infectious as dsRNA-protein complexes or deproteinized naked dsRNA. Many previous phylogenetic gaps have been filled by recently discovered fungal and other viruses, which haveprovided interesting evolutionary insights. Phylogenetic analyses and the discovery of natural and experimental cross-kingdom infections suggest that horizontal virus transfer may have occurred and continue to occur between fungi and other kingdoms.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan;
| | - Leticia Botella
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University, Brno, Czech Republic
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan;
| |
Collapse
|
2
|
Cross Talk between Viruses and Insect Cells Cytoskeleton. Viruses 2021; 13:v13081658. [PMID: 34452522 PMCID: PMC8402729 DOI: 10.3390/v13081658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/18/2022] Open
Abstract
Viruses are excellent manipulators of host cellular machinery, behavior, and life cycle, with the host cell cytoskeleton being a primordial viral target. Viruses infecting insects generally enter host cells through clathrin-mediated endocytosis or membrane fusion mechanisms followed by transport of the viral particles to the corresponding replication sites. After viral replication, the viral progeny egresses toward adjacent cells and reaches the different target tissues. Throughout all these steps, actin and tubulin re-arrangements are driven by viruses. The mechanisms used by viruses to manipulate the insect host cytoskeleton are well documented in the case of alphabaculoviruses infecting Lepidoptera hosts and plant viruses infecting Hemiptera vectors, but they are not well studied in case of other insect-virus systems such as arboviruses-mosquito vectors. Here, we summarize the available knowledge on how viruses manipulate the insect host cell cytoskeleton, and we emphasize the primordial role of cytoskeleton components in insect virus motility and the need to expand the study of this interaction.
Collapse
|
3
|
Wang Y, Qiao R, Wei C, Li Y. Rice Dwarf Virus Small RNA Profiles in Rice and Leafhopper Reveal Distinct Patterns in Cross-Kingdom Hosts. Viruses 2019; 11:v11090847. [PMID: 31547224 PMCID: PMC6784124 DOI: 10.3390/v11090847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 11/16/2022] Open
Abstract
RNA silencing has evolved as a widespread antiviral strategy in many eukaryotic organisms. Antiviral RNA silencing is mediated by virus-derived small RNAs (vsiRNAs), created by the cleavage of double-stranded viral RNA substrates by Dicer (Dcr) in animals or Dicer-like (DCL) proteins in plants. However, little is known about how the RNA silencing mechanisms of different hosts respond to the same virus infection. We performed high-throughput small RNA sequencing in Nephotettix cincticeps and Oryza sativa infected with Rice dwarf phytoreovirus and analyzed the distinct accumulation of vsiRNAs in these two hosts. The results suggested a potential branch in the evolution of antiviral RNA silencing of insect and plant hosts. The rice vsiRNAs were predominantly 21 and 22 nucleotides (nt) long, suggesting that OsDCL4 and OsDCL2 are involved in their production, whereas 21-nt vsiRNAs dominated in leafhopper, suggesting the involvement of a Dcr-2 homolog. Furthermore, we identified ~50-fold more vsiRNAs in rice than in leafhoppers, which might be partially attributable to the activity of RNA-dependent RNA polymerase 6 (RDR6) in rice and the lack of RDR genes in leafhoppers. Our data established a basis for further comparative studies on the evolution of RNA silencing-based interactions between a virus and its hosts, across kingdoms.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Rui Qiao
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chunhong Wei
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
4
|
Chen Q, Zhang L, Zhang Y, Mao Q, Wei T. Tubules of plant reoviruses exploit tropomodulin to regulate actin-based tubule motility in insect vector. Sci Rep 2017; 7:38563. [PMID: 28067229 PMCID: PMC5220352 DOI: 10.1038/srep38563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/10/2016] [Indexed: 12/13/2022] Open
Abstract
Plant reoviruses are known to exploit virion-packaging tubules formed by virus-encoding non-structural proteins for viral spread in insect vectors. Tubules are propelled by actin-based tubule motility (ABTM) to overcome membrane or tissue barriers in insect vectors. To further understand which insect factors mediate ABTM, we utilized yeast two-hybrid and bimolecular fluorescence complementation assays to test interactions between tubule protein Pns10 of rice dwarf virus (RDV), a plant reovirus, and proteins of its insect vector, the leafhopper Nephotettix cincticeps. Tropomodulin (Tmod), vitellogenin, and lipophorin precursor of N. cincticep displayed positive and strong interaction with Pns10, and actin-associated protein Tmod interacted with Pns10 in pull-down assay and the co-immunoprecipitation system. Further, we determined Pns10 tubules associated with Tmod in cultured cells and midgut of N. cincticep. The expression dynamic of Tmod was consistent with that of Pns10 and the fluctuation of RDV accumulation. Knockdown of Tmod inhibited the Pns10 expression and viral accumulation, thus decreasing the viruliferous rates of leafhopper. These results suggested that Tmod was involved in viral spread by directly interacting with Pns10 tubules, finally promoting RDV infection. This study provided direct evidence of plant reoviruses utilizing an actin-associated protein to manipulate ABTM in insect vectors, thus facilitating viral spread.
