1
|
Kim SW, Choi YR, Park JY, Wei B, Shang K, Zhang JF, Jang HK, Cha SY, Kang M. Isolation and Genomic Characterization of Avian Reovirus From Wild Birds in South Korea. Front Vet Sci 2022; 9:794934. [PMID: 35155656 PMCID: PMC8831841 DOI: 10.3389/fvets.2022.794934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/06/2022] [Indexed: 11/16/2022] Open
Abstract
Avian reoviruses (ARVs) cause severe arthritis, tenosynovitis, pericarditis, and depressed growth in chickens, and these conditions have become increasingly frequent in recent years. Studies on the role of wild birds in the epidemiology of ARVs are insufficient. This study provides information about currently circulating ARVs in wild birds by gene detection using diagnostic RT-PCR, virus isolation, and genomic characterization. In this study, we isolated and identified 10 ARV isolates from 7,390 wild birds' fecal samples, including migratory bird species (bean goose, Eurasian teal, Indian spot-billed duck, and mallard duck) from 2015 to 2019 in South Korea. On comparing the amino acid sequences of the σC-encoding gene, most isolates, except A18-13, shared higher sequence similarity with the commercial vaccine isolate S1133 and Chinese isolates. However, the A18-13 isolate is similar to live attenuated vaccine av-S1133 and vaccine break isolates (SD09-1, LN09-1, and GX110116). For the p10- and p17-encoding genes, all isolates have identical fusion associated small transmembrane (FAST) protein and nuclear localization signal (SNL) motif to chicken-origin ARVs. Phylogenetic analysis of the amino acid sequences of the σC-encoding gene revealed that all isolates were belonged to genotypic cluster I. For the p10- and p17-encoding genes, the nucleotide sequences of all isolates indicated close relationship with commercial vaccine isolate S1133 and Chinese isolates. For the σNS-encoding gene, the nucleotide sequences of all isolates indicated close relationship with the Californian chicken-origin isolate K1600657 and belonged to chicken-origin ARV cluster. Our data indicates that wild birds ARVs were derived from the chicken farms. This finding suggests that wild birds serve as natural carriers of such viruses for domestic poultry.
Collapse
|
2
|
Porcine epidemic diarrhea virus infection blocks cell cycle and induces apoptosis in pig intestinal epithelial cells. Microb Pathog 2020; 147:104378. [PMID: 32653434 PMCID: PMC7347497 DOI: 10.1016/j.micpath.2020.104378] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/17/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is responsible for the acute infectious swine disease porcine epidemic diarrhea (PED). PED causes damage to the intestine, including villus atrophy and shedding, leading to serious economic losses to the pig industry worldwide. We carried out an in vitro study to investigate cell apoptosis and the cell cycle in a PEDV-infected host using transcriptomic shotgun sequencing (RNA-Seq) to study gene responses to PEDV infection. Results revealed that the PEDV infection reduced proliferation activity, blocked the cell cycle at S-phase and induced apoptosis in IPEC-J2 cells. The expression of gene levels related to ribosome proteins and oxidative phosphorylation were significantly up-regulated post-PEDV infection. Although the significantly down-regulated on PI3K/Akt signaling pathway post-PEDV infection, the regulator-related genes of mTOR signaling pathway exerted significantly up-regulated or down-regulated in IPEC-J2 cells. These results indicated that ribosome proteins and oxidative phosphorylation process were widely involved in the pathological changes and regulation of host cells caused by PEDV infection, and PI3K/AKT and mTOR signaling pathways played a vital role in antiviral regulation in IPEC-J2 cells. These data might provide new insights into the specific pathogenesis of PEDV infection and pave the way for the development of effective therapeutic strategies.
Collapse
|
3
|
Two novel camptothecin derivatives inhibit colorectal cancer proliferation via induction of cell cycle arrest and apoptosis in vitro and in vivo. Eur J Pharm Sci 2018; 123:546-559. [DOI: 10.1016/j.ejps.2018.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/13/2018] [Accepted: 08/13/2018] [Indexed: 12/22/2022]
|
4
|
Kumar R, Khandelwal N, Thachamvally R, Tripathi BN, Barua S, Kashyap SK, Maherchandani S, Kumar N. Role of MAPK/MNK1 signaling in virus replication. Virus Res 2018; 253:48-61. [PMID: 29864503 PMCID: PMC7114592 DOI: 10.1016/j.virusres.2018.05.028] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/16/2018] [Accepted: 05/31/2018] [Indexed: 12/23/2022]
Abstract
Viruses are known to exploit cellular signaling pathways. MAPK is a major cell signaling pathway activated by diverse group of viruses. MNK1 regulates both cap-dependent and IRES-mediated mRNA translation. This review discuss the role of MAPK, particularly the role of MNK1 in virus replication.
Viruses are obligate intracellular parasites; they heavily depend on the host cell machinery to effectively replicate and produce new progeny virus particles. Following viral infection, diverse cell signaling pathways are initiated by the cells, with the major goal of establishing an antiviral state. However, viruses have been shown to exploit cellular signaling pathways for their own effective replication. Genome-wide siRNA screens have also identified numerous host factors that either support (proviral) or inhibit (antiviral) virus replication. Some of the host factors might be dispensable for the host but may be critical for virus replication; therefore such cellular factors may serve as targets for development of antiviral therapeutics. Mitogen activated protein kinase (MAPK) is a major cell signaling pathway that is known to be activated by diverse group of viruses. MAPK interacting kinase 1 (MNK1) has been shown to regulate both cap-dependent and internal ribosomal entry sites (IRES)-mediated mRNA translation. In this review we have discuss the role of MAPK in virus replication, particularly the role of MNK1 in replication and translation of viral genome.
Collapse
Affiliation(s)
- Ram Kumar
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India; Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India
| | - Nitin Khandelwal
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India
| | - Riyesh Thachamvally
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India
| | - Bhupendra Nath Tripathi
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India
| | - Sanjay Barua
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India
| | - Sudhir Kumar Kashyap
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India
| | - Sunil Maherchandani
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India
| | - Naveen Kumar
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India.
| |
Collapse
|
5
|
Wang Q, Liu M, Yuan X, Li C, Chen S, Zhuang Y, Wu Y, Huang Y, Wu B. Transcriptomic analysis reveals the molecular mechanism of apoptosis induced by Muscovy duck reovirus. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0567-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Davies C, Ward VK. Expression of the NS5 (VPg) Protein of Murine Norovirus Induces a G1/S Phase Arrest. PLoS One 2016; 11:e0161582. [PMID: 27556406 PMCID: PMC4996510 DOI: 10.1371/journal.pone.0161582] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/08/2016] [Indexed: 11/21/2022] Open
Abstract
Murine norovirus-1 (MNV-1) is known to subvert host cell division inducing an accumulation of cells in the G0/G1 phase, creating conditions where viral replication is favored. This study identified that NS5 (VPg), is capable of inducing cell cycle arrest in the absence of viral replication or other viral proteins in an analogous manner to MNV-1 infection. NS5 expression induced an accumulation of cells in the G0/G1 phase in an asynchronous population by inhibiting progression at the G1/S restriction point. Furthermore, NS5 expression resulted in a down-regulation of cyclin A expression in asynchronous cells and inhibited cyclin A expression in cells progressing from G1 to S phase. The activity of NS5 on the host cell cycle occurs through an uncharacterized function. Amino acid substitutions of NS5(Y26A) and NS5(F123A) that inhibit the ability for NS5 to attach to RNA and recruit host eukaryotic translation initiation factors, respectively, retained the ability to induce an accumulation of cells in the G0/G1 phase as identified for wild-type NS5. To the best of our knowledge, this is the first report of a VPg protein manipulating the host cell cycle.
Collapse
Affiliation(s)
- Colin Davies
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, P. O. Box 56, Dunedin, 9054, New Zealand
| | - Vernon K. Ward
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, P. O. Box 56, Dunedin, 9054, New Zealand
- * E-mail:
| |
Collapse
|
7
|
Pliego Zamora A, Edmonds JH, Reynolds MJ, Khromykh AA, Ralph SJ. The in vitro and in vivo antiviral properties of combined monoterpene alcohols against West Nile virus infection. Virology 2016; 495:18-32. [PMID: 27152479 DOI: 10.1016/j.virol.2016.04.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/17/2016] [Accepted: 04/19/2016] [Indexed: 02/07/2023]
Abstract
West Nile Virus (WNV) is a mosquito-borne flavivirus that can cause neuroinvasive disease in humans and animals for which no therapies are currently available. We studied an established combination of monoterpene alcohols (CMA) derived from Melaleuca alternifolia, against WNV infection. The in vitro results show that CMA exhibits virucidal activity, as well as reduces the viral titres and percentage of infected cells. The antiviral mechanism of action of CMA was studied. We found that CMA did not alter the intracellular pH, neither induced apoptosis, but did induce cell cycle arrest in the G0/G1-phase although that was not the antiviral mechanism. Furthermore, we tested CMA in vivo using IRF 3(-)(/)(-)/7(-/-)mice and it was found that CMA treatment significantly delayed morbidity due to WNV infection, reduced the loss of body weight and reduced the viral titres in brain. These findings suggest that CMA could be a therapeutic agent against WNV infection.
Collapse
Affiliation(s)
- Adriana Pliego Zamora
- School of Medical Sciences, Molecular Basis of Disease, Griffith University, Queensland, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia.
| | - Judith H Edmonds
- Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - Maxwell J Reynolds
- Centre for Environment and Population Health, Griffith University, Queensland, Australia
| | - Alexander A Khromykh
- Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - Stephen J Ralph
- School of Medical Sciences, Molecular Basis of Disease, Griffith University, Queensland, Australia
| |
Collapse
|
8
|
Glycoprotein 5 of porcine reproductive and respiratory syndrome virus strain SD16 inhibits viral replication and causes G2/M cell cycle arrest, but does not induce cellular apoptosis in Marc-145 cells. Virology 2015; 484:136-145. [PMID: 26093497 DOI: 10.1016/j.virol.2015.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/23/2015] [Accepted: 05/30/2015] [Indexed: 11/24/2022]
Abstract
Cell apoptosis is common after infection with porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV GP5 has been reported to induce cell apoptosis. To further understand the role of GP5 in PRRSV induced cell apoptosis, we established Marc-145 cell lines stably expressing full-length GP5, GP5(Δ84-96) (aa 84-96 deletion), and GP5(Δ97-119) (aa 97-119 deletion). Cell proliferation, cell cycle progression, cell apoptosis and virus replication in these cell lines were evaluated. Neither truncated nor full-length GP5 induced cell apoptosis in Marc-145 cells. However, GP5(Δ97-119), but not full-length or GP5(Δ84-96), induced a cell cycle arrest at the G2/M phase resulting in a reduction in the growth of Marc-145 cells. Additionally, GP5(Δ84-96) inhibited the replication of PRRSV in Marc-145 cells through induction of IFN-β. These findings suggest that PRRSV GP5 is not responsible for inducing cell apoptosis in Marc-145 cells under these experimental conditions; however it has other important roles in virus/host cell biology.