Collapse
Affiliation(s)
- Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Linghua Zhang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Yanshuang Zhang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Qianzhuo Mao
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| |
Collapse
|
5
|
Rice Dwarf Virus P2 Protein Hijacks Auxin Signaling by Directly Targeting the Rice OsIAA10 Protein, Enhancing Viral Infection and Disease Development. PLoS Pathog 2016; 12:e1005847. [PMID: 27606959 PMCID: PMC5015840 DOI: 10.1371/journal.ppat.1005847] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/06/2016] [Indexed: 12/19/2022] Open
Abstract
The phytohormone auxin plays critical roles in regulating myriads of plant growth and developmental processes. Microbe infection can disturb auxin signaling resulting in defects in these processes, but the underlying mechanisms are poorly understood. Auxin signaling begins with perception of auxin by a transient co-receptor complex consisting of an F-box transport inhibitor response 1/auxin signaling F-box (TIR1/AFB) protein and an auxin/indole-3-acetic acid (Aux/IAA) protein. Auxin binding to the co-receptor triggers ubiquitination and 26S proteasome degradation of the Aux/IAA proteins, leading to subsequent events, including expression of auxin-responsive genes. Here we report that Rice dwarf virus (RDV), a devastating pathogen of rice, causes disease symptoms including dwarfing, increased tiller number and short crown roots in infected rice as a result of reduced sensitivity to auxin signaling. The RDV capsid protein P2 binds OsIAA10, blocking the interaction between OsIAA10 and OsTIR1 and inhibiting 26S proteasome-mediated OsIAA10 degradation. Transgenic rice plants overexpressing wild-type or a dominant-negative (degradation-resistant) mutant of OsIAA10 phenocopy RDV symptoms are more susceptible to RDV infection; however, knockdown of OsIAA10 enhances the resistance of rice to RDV infection. Our findings reveal a previously unknown mechanism of viral protein reprogramming of a key step in auxin signaling initiation that enhances viral infection and pathogenesis. Auxin regulates plant growth and development through auxin signaling, which begins with the interaction of an F-box transport inhibitor response 1/auxin signaling F-box (TIR1/AFB) protein and an auxin/indole-3-acetic acid (Aux/IAA) protein co-receptor. Auxin binding to the co-receptor complex triggers ubiquitination and 26S proteasome degradation of Aux/IAA proteins, leading to a downstream signaling cascade that induces the expression of auxin-responsive genes. Auxin signaling is manipulated by plant pathogens to maximize their own multiplication, but the underlying mechanisms are poorly understood. Here we report that the P2 capsid protein encoded by Rice dwarf virus (RDV) sabotages auxin signaling by interacting with the rice Aux/IAA protein, OsIAA10, thereby shielding it from degradation and causing infected plants to display typical RDV symptoms including dwarfism, excessive tillering and stunted crown roots. Importantly, these symptoms are phenocopied by transgenic rice plants overexpressing OsIAA10 or its degradation-resistant mutant. Conversely, down-regulating OsIAA10 expression in rice led to milder RDV infection. Together these findings reveal a novel mechanism by which RDV reprograms auxin signaling, leading to enhanced viral infection.
Collapse
|
6
|
Abstract
Rice reoviruses, transmitted by leafhopper or planthopper vectors in a persistent propagative manner, seriously threaten the stability of rice production in Asia. Understanding the mechanisms that enable viral transmission by insect vectors is a key to controlling these viral diseases. This review describes current understanding of replication cycles of rice reoviruses in vector cell lines, transmission barriers, and molecular determinants of vector competence and persistent infection. Despite recent breakthroughs, such as the discoveries of actin-based tubule motility exploited by viruses to overcome transmission barriers and mutually beneficial relationships between viruses and bacterial symbionts, there are still many gaps in our knowledge of transmission mechanisms. Advances in genome sequencing, reverse genetics systems, and molecular technologies will help to address these problems. Investigating the multiple interaction systems among the virus, insect vector, insect symbiont, and plant during natural infection in the field is a central topic for future research on rice reoviruses.