Collapse
|
9
|
Chen WT, Wu YL, Chen T, Cheng CS, Chan HL, Chou HC, Chen YW, Yin HS. Proteomics analysis of the DF-1 chicken fibroblasts infected with avian reovirus strain S1133. PLoS One 2014; 9:e92154. [PMID: 24667214 PMCID: PMC3965424 DOI: 10.1371/journal.pone.0092154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 02/18/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Avian reovirus (ARV) is a member of the Orthoreovirus genus in the Reoviridae family. It is the etiological agent of several diseases, among which viral arthritis and malabsorption syndrome are the most commercially important, causing considerable economic losses in the poultry industry. Although a small but increasing number of reports have characterized some aspects of ARV infection, global changes in protein expression in ARV-infected host cells have not been examined. The current study used a proteomics approach to obtain a comprehensive view of changes in protein levels in host cells upon infection by ARV. METHODOLOGY AND PRINCIPAL FINDINGS The proteomics profiles of DF-1 chicken fibroblast cells infected with ARV strain S1133 were analyzed by two-dimensional differential-image gel electrophoresis. The majority of protein expression changes (≥ 1.5 fold, p<0.05) occurred at 72 h post-infection. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identified 51 proteins with differential expression levels, including 25 that were upregulated during ARV infection and 26 that were downregulated. These proteins were divided into eight groups according to biological function: signal transduction, stress response, RNA processing, the ubiquitin-proteasome pathway, lipid metabolism, carbohydrate metabolism, energy metabolism, and cytoskeleton organization. They were further examined by immunoblotting to validate the observed alterations in protein expression. CONCLUSION/SIGNIFICANCE This is the first report of a time-course proteomic analysis of ARV-infected host cells. Notably, all identified proteins involved in signal transduction, RNA processing, and the ubiquitin-proteasome pathway were downregulated in infected cells, whereas proteins involved in DNA synthesis, apoptosis, and energy production pathways were upregulated. In addition, other differentially expressed proteins were linked with the cytoskeleton, metabolism, redox regulation, and stress response. These proteomics data provide valuable information about host cell responses to ARV infection and will facilitate further studies of the molecular mechanisms underlying ARV pathogenesis.
Collapse
Affiliation(s)
- Wen-Ting Chen
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Le Wu
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ting Chen
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chao-Sheng Cheng
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsiu-Chuan Chou
- Department of Applied Science, National Hsinchu University of Education, Hsinchu, Taiwan
| | - Yi-Wen Chen
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsien-Sheng Yin
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
10
|
Songbai Z, Zhenguo D, Liang Y, Zhengjie Y, Kangcheng W, Guangpu L, Zujian W, Lianhui X. Identification and characterization of the interaction between viroplasm-associated proteins from two different plant-infecting reoviruses and eEF-1A of rice. Arch Virol 2013; 158:2031-9. [PMID: 23605590 DOI: 10.1007/s00705-013-1703-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 03/21/2013] [Indexed: 12/14/2022]
Abstract
A rice protein homologous to eukaryotic translation elongation factor 1A (eEF-1A) was found to interact with the Pns6 of rice ragged stunt virus (RRSV), the type member of the genus Oryzavirus, family Reoviridae, in yeast two-hybrid screening. The interaction between the rice protein, designated OseEF-1A, and RRSV Pns6 was confirmed by bimolecular fluorescence complementation. Besides Pns6, OseEF-1A also interacted with the viroplasm matrix protein, Pns10, of RRSV. When expressed together, OseEF-1A co-localized with RRSV Pns10 in epidermal cells of Nicotiana benthamiana. Pns6 of southern rice black-streaked dwarf virus (SRBSDV), a newly reported member of the genus Fijivirus, family Reoviridae, was the only non-structural SRBSDV protein studied here that also interacted with OseEF-1A. Like Pns6 of rice black-streaked dwarf virus (RBSDV), SRBSDV Pns6 interacted with itself and co-localized with Pns9-1 in N. benthamiana. In the presence of Pns6, OseEF-1A co-localized with Pns9-1, the putative viroplasm matrix protein of SRBSDV.
Collapse
Affiliation(s)
- Zhang Songbai
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Nonstructural protein σ1s mediates reovirus-induced cell cycle arrest and apoptosis. J Virol 2013; 87:12967-79. [PMID: 24067959 DOI: 10.1128/jvi.02080-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Reovirus nonstructural protein σ1s is implicated in cell cycle arrest at the G2/M boundary and induction of apoptosis. However, the contribution of σ1s to these effects in an otherwise isogenic viral background has not been defined. To evaluate the role of σ1s in cell cycle arrest and apoptosis, we used reverse genetics to generate a σ1s-null reovirus. Following infection with wild-type virus, we observed an increase in the percentage of cells in G2/M, whereas the proportion of cells in G2/M following infection with the σ1s-null mutant was unaffected. Similarly, we found that the wild-type virus induced substantially greater levels of apoptosis than the σ1s-null mutant. These data indicate that σ1s is required for both reovirus-induced cell cycle arrest and apoptosis. To define sequences in σ1s that mediate these effects, we engineered viruses encoding C-terminal σ1s truncations by introducing stop codons in the σ1s open reading frame. We also generated viruses in which charged residues near the σ1s amino terminus were replaced individually or as a cluster with nonpolar residues. Analysis of these mutants revealed that amino acids 1 to 59 and the amino-terminal basic cluster are required for induction of both cell cycle arrest and apoptosis. Remarkably, viruses that fail to induce cell cycle arrest and apoptosis also are attenuated in vivo. Thus, identical sequences in σ1s are required for reovirus-induced cell cycle arrest, apoptosis, and pathogenesis. Collectively, these findings provide evidence that the σ1s-mediated properties are genetically linked and suggest that these effects are mechanistically related.