Collapse
Affiliation(s)
- Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, People's Republic of China;
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China;
| |
Collapse
|
7
|
Ramos-González PL, Chabi-Jesus C, Guerra-Peraza O, Breton MC, Arena GD, Nunes MA, Kitajima EW, Machado MA, Freitas-Astúa J. Phylogenetic and Molecular Variability Studies Reveal a New Genetic Clade of Citrus leprosis virus C. Viruses 2016; 8:E153. [PMID: 27275832 PMCID: PMC4926173 DOI: 10.3390/v8060153] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/10/2016] [Accepted: 05/24/2016] [Indexed: 01/02/2023] Open
Abstract
Citrus leprosis virus C (CiLV-C) causes a severe disease affecting citrus orchards in the Western hemisphere. This study reveals the molecular variability of the virus by analyzing four genomic regions (p29, p15, MP and RNA2-intergenic region) distributed over its two RNAs. Nucleotide diversity (π) values were relatively low but statistically different over the analyzed genes and subpopulations, indicating their distinct evolutionary history. Values of πp29 and πMP were higher than those of πp15 and πRNA2-IR, whereas πMP was increased due to novel discovered isolates phylogenetically clustered in a divergent clade that we called SJP. Isolate BR_SP_SJP_01 RNA1 and RNA2 sequences, clade SJP, showed an identity of 85.6% and 88.4%, respectively, with those corresponding to CiLV-C, the type member of the genus Cilevirus, and its RNA2 5'-proximal region was revealed as a minor donor in a putative inter-clade recombination event. In addition to citrus, BR_SP_SJP_01 naturally infects the weed Commelina benghalensis and is efficiently transmitted by Brevipalpus yothersi mites. Our data demonstrated that negative selection was the major force operating in the evaluated viral coding regions and defined amino acids putatively relevant for the biological function of cilevirus proteins. This work provides molecular tools and sets up a framework for further epidemiological studies.
Collapse
Affiliation(s)
- Pedro Luis Ramos-González
- Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, São Paulo 13490-970, Brazil.
- Departamento de Bioquímica Fitopatológica, Instituto Biológico, São Paulo 04014-002, Brazil.
| | - Camila Chabi-Jesus
- Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, São Paulo 13490-970, Brazil.
- Departamento de Bioquímica Fitopatológica, Instituto Biológico, São Paulo 04014-002, Brazil.
- Departamento de Microbiologia Agrícola, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil.
| | - Orlene Guerra-Peraza
- Departamento de Bioquímica Fitopatológica, Instituto Biológico, São Paulo 04014-002, Brazil.
| | - Michèle Claire Breton
- Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, São Paulo 13490-970, Brazil.
| | - Gabriella Dias Arena
- Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, São Paulo 13490-970, Brazil.
- Instituto de Biologia, Universidade de Campinas, Campinas, São Paulo 13083-970, Brazil.
| | - Maria Andreia Nunes
- Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, São Paulo 13490-970, Brazil.
| | - Elliot Watanabe Kitajima
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil.
| | - Marcos Antonio Machado
- Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, São Paulo 13490-970, Brazil.
| | - Juliana Freitas-Astúa
- Departamento de Bioquímica Fitopatológica, Instituto Biológico, São Paulo 04014-002, Brazil.
- Embrapa Cassava and Fruits, Cruz das Almas, Bahia 44380-000, Brazil.
| |
Collapse
|
8
|
Chen Q, Zhang L, Chen H, Xie L, Wei T. Nonstructural protein Pns4 of rice dwarf virus is essential for viral infection in its insect vector. Virol J 2015; 12:211. [PMID: 26646953 PMCID: PMC4673743 DOI: 10.1186/s12985-015-0438-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/25/2015] [Indexed: 01/04/2023] Open
Abstract
Background Rice dwarf virus (RDV), a plant reovirus, is mainly transmitted by the green rice leafhopper, Nephotettix cincticeps, in a persistent-propagative manner. Plant reoviruses are thought to replicate and assemble within cytoplasmic structures called viroplasms. Nonstructural protein Pns4 of RDV, a phosphoprotein, is localized around the viroplasm matrix and forms minitubules in insect vector cells. However, the functional role of Pns4 minitubules during viral infection in insect vector is still unknown yet. Methods RNA interference (RNAi) system targeting Pns4 gene of RDV was conducted. Double-stranded RNA (dsRNA) specific for Pns4 gene was synthesized in vitro, and introduced into cultured leafhopper cells by transfection or into insect body by microinjection. The effects of the knockdown of Pns4 expression due to RNAi induced by synthesized dsRNA from Pns4 gene on viral replication and spread in cultured cells and insect vector were analyzed using immunofluorescence, western blotting or RT-PCR assays. Results In cultured leafhopper cells, the knockdown of Pns4 expression due to RNAi induced by synthesized dsRNA from Pns4 gene strongly inhibited the formation of minitubules, preventing the accumulation of viroplasms and efficient viral infection in insect vector cells. RNAi induced by microinjection of dsRNA from Pns4 gene significantly reduced the viruliferous rate of N. cincticeps. Furthermore, it also strongly inhibited the formation of minitubules and viroplasms, preventing efficient viral spread from the initially infected site in the filter chamber of intact insect vector. Conclusions Pns4 of RDV is essential for viral infection and replication in insect vector. It may directly participate in the functional role of viroplasm for viral replication and assembly of progeny virions during viral infection in leafhopper vector.
Collapse
Affiliation(s)
- Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China.
| | - Linghua Zhang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China.
| | - Hongyan Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China.
| | - Lianhui Xie
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China.
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China.
| |
Collapse
|
9
|
Chen Q, Wang H, Ren T, Xie L, Wei T. Interaction between non-structural protein Pns10 of rice dwarf virus and cytoplasmic actin of leafhoppers is correlated with insect vector specificity. J Gen Virol 2015; 96:933-938. [DOI: 10.1099/jgv.0.000022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Haitao Wang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Tangyu Ren
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Lianhui Xie
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
10
|
Wylie SJ, Li H, Saqib M, Jones MGK. The global trade in fresh produce and the vagility of plant viruses: a case study in garlic. PLoS One 2014; 9:e105044. [PMID: 25133543 PMCID: PMC4136854 DOI: 10.1371/journal.pone.0105044] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 07/20/2014] [Indexed: 11/28/2022] Open
Abstract
As cuisine becomes globalized, large volumes of fresh produce are traded internationally. The potential exists for pathogens infecting fresh produce to hitchhike to new locations and perhaps to establish there. It is difficult to identify them using traditional methods if pathogens are novel, scarce, and/or unexpected. In an attempt to overcome this limitation, we used high-throughput sequencing technology as a means of detecting all RNA viruses infecting garlic (Allium sativum L.) bulbs imported into Australia from China, the USA, Mexico, Argentina and Spain, and those growing in Australia. Bulbs tested were grown over multiple vegetative generations and all were stably infected with one or more viruses, including two species not previously recorded in Australia. Present in various combinations from 10 garlic bulbs were 41 virus isolates representing potyviruses (Onion yellow dwarf virus, Leek yellow stripe virus), carlaviruses (Shallot latent virus, Garlic common latent virus) and allexiviruses (Garlic virus A, B, C, D, and X), for which 19 complete and 22 partial genome sequences were obtained, including the first complete genome sequences of two isolates of GarVD. The most genetically distinct isolates of GarVA and GarVX described so far were identified from Mexico and Argentina, and possible scenarios explaining this are presented. The complete genome sequence of an isolate of the potexvirus Asparagus virus 3 (AV3) was obtained in Australia from wild garlic (A. vineale L.), a naturalized weed. This is first time AV3 has been identified from wild garlic and the first time it has been identified beyond China and Japan. The need for routine generic diagnosis and appropriate legislation to address the risks to primary production and wild plant communities from pathogens spread through the international trade in fresh produce is discussed.
Collapse
Affiliation(s)
- Stephen J. Wylie
- Plant Virology Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, W.A., Australia
- * E-mail:
| | - Hua Li
- Plant Virology Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, W.A., Australia
| | - Muhammad Saqib
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Michael G. K. Jones
- Plant Virology Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, W.A., Australia
| |
Collapse
|
11
|
Liu L, Jin L, Huang X, Geng Y, Li F, Qin Q, Wang R, Ji S, Zhao S, Xie QI, Wei C, Xie C, Ding B, Li YI. OsRFPH2-10, a ring-H2 finger E3 ubiquitin ligase, is involved in rice antiviral defense in the early stages of rice dwarf virus infection. MOLECULAR PLANT 2014; 7:1057-1060. [PMID: 24482434 DOI: 10.1093/mp/ssu007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Lifang Liu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Lian Jin
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Xiahe Huang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Yongtao Geng
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Feng Li
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Qingqing Qin
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Rui Wang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Shaoyi Ji
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Shanshan Zhao
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Q I Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Chunhong Wei
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Can Xie
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Biao Ding
- Department of Molecular Genetics and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Y I Li
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China.