Collapse
|
12
|
Li L, Gu B, Zhou F, Chi J, Feng D, Xie F, Wang F, Ma C, Li M, Wang J, Yao K. Cell cycle perturbations induced by human herpesvirus 6 infection and their effect on virus replication. Arch Virol 2013; 159:365-70. [PMID: 24013234 PMCID: PMC7086940 DOI: 10.1007/s00705-013-1826-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 07/08/2013] [Indexed: 11/28/2022]
Abstract
In this study, we demonstrate that infection of HSB-2 cells with human herpesvirus 6 (HHV-6) resulted in the accumulation of infected cells in the G2/M phase of the cell cycle. Analysis of various cell-cycle-regulatory proteins indicated that the levels of cyclins A2, B1, and E1 were increased in HHV-6-infected cells, but there was no difference in cyclin D1 levels between mock-infected and HHV-6-infected cells. Our data also showed that inducing G2/M phase arrest in cells infected by HHV-6 provided favorable conditions for viral replication.
Collapse
Affiliation(s)
- Lingyun Li
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Markussen T, Dahle MK, Tengs T, Løvoll M, Finstad ØW, Wiik-Nielsen CR, Grove S, Lauksund S, Robertsen B, Rimstad E. Sequence analysis of the genome of piscine orthoreovirus (PRV) associated with heart and skeletal muscle inflammation (HSMI) in Atlantic salmon (Salmo salar). PLoS One 2013; 8:e70075. [PMID: 23922911 PMCID: PMC3726481 DOI: 10.1371/journal.pone.0070075] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/16/2013] [Indexed: 12/20/2022] Open
Abstract
Piscine orthoreovirus (PRV) is associated with heart- and skeletal muscle inflammation (HSMI) of farmed Atlantic salmon (Salmo salar). We have performed detailed sequence analysis of the PRV genome with focus on putative encoded proteins, compared with prototype strains from mammalian (MRV T3D)- and avian orthoreoviruses (ARV-138), and aquareovirus (GCRV-873). Amino acid identities were low for most gene segments but detailed sequence analysis showed that many protein motifs or key amino acid residues known to be central to protein function are conserved for most PRV proteins. For M-class proteins this included a proline residue in μ2 which, for MRV, has been shown to play a key role in both the formation and structural organization of virus inclusion bodies, and affect interferon-β signaling and induction of myocarditis. Predicted structural similarities in the inner core-forming proteins λ1 and σ2 suggest a conserved core structure. In contrast, low amino acid identities in the predicted PRV surface proteins μ1, σ1 and σ3 suggested differences regarding cellular interactions between the reovirus genera. However, for σ1, amino acid residues central for MRV binding to sialic acids, and cleavage- and myristoylation sites in μ1 required for endosomal membrane penetration during infection are partially or wholly conserved in the homologous PRV proteins. In PRV σ3 the only conserved element found was a zinc finger motif. We provide evidence that the S1 segment encoding σ3 also encodes a 124 aa (p13) protein, which appears to be localized to intracellular Golgi-like structures. The S2 and L2 gene segments are also potentially polycistronic, predicted to encode a 71 aa- (p8) and a 98 aa (p11) protein, respectively. It is concluded that PRV has more properties in common with orthoreoviruses than with aquareoviruses.
Collapse
Affiliation(s)
- Turhan Markussen
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Maria K. Dahle
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Torstein Tengs
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Marie Løvoll
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Øystein W. Finstad
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Oslo, Norway
| | | | - Søren Grove
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Silje Lauksund
- Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| | - Børre Robertsen
- Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| | - Espen Rimstad
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Oslo, Norway
- * E-mail:
| |
Collapse
|
14
|
Key T, Read J, Nibert ML, Duncan R. Piscine reovirus encodes a cytotoxic, non-fusogenic, integral membrane protein and previously unrecognized virion outer-capsid proteins. J Gen Virol 2013; 94:1039-1050. [DOI: 10.1099/vir.0.048637-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Piscine reovirus (PRV) is a tentative new member of the family Reoviridae and has been linked to heart and skeletal muscle inflammation in farmed Atlantic salmon (Salmo salar L.). Recent sequence-based evidence suggests that PRV is about equally related to members of the genera Orthoreovirus and Aquareovirus. Sequence similarities have also suggested that PRV might encode a fusion-associated small transmembrane (FAST) protein, which in turn suggests that PRV might be the prototype of a new genus with syncytium-inducing potential. In previous support of this designation has been the absence of identifiable PRV-encoded homologues of either the virion outer-clamp protein of ortho- and aquareoviruses or the virion outer-fibre protein of most orthoreoviruses. In the current report, we have provided experimental evidence that the putative p13 FAST protein of PRV lacks the defining feature of the FAST protein family – the ability to induce syncytium formation. Instead, p13 is the first example of a cytosolic, integral membrane protein encoded by ortho- or aquareoviruses, and induces cytotoxicity in the absence of cell–cell fusion. Sequence analysis also identified signature motifs of the outer-clamp and outer-fibre proteins of other reoviruses in two of the predicted PRV gene products. Based on these findings, we conclude that PRV does not encode a FAST protein and is therefore unlikely to be a new fusogenic reovirus. The presence of a novel integral membrane protein and two previously unrecognized, essential outer-capsid proteins has important implications for the biology, evolution and taxonomic classification of this virus.