| |
Collapse
|
12
|
Sasaya T, Nakazono-Nagaoka E, Saika H, Aoki H, Hiraguri A, Netsu O, Uehara-Ichiki T, Onuki M, Toki S, Saito K, Yatou O. Transgenic strategies to confer resistance against viruses in rice plants. Front Microbiol 2014; 4:409. [PMID: 24454308 PMCID: PMC3888933 DOI: 10.3389/fmicb.2013.00409] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/12/2013] [Indexed: 12/02/2022] Open
Abstract
Rice (Oryza sativa L.) is cultivated in more than 100 countries and supports nearly half of the world's population. Developing efficient methods to control rice viruses is thus an urgent necessity because viruses cause serious losses in rice yield. Most rice viruses are transmitted by insect vectors, notably planthoppers and leafhoppers. Viruliferous insect vectors can disperse their viruses over relatively long distances, and eradication of the viruses is very difficult once they become widespread. Exploitation of natural genetic sources of resistance is one of the most effective approaches to protect crops from virus infection; however, only a few naturally occurring rice genes confer resistance against rice viruses. Many investigators are using genetic engineering of rice plants as a potential strategy to control viral diseases. Using viral genes to confer pathogen-derived resistance against crops is a well-established procedure, and the expression of various viral gene products has proved to be effective in preventing or reducing infection by various plant viruses since the 1990s. RNA interference (RNAi), also known as RNA silencing, is one of the most efficient methods to confer resistance against plant viruses on their respective crops. In this article, we review the recent progress, mainly conducted by our research group, in transgenic strategies to confer resistance against tenuiviruses and reoviruses in rice plants. Our findings also illustrate that not all RNAi constructs against viral RNAs are equally effective in preventing virus infection and that it is important to identify the viral "Achilles' heel" gene to target for RNAi attack when engineering plants.
Collapse
Affiliation(s)
- Takahide Sasaya
- NARO Kyushu-Okinawa Agricultural Research CenterKoshi, Kumamoto, Japan
| | | | - Hiroaki Saika
- National Institute of Agrobiological SciencesTsukuba, Ibaraki, Japan
| | - Hideyuki Aoki
- Hokuriku Research Center, NARO Agricultural Research CenterJoetsu, Niigata, Japan
| | - Akihiro Hiraguri
- Graduate School of Agricultural and Life Sciences, The University of Tokyo BunkyoTokyo, Japan
| | - Osamu Netsu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo BunkyoTokyo, Japan
| | | | - Masatoshi Onuki
- NARO Kyushu-Okinawa Agricultural Research CenterKoshi, Kumamoto, Japan
| | - Seichi Toki
- National Institute of Agrobiological SciencesTsukuba, Ibaraki, Japan
| | - Koji Saito
- Hokuriku Research Center, NARO Agricultural Research CenterJoetsu, Niigata, Japan
| | - Osamu Yatou
- Hokuriku Research Center, NARO Agricultural Research CenterJoetsu, Niigata, Japan
| |
Collapse
|
13
|
Abstract
The family Reoviridae separates two subfamilies and consists of 15 genera. Fourteen viruses in three genera (Phytoreovirus, Oryzavirus, and Fijivirus) infect plants. The outbreaks of the plant-infecting reoviruses cause sometime the serious yield loss of rice and maize, and are a menace to safe and efficient food production in the Southeast Asia. The plant-infecting reoviruses are double-shelled icosahedral particles, from 50 to 80nm in diameter, and include from 10 to 12 segmented double-stranded genomic RNAs depending on the viruses. These viruses are transmitted in a persistent manner by the vector insects and replicated in both plants and in their vectors. This review provides a brief overview of the plant-infecting reoviruses and their recent research progresses including the strategy for viral controls using transgenic rice plants.
Collapse
Affiliation(s)
- Takahide Sasaya
- Agro-Environment Research Division,NARO Kyushu Okinawa Agricultural Research Center
| |
Collapse
|
14
|
Miyazaki N, Nakagawa A, Iwasaki K. Life cycle of phytoreoviruses visualized by electron microscopy and tomography. Front Microbiol 2013; 4:306. [PMID: 24137159 PMCID: PMC3797527 DOI: 10.3389/fmicb.2013.00306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/24/2013] [Indexed: 12/30/2022] Open
Abstract
Rice dwarf virus and Rice gall dwarf virus, members of the genus Phytoreovirus in the family Reoviridae,are known as agents of rice disease, because their spread results in substantial economic damage in many Asian countries. These viruses are transmitted via insect vectors, and they multiply both in the plants and in the insect vectors. Structural information about the viruses and their interactions with cellular components in the life cycle are essential for understanding viral infection and replication mechanisms. The life cycle of the viruses involves various cellular events such as cell entry, synthesis of viral genome and proteins, assembly of viral components, viral egress from infected cells, and intra- and intercellular transports. This review focuses on the major events underlying the life cycle of phytoreoviruses, which has been visualized by various electron microscopy (EM) imaging techniques, including cryo-electron microscopy and tomography, and demonstrates the advantage of the advanced EM imaging techniques to investigate the viral infection and replication mechanisms.
Collapse
Affiliation(s)
- Naoyuki Miyazaki
- Institute for Protein Research, Osaka University Osaka, Japan ; National Institute for Physiological Sciences Okazaki, Japan
| | | | | |
Collapse
|
15
|
Monjane AL, Pande D, Lakay F, Shepherd DN, van der Walt E, Lefeuvre P, Lett JM, Varsani A, Rybicki EP, Martin DP. Adaptive evolution by recombination is not associated with increased mutation rates in Maize streak virus. BMC Evol Biol 2012; 12:252. [PMID: 23268599 PMCID: PMC3556111 DOI: 10.1186/1471-2148-12-252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 12/12/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Single-stranded (ss) DNA viruses in the family Geminiviridae are proving to be very useful in real-time evolution studies. The high mutation rate of geminiviruses and other ssDNA viruses is somewhat mysterious in that their DNA genomes are replicated in host nuclei by high fidelity host polymerases. Although strand specific mutation biases observed in virus species from the geminivirus genus Mastrevirus indicate that the high mutation rates in viruses in this genus may be due to mutational processes that operate specifically on ssDNA, it is currently unknown whether viruses from other genera display similar strand specific mutation biases. Also, geminivirus genomes frequently recombine with one another and an alternative cause of their high mutation rates could be that the recombination process is either directly mutagenic or produces a selective environment in which the survival of mutants is favoured. To investigate whether there is an association between recombination and increased basal mutation rates or increased degrees of selection favoring the survival of mutations, we compared the mutation dynamics of the MSV-MatA and MSV-VW field isolates of Maize streak virus (MSV; Mastrevirus), with both a laboratory constructed MSV recombinant, and MSV recombinants closely resembling MSV-MatA. To determine whether strand specific mutation biases are a general characteristic of geminivirus evolution we compared mutation spectra arising during these MSV experiments with those arising during similar experiments involving the geminivirus Tomato yellow leaf curl virus (Begomovirus genus). RESULTS Although both the genomic distribution of mutations and the occurrence of various convergent mutations at specific genomic sites indicated that either mutation hotspots or selection for adaptive mutations might elevate observed mutation rates in MSV, we found no association between recombination and mutation rates. Importantly, when comparing the mutation spectra of MSV and TYLCV we observed similar strand specific mutation biases arising predominantly from imbalances in the complementary mutations G → T: C → A. CONCLUSIONS While our results suggest that recombination does not strongly influence mutation rates in MSV, they indicate that high geminivirus mutation rates are at least partially attributable to increased susceptibility of all geminivirus genomes to oxidative damage while in a single stranded state.
Collapse
Affiliation(s)
- Adérito L Monjane
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chen Q, Chen H, Mao Q, Liu Q, Shimizu T, Uehara-Ichiki T, Wu Z, Xie L, Omura T, Wei T. Tubular structure induced by a plant virus facilitates viral spread in its vector insect. PLoS Pathog 2012; 8:e1003032. [PMID: 23166500 PMCID: PMC3499585 DOI: 10.1371/journal.ppat.1003032] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 10/02/2012] [Indexed: 01/25/2023] Open
Abstract
Rice dwarf virus (RDV) replicates in and is transmitted by a leafhopper vector in a persistent-propagative manner. Previous cytopathologic and genetic data revealed that tubular structures, constructed by the nonstructural viral protein Pns10, contain viral particles and are directly involved in the intercellular spread of RDV among cultured leafhopper cells. Here, we demonstrated that RDV exploited these virus-containing tubules to move along actin-based microvilli of the epithelial cells and muscle fibers of visceral muscle tissues in the alimentary canal, facilitating the spread of virus in the body of its insect vector leafhoppers. In cultured leafhopper cells, the knockdown of Pns10 expression due to RNA interference (RNAi) induced by synthesized dsRNA from Pns10 gene strongly inhibited tubule formation and prevented the spread of virus among insect vector cells. RNAi induced after ingestion of dsRNA from Pns10 gene strongly inhibited formation of tubules, preventing intercellular spread and transmission of the virus by the leafhopper. All these results, for the first time, show that a persistent-propagative virus exploits virus-containing tubules composed of a nonstructural viral protein to traffic along actin-based cellular protrusions, facilitating the intercellular spread of the virus in the vector insect. The RNAi strategy and the insect vector cell culture provide useful tools to investigate the molecular mechanisms enabling efficient transmission of persistent-propagative plant viruses by vector insects.