Collapse
Affiliation(s)
- Tim Key
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - Jolene Read
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - Max L. Nibert
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Roy Duncan
- Department of Pediatrics, Dalhousie University, Halifax, NS B3H4R2, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H4R2, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H4R2, Canada
| |
Collapse
|
15
|
Xu X, Zhang H, Zhang Q, Huang Y, Dong J, Liang Y, Liu HJ, Tong D. Porcine epidemic diarrhea virus N protein prolongs S-phase cell cycle, induces endoplasmic reticulum stress, and up-regulates interleukin-8 expression. Vet Microbiol 2013; 164:212-21. [PMID: 23562137 PMCID: PMC7117426 DOI: 10.1016/j.vetmic.2013.01.034] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/14/2013] [Accepted: 01/21/2013] [Indexed: 01/07/2023]
Abstract
Porcine epidemic diarrhea (PED) is an acute and highly contagious enteric disease of swine caused by porcine epidemic diarrhea virus (PEDV). The porcine intestinal epithelial cell is the PEDV target cell. In this study, we established a porcine intestinal epithelial cell (IEC) line which can stably express PEDV N protein. We also investigate the subcellular localization and function of PEDV N protein by examining its effects on cell growth, cycle progression, interleukin-8 (IL-8) expression, and survival. The results show that the PEDV N protein localizes in the endoplasmic reticulum (ER), inhibits the IEC growth and prolongs S-phase cell cycle. The S-phase is prolonged which is associated with a decrease of cyclin A transcription level and an increase of cyclin A degradation. The IEC expressing PEDV N protein can express higher levels of IL-8 than control cells. Further studies show that PEDV N protein induces ER stress and activates NF-κB, which is responsible for the up-regulation of IL-8 and Bcl-2 expression. This is the first report to demonstrate that PEDV N protein can induce cell cycle prolongation at the S-phase, ER stress and up-regulation interleukin-8 expression. These findings provide novel information on the function of the PEDV N protein and are likely to be very useful in understanding the molecular mechanisms responsible for PEDV pathogenesis.
Collapse
Affiliation(s)
- Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hellal Kort Y, Bourogâa H, Gribaa L, Scott-Algara D, Ghram A. Molecular characterization of avian reovirus isolates in Tunisia. Virol J 2013; 10:12. [PMID: 23289825 PMCID: PMC3598504 DOI: 10.1186/1743-422x-10-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 12/10/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genotype analyses of avian reoviruses isolated from organ samples collected from chickens with suspicious clinical symptoms, between 1997-2008, was based on sequences for both σC and σB genes and aligned with those published in the Genbank, making it possible to carry out studies of molecular classification and relationships. METHODS The full length of the known variable protein σC and part of the σB encoding genes, were amplified with RT-PCR, using conserved primers. PCR products were sequenced and the sequences were analyzed and aligned with avian reovirus sequences from the Genbank database. RESULTS The sequences of σC-encoding genes of all the isolated strains indicated their close relationship with the American, Chinese and Indian strains. Taking the American strain S1133 as a reference, the two Tunisian isolates 97.1 and 97.2 showed some nucleotide substitutions. For isolate 97.1, the substitution was silent whereas for strain 97.2 the mutation was at the first position of the corresponding codon and induced the substitution of the amino acid encoded. For the σB-encoding gene, the sequences of the Tunisian strains showed mutations at positions two or three of the corresponding codons, inducing substitutions of amino acids at these positions. The phylogenic trees based on σC and σB encoding genes indicated closer relationship between Tunisian, American and Taiwanese isolates of genotype I. CONCLUSION Our study describes the genotype of avian reoviruses that are not yet well characterized genetically. The characterization and classification of these viruses might be significant for understanding the epidemiology of malabsorption syndrome and viral arthritis, and improving our knowledge of the genotype of strains circulating in Tunisian flocks. Furthermore, the study of their variable pathogenicity could be extremely important in the choice of the appropriate vaccine strain to control disease.
Collapse
Affiliation(s)
- Ymene Hellal Kort
- Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis - El Manar, 13 place Pasteur, BP 74, 1002, Tunis-Belvedere, Tunisia
| | - Hager Bourogâa
- Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis - El Manar, 13 place Pasteur, BP 74, 1002, Tunis-Belvedere, Tunisia
| | - Latifa Gribaa
- Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis - El Manar, 13 place Pasteur, BP 74, 1002, Tunis-Belvedere, Tunisia
| | - Daniel Scott-Algara
- Unité de Régulation des Infections Rétrovirales, Institut Pasteur, 27 Rue Dr. Roux, 75724, Paris, France
| | - Abdeljelil Ghram
- Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis - El Manar, 13 place Pasteur, BP 74, 1002, Tunis-Belvedere, Tunisia
| |
Collapse
|
17
|
Walsh D, Mathews MB, Mohr I. Tinkering with translation: protein synthesis in virus-infected cells. Cold Spring Harb Perspect Biol 2013; 5:a012351. [PMID: 23209131 DOI: 10.1101/cshperspect.a012351] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Viruses are obligate intracellular parasites, and their replication requires host cell functions. Although the size, composition, complexity, and functions encoded by their genomes are remarkably diverse, all viruses rely absolutely on the protein synthesis machinery of their host cells. Lacking their own translational apparatus, they must recruit cellular ribosomes in order to translate viral mRNAs and produce the protein products required for their replication. In addition, there are other constraints on viral protein production. Crucially, host innate defenses and stress responses capable of inactivating the translation machinery must be effectively neutralized. Furthermore, the limited coding capacity of the viral genome needs to be used optimally. These demands have resulted in complex interactions between virus and host that exploit ostensibly virus-specific mechanisms and, at the same time, illuminate the functioning of the cellular protein synthesis apparatus.
Collapse
Affiliation(s)
- Derek Walsh
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
18
|
Chi PI, Huang WR, Lai IH, Cheng CY, Liu HJ. The p17 nonstructural protein of avian reovirus triggers autophagy enhancing virus replication via activation of phosphatase and tensin deleted on chromosome 10 (PTEN) and AMP-activated protein kinase (AMPK), as well as dsRNA-dependent protein kinase (PKR)/eIF2α signaling pathways. J Biol Chem 2012; 288:3571-84. [PMID: 23233667 DOI: 10.1074/jbc.m112.390245] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autophagy has been shown to facilitate replication or production of avian reovirus (ARV); nevertheless, how ARV induces autophagy remains largely unknown. Here, we demonstrate that the nonstructural protein p17 of ARV functions as an activator of autophagy. ARV-infected or p17-transfected cells present a fast and strong induction of autophagy, resulting in an increased level of autophagic proteins Beclin 1 and LC3-II. Although autophagy was suppressed by 3-methyladenine or shRNAs targeting autophagic proteins (Beclin 1, ATG7, and LC3) as well as by overexpression of Bcl-2, viral transcription, σC protein synthesis, and virus yield were all significantly reduced, suggesting a key role of autophagosomes in supporting ARV replication. Furthermore, we revealed for the first time that p17 positively regulates phosphatase and tensin deleted on chromosome 10 (PTEN), AMP-activated protein kinase (AMPK), and dsRNA dependent protein kinase RNA (PKR)/eIF2α signaling pathways, accompanied by down-regulation of Akt and mammalian target of rapamycin complex 1, thereby triggering autophagy. By using p53, PTEN, PKR, AMPK, and p17 short hairpin RNA (shRNA), activation of signaling pathways and LC3-II levels was significantly suppressed, suggesting that p17 triggers autophagy through activation of p53/PTEN, AMPK, and PKR signaling pathways. Furthermore, colocalization of LC3 with viral proteins (p17 and σC), p62 with LAMP2 and LC3 with Rab7 was observed under a fluorescence microscope. The expression level of p62 was increased at 18 h postinfection and then slightly decreased 24 h postinfection compared with mock infection and thapsigargin treatment. Furthermore, disruption of autophagosome-lysosome fusion by shRNAs targeting LAMP2 or Rab7a resulted in inhibition of viral protein synthesis and virus yield, suggesting that formation of autolysosome benefits virus replication. Taken together, our results suggest that ARV induces formation of autolysosome but does not induce complete autophagic flux.
Collapse
Affiliation(s)
- Pei I Chi
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | | | | | | | | |
Collapse
|
19
|
Bian T, Gibbs JD, Örvell C, Imani F. Respiratory syncytial virus matrix protein induces lung epithelial cell cycle arrest through a p53 dependent pathway. PLoS One 2012; 7:e38052. [PMID: 22662266 PMCID: PMC3360651 DOI: 10.1371/journal.pone.0038052] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/02/2012] [Indexed: 12/31/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the major cause of viral respiratory infections in children. Our previous study showed that the RSV infection induced lung epithelial cell cycle arrest, which enhanced virus replication. To address the mechanism of RSV-induced cell cycle arrest, we examined the contribution of RSV-matrix (RSV-M) protein. In this report, we show that in both the A549 cell line and primary human bronchial epithelial (PHBE) cells, transfection with RSV-M protein caused the cells to proliferate at a slower rate than in control cells. The cell cycle analysis showed that RSV-M protein induced G1 phase arrest in A549 cells, and G1 and G2/M phase arrest in PHBE cells. Interestingly, RSV-M expression induced p53 and p21 accumulation and decreased phosphorylation of retinoblastoma protein (Rb). Further, induction of cell cycle arrest by RSV-M was not observed in a p53-deficient epithelial cell line (H1299). However, cell cycle arrest was restored after transfection of p53 cDNA into H1299 cells. Taken together, these results indicate that RSV-M protein regulates lung epithelial cell cycle through a p53-dependent pathway, which enhances RSV replication.
Collapse
Affiliation(s)
- Tao Bian
- Laboratory of Respiratory Biology, National Institute of Environmental Human Science, Durham, North Carolina, United States of America
| | - John D. Gibbs
- Global Vaccines, Inc., Durham, North Carolina, United States of America
| | - Claes Örvell
- Huddinge University Hospital, Department of Clinical Virology, Karolinska Institute, Stockholm, Sweden
| | - Farhad Imani
- ViraSource Laboratories, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
20
|
Pampeno C, Hurtado A, Meruelo D. ATM kinase is activated by sindbis viral vector infection. Virus Res 2012; 166:97-102. [PMID: 22475743 DOI: 10.1016/j.virusres.2012.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 11/27/2022]
Abstract
Sindbis virus is a prototypic member of the Alphavirus genus, Togaviridae family. Sindbis replication results in cellular cytotoxicity, a feature that has been exploited by our laboratory for treatment of in vivo tumors. Understanding the interactions between Sindbis vectors and the host cell can lead to better virus production and increased efficacy of gene therapy vectors. Here we present studies investigating a possible cellular response to genotoxic effects of Sindbis vector infection. The Ataxia Telangiectasia Mutated (ATM) kinase, a sentinel against genomic and cellular stress, was activated by Sindbis vector infection at 3h post infection. ATM substrates, Mcm3 and the γH2AX histone, were subsequently phosphorylated, however, substrates involved with checkpoint arrest of DNA replication, p53, Chk1 and Chk2, were not differentially phosphorylated compared with uninfected cells. The ATM response suggests nuclear pertubation, resulting from cessation of host protein synthesis, as an early event in Sindbis vector infection.