Collapse
Affiliation(s)
- Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Hongyan Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Qianzhuo Mao
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Qifei Liu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Takumi Shimizu
- National Agricultural Research Center, Tsukuba, Ibaraki, Japan
| | | | - Zujian Wu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Lianhui Xie
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Toshihiro Omura
- National Agricultural Research Center, Tsukuba, Ibaraki, Japan
- * E-mail: (TO) (TO); (TW) (TW)
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Agricultural Research Center, Tsukuba, Ibaraki, Japan
- * E-mail: (TO) (TO); (TW) (TW)
| |
Collapse
|
17
|
Tanaka T, Eusebio-Cope A, Sun L, Suzuki N. Mycoreovirus genome alterations: similarities to and differences from rearrangements reported for other reoviruses. Front Microbiol 2012; 3:186. [PMID: 22675320 PMCID: PMC3365852 DOI: 10.3389/fmicb.2012.00186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/04/2012] [Indexed: 11/13/2022] Open
Abstract
The family Reoviridae is one of the largest virus families with genomes composed of 9-12 double-stranded RNA segments. It includes members infecting organisms from protists to humans. It is well known that reovirus genomes are prone to various types of genome alterations including intragenic rearrangement and reassortment under laboratory and natural conditions. Recently distinct genetic alterations were reported for members of the genus Mycoreovirus, Mycoreovirus 1 (MyRV1), and MyRV3 with 11 (S1-S11) and 12 genome segments (S1-S12), respectively. While MyRV3 S8 is lost during subculturing of infected host fungal strains, MyRV1 rearrangements undergo alterations spontaneously and inducibly. The inducible MyRV1 rearrangements are different from any other previous examples of reovirus rearrangements in their dependence on an unrelated virus factor, a multifunctional protein, p29, encoded by a distinct virus Cryphonectria parasitica hypovirus 1 (CHV1). A total of 5 MyRV1 variants with genome rearranged segments (S1-S3, S6 and S10) are generated in the background of a single viral strain in the presence of CHV1 p29 supplied either transgenically or by coinfection. MyRV1 S4 and S10 are rearranged, albeit very infrequently, in a CHV1 p29 independent fashion. A variant of MyRV1 with substantial deletions in both S4 and S10, generated through a combined reassortment and rearrangement approach, shows comparable replication levels to the wild-type MyRV1. In vivo and in vitro interactions of CHV1 p29 and MyRV1 VP9 are implicated in the induction of MyRV1 rearrangements. However, the mechanism underlying p29-mediated rearrangements remains largely unknown. MyRV1 S4 rearrangements spontaneously occurred independently of CHV1 p29. In the absence of reverse genetics systems for mycoreoviruses, molecular and biological characterization of these MyRV1 and MyRV3 variants contribute to functional analyses of the protein products encoded by those rearranged segments.
Collapse
Affiliation(s)
- Toru Tanaka
- Agrivirology Laboratory, Institute of Plant Science and Bioresources, Okayama University Kurashiki, Okayama, Japan
| | | | | | | |
Collapse
|
18
|
Shimizu T, Nakazono-Nagaoka E, Akita F, Uehara-Ichiki T, Omura T, Sasaya T. Immunity to Rice black streaked dwarf virus, a plant reovirus, can be achieved in rice plants by RNA silencing against the gene for the viroplasm component protein. Virus Res 2011; 160:400-3. [DOI: 10.1016/j.virusres.2011.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 05/12/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
|
19
|
The P7-1 protein of southern rice black-streaked dwarf virus, a fijivirus, induces the formation of tubular structures in insect cells. Arch Virol 2011; 156:1729-36. [DOI: 10.1007/s00705-011-1041-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/25/2011] [Indexed: 10/18/2022]
|
20
|
Sequential infection of Rice dwarf virus in the internal organs of its insect vector after ingestion of virus. Virus Res 2011; 160:389-94. [PMID: 21570430 DOI: 10.1016/j.virusres.2011.04.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 04/27/2011] [Accepted: 04/27/2011] [Indexed: 11/23/2022]
Abstract
Confocal microscopy revealed that Rice dwarf virus (RDV) initially accumulated in epithelial cells of the filter chamber of leafhopper vector Nephotettix cincticeps 2 days after acquisition access feeding on diseased plants. Subsequently, RDV accumulation progressed to the anterior midgut, and then spread to the nervous system before infection of other organs. Furthermore, RDV accumulation progressed to the visceral muscles surrounding the anterior midgut. Later, RDV accumulation was detected in other parts of the alimentary canal, salivary glands and the follicular cells of the ovarioles in viruliferous insect vector. Our results suggest that RDV may use the muscle or neural tissues for viral dissemination from the infected vector's midgut into other tissues.