Collapse
Affiliation(s)
- Christine Pampeno
- Gene Therapy Center, Cancer Institute and Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | | | | |
Collapse
|
21
|
Ji SQ, Yao L, Zhang XY, Li XS, Zhou LQ. Knockdown of the nucleosome binding protein 1 inhibits the growth and invasion of clear cell renal cell carcinoma cells in vitro and in vivo. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:22. [PMID: 22420896 PMCID: PMC3325891 DOI: 10.1186/1756-9966-31-22] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/15/2012] [Indexed: 12/15/2022]
Abstract
BACKGROUND The nucleosome binding protein 1 (HMGN5/NSBP1) is a member of the HMGN protein family and is highly expressed in several kinds of cancer. Nevertheless, the role of NSBP1 in clear cell renal cell carcinoma (ccRCC) remains unclear. This study aimed to confirm the oncogenic role of NSBP1 in ccRCC using in vitro and in vivo models and explore the mechanism by which NSBP1 contributes to ccRCC tumorigenesis. METHODS NSBP1 expression was detected in renal tissues from 152 ccRCC patients by immunohistochemistry, and examined in ccRCC cell lines by RT-PCR and Western blot analysis. ccRCC cells were transfected by NSBP1 RNAi and cell viability, apoptosis and invasion were detected by cell vitality test, flow cytometry and transwell assay in vitro. Xenograft in nude mice was also employed to examine the tumorigenesis of ccRCC cells depleted of NSBP1. RESULTS Immunohistostaining showed strong immunoreactivity of NSBP1 in all ccRCC tissues and NSBP1 expression level was associated with tumor grade (p = 0.04). NSBP1 expression at mRNA and protein levels was high in ccRCC cell lines. Knockdown of NSBP1 induced cell cycle arrest and apoptosis, and inhibited invasion in 786-O cells. Western blot analysis demonstrated increased expression of Bax and decreased expression of Bcl-2, CyclinB1, VEGF, VEGFR-2, MMP-2, MMP-9, c-fos and c-jun in 786-O cells depleted of NSBP1. In vivo study further showed that knockdown of NSBP1 affected the tumorigenesis of ccRCC cells in nude mice. CONCLUSIONS NSBP1 plays oncogenic role in ccRCCs by promoting cell proliferation and invasion, and could be exploited as a target for ccRCC treatment.
Collapse
Affiliation(s)
- Shi-Qi Ji
- Department of Urology, Peking University First Hospital, Beijing 100034, China
| | | | | | | | | |
Collapse
|
22
|
Lin PY, Liu HJ, Chang CD, Chang CI, Hsu JL, Liao MH, Lee JW, Shih WL. Avian reovirus S1133-induced DNA damage signaling and subsequent apoptosis in cultured cells and in chickens. Arch Virol 2011; 156:1917-29. [PMID: 21779911 DOI: 10.1007/s00705-011-1063-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 06/30/2011] [Indexed: 12/22/2022]
Abstract
In this study, intracellular signaling in ARV S1133-mediated apoptosis was investigated. A microarray was used to examine the gene expression profiles of cells upon ARV S1133 infection and ARV-encoded pro-apoptotic protein σC overexpression. The analysis indicated that in the set of DNA-damage-responsive genes, DDIT-3 and GADD45α were both upregulated by viral infection and σC overexpression. Further investigation demonstrated that both treatments caused DNA breaks, which increased the expression and/or phosphorylation of DNA damage response proteins. ROS and lipid peroxidation levels were increased, and ARV S1133 and σC caused apoptosis mediated by DNA damage signaling. ROS scavenger NAC, caffeine and an ATM-specific inhibitor significantly reduced ARV S1133- and σC-induced DNA breaks, DDIT-3 and GADD45α expression, H2AX phosphorylation, and apoptosis. Overexpression of DDIT-3 and GADD45α enhanced the oxidative stress and apoptosis induced by ARV S1133 and σC. In conclusion, our results demonstrate the involvement of the DNA-damage-signaling pathway in ARV S1133- and σC-induced apoptosis.
Collapse
Affiliation(s)
- Ping-Yuan Lin
- Graduate Institute and Department of Life Science, Tzu-Chi University, Hualien, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Huang WR, Wang YC, Chi PI, Wang L, Wang CY, Lin CH, Liu HJ. Cell entry of avian reovirus follows a caveolin-1-mediated and dynamin-2-dependent endocytic pathway that requires activation of p38 mitogen-activated protein kinase (MAPK) and Src signaling pathways as well as microtubules and small GTPase Rab5 protein. J Biol Chem 2011; 286:30780-30794. [PMID: 21705803 DOI: 10.1074/jbc.m111.257154] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Very little is known about the mechanism of cell entry of avian reovirus (ARV). The aim of this study was to explore the mechanism of ARV entry and subsequent infection. Cholesterol mainly affected the early steps of the ARV life cycle, because the presence of cholesterol before and during viral adsorption greatly blocked ARV infectivity. Although we have demonstrated that ARV facilitating p38 MAPK is beneficial for virus replication, its mechanism remains unknown. Here, we show that ARV-induced phosphorylation of caveolin-1 (Tyr(14)), dynamin-2 expression, and Rac1 activation through activation of p38 MAPK and Src in the early stage of the virus life cycle is beneficial for virus entry and productive infection. The strong inhibition by dynasore, a specific inhibitor of dynamin-2, and depletion of endogenous caveolin-1 or dynamin-2 by siRNAs as well as the caveolin-1 colocalization study implicate caveolin-1-mediated and dynamin-2-dependent endocytosis as a significant avenue of ARV entry. By means of pharmacological inhibitors, dominant negative mutants, and siRNA of various cellular proteins and signaling molecules, phosphorylation of caveolin-1, dynamin-2 expression, and Rac1 activation were suppressed, suggesting that by orchestrating p38 MAPK, Src, and Rac1 signaling cascade in the target cells, ARV creates an appropriate intracellular environment facilitating virus entry and productive infection. Furthermore, disruption of microtubules, Rab5, or endosome acidification all inhibited ARV infection, suggesting that microtubules and small GTPase Rab5, which regulate transport to early endosome, are crucial for survival of ARV and that exposure of the virus to acidic pH is required for productive infection.
Collapse
Affiliation(s)
- Wei R Huang
- Institute of Molecular Biology, National Chung Ching University, Taichung 402
| | - Ying C Wang
- Institute of Molecular Biology, National Chung Ching University, Taichung 402; Graduate Institute of Biotechnology, National Pingtung University of Science and Technology, Pingtung 912
| | - Pei I Chi
- Institute of Molecular Biology, National Chung Ching University, Taichung 402; Graduate Institute of Biotechnology, National Pingtung University of Science and Technology, Pingtung 912
| | - Lai Wang
- Institute of Molecular Biology, National Chung Ching University, Taichung 402
| | - Chi Y Wang
- Department of Veterinary Medicine, National Chung Ching University, Taichung 402
| | - Chi H Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Hung J Liu
- Institute of Molecular Biology, National Chung Ching University, Taichung 402.
| |
Collapse
|
24
|
Human herpesvirus 6 suppresses T cell proliferation through induction of cell cycle arrest in infected cells in the G2/M phase. J Virol 2011; 85:6774-83. [PMID: 21525341 DOI: 10.1128/jvi.02577-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human herpesvirus 6 (HHV-6) is an important immunosuppressive and immunomodulatory virus that primarily infects immune cells and strongly suppresses the proliferation of infected cells. However, the mechanisms responsible for the regulation and suppression mediated by HHV-6 are still unknown. In this study, we examined the ability of HHV-6A to manipulate cell cycle progression in infected cells and explored the potential molecular mechanisms. We demonstrated that infection with HHV-6A imposed a growth-inhibitory effect on HSB-2 cells by inducing cell cycle arrest at the G(2)/M phase. We then showed that the activity of the Cdc2-cyclin B1 complex was significantly decreased in HHV-6A-infected HSB-2 cells. Furthermore, we found that inactivation of Cdc2-cyclin B1 in HHV-6A-infected cells occurred through the inhibitory Tyr15 phosphorylation resulting from elevated Wee1 expression and inactivated Cdc25C. The reduction of Cdc2-cyclin B1 activity in HHV-6-infected cells was also partly due to the increased expression of the cell cycle-regulatory molecule p21 in a p53-dependent manner. In addition, HHV-6A infection activated the DNA damage checkpoint kinases Chk2 and Chk1. Our data suggest that HHV-6A infection induces G(2)/M arrest in infected T cells via various molecular regulatory mechanisms. These results further demonstrate the potential mechanisms involved in immune suppression and modulation mediated by HHV-6 infection, and they provide new insights relevant to the development of novel vaccines and immunotherapeutic approaches.
Collapse
|
25
|
Knight GL, Pugh AG, Yates E, Bell I, Wilson R, Moody CA, Laimins LA, Roberts S. A cyclin-binding motif in human papillomavirus type 18 (HPV18) E1^E4 is necessary for association with CDK-cyclin complexes and G2/M cell cycle arrest of keratinocytes, but is not required for differentiation-dependent viral genome amplification or L1 capsid protein expression. Virology 2011; 412:196-210. [PMID: 21276999 PMCID: PMC3722429 DOI: 10.1016/j.virol.2011.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 12/17/2010] [Accepted: 01/06/2011] [Indexed: 10/18/2022]
Abstract
The G2/M arrest function of human papillomavirus (HPV) E4 proteins is hypothesized to be necessary for viral genome amplification. Full-length HPV18 E1^E4 protein is essential for efficient viral genome amplification. Here we identify key determinants within a CDK-bipartite consensus recognition motif in HPV18 E1^E4 that are critical for association with active CDK-cyclin complexes and in vitro phosphorylation at the predicted CDK phosphorylation site (threonine 23). The optimal cyclin-binding sequence ((43)RRLL(46)) within this E4 motif is required for G2/M arrest of primary keratinocytes and correlates with cytoplasmic retention of cyclin B1, but not cyclin A. Disruption of this motif in the E4 ORF of HPV18 genomes, and the subsequent generation of stable cell lines in primary keratinocytes revealed that this motif was not essential for viral genome amplification or L1 capsid protein induction. We conclude that the HPV18 E4 G2/M arrest function does not play a role in early vegetative events.
Collapse
Affiliation(s)
- Gillian L. Knight
- Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Alice G. Pugh
- Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Emma Yates
- Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Ian Bell
- Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Regina Wilson
- Department of Microbiology-Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 USA
| | - Cary A. Moody
- Department of Microbiology-Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 USA
| | - Laimonis A. Laimins
- Department of Microbiology-Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 USA
| | - Sally Roberts
- Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham, B15 2TT UK
| |
Collapse
|