Collapse
|
21
|
Tanaka T, Sun L, Tsutani K, Suzuki N. Rearrangements of mycoreovirus 1 S1, S2 and S3 induced by the multifunctional protein p29 encoded by the prototypic hypovirus Cryphonectria hypovirus 1 strain EP713. J Gen Virol 2011; 92:1949-1959. [PMID: 21508189 DOI: 10.1099/vir.0.031138-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Mycoreovirus 1 (MyRV1), a member of the family Reoviridae possessing a genome consisting of 11 dsRNA segments (S1-S11), infects the chestnut blight fungus and reduces its virulence (hypovirulence). Studies have previously demonstrated reproducible induction of intragenic rearrangements of MyRV1 S6 (S6L: almost full-length duplication) and S10 (S10ss: internal deletion of three-quarters of the ORF), mediated by the multifunctional protein p29 encoded by the prototype hypovirus, Cryphonectria hypovirus 1 (CHV1) strain EP713, of the family Hypoviridae with ssRNA genomes. The current study showed that CHV1 p29 also induced rearrangements of the three largest MyRV1 segments, S1, S2 and S3, which encode structural proteins. These rearranged segments involved in-frame extensions of almost two-thirds of the ORFs (S1L, S2L and S3L, respectively), which is rare for a reovirus rearrangement. MyRV1 variants carrying S1L, S2L or S3L always contained S10ss (MyRV1/S1L+S10ss2, MyRV1/S2L+S10ss2 or MyRV1/S3L+S10ss2). Levels of mRNAs for the rearranged and co-existing unaltered genome segments in fungal colonies infected with each of the MyRV1 variants appeared to be comparable to those for the corresponding normal segments in wild-type MyRV1-infected colonies, suggesting that the rearranged segments were fully competent for packaging and transcription. Protein products of the rearranged segments were detectable in fungal colonies infected with S2L MyRV1/S2L+S10ss2 and S3L MyRV1/S3L+S10ss2, whilst S1L-encoded protein remained undetectable. S1L, S2L and S3L were associated with enhancement of the aerial hyphae growth rate. This study has provided additional examples of MyRV1 intragenic rearrangements induced by p29, and suggests that normal S1, S2 and S3 are required for the symptoms caused by MyRV1.
Collapse
Affiliation(s)
- Toru Tanaka
- Agrivirology Laboratory, Institute of Plant Science and Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Liying Sun
- Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Kouhei Tsutani
- Agrivirology Laboratory, Institute of Plant Science and Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Nobuhiro Suzuki
- Agrivirology Laboratory, Institute of Plant Science and Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
22
|
Desbiez C, Moury B, Lecoq H. The hallmarks of "green" viruses: do plant viruses evolve differently from the others? INFECTION GENETICS AND EVOLUTION 2011; 11:812-24. [PMID: 21382520 DOI: 10.1016/j.meegid.2011.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/22/2011] [Accepted: 02/24/2011] [Indexed: 12/13/2022]
Abstract
All viruses are obligatory parasites that must develop tight interactions with their hosts to complete their infectious cycle. Viruses infecting plants share many structural and functional similarities with those infecting other organisms, particularly animals and fungi. Quantitative data regarding their evolutionary mechanisms--generation of variability by mutation and recombination, changes in populations by selection and genetic drift have been obtained only recently, and appear rather similar to those measured for animal viruses.This review presents an update of our knowledge of the phylogenetic and evolutionary characteristics of plant viruses and their relation to their plant hosts, in comparison with viruses infecting other organisms.
Collapse
Affiliation(s)
- C Desbiez
- INRA, Unité de Pathologie Végétale UR407, F-84140 Montfavet, France.
| | | | | |
Collapse
|