1
|
Kulanayake S, Singh B, Dar F, Tikoo SK. Role of Protein VII in the Production of Infectious Bovine Adenovirus-3 Virion. Viruses 2024; 16:1323. [PMID: 39205297 PMCID: PMC11359501 DOI: 10.3390/v16081323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Bovine adenovirus (BAdV)-3 genome encodes a 26 kDa core protein designated as protein VII, which localizes to the nucleus/nucleolus. The requirement of a protein VII-complementing cell line for the replication of VII-deleted BAdV-3 suggests that protein VII is required for the production of infectious progeny virions. An analysis of the BAV.VIId+ virus (only phenotypically positive for protein VII) detected no noticeable differences in the expression and incorporation of viral proteins in the virions. Moreover, protein VII does not appear to be essential for the formation of mature BAV.VIId+. However, protein VII appeared to be required for the efficient assembly of mature BAV.VIId- virions. An analysis of the BAV.VIId- virus (genotypically and phenotypically negative for protein VII) in non-complementing cells detected the inefficient release of virions from endosomes, which affected the expression of viral proteins or DNA replication. Moreover, the absence of protein VII altered the proteolytic cleavage of protein VI of BAV.VIId-. Our results suggest that BAdV-3 protein VII appears to be required for efficient production of mature virions. Moreover, the absence of protein VII produces non-infectious BAdV-3 by altering the release of BAdV-3 from endosomes/vesicles.
Collapse
Affiliation(s)
- Shermila Kulanayake
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.K.); (F.D.)
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Barinder Singh
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Faryal Dar
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.K.); (F.D.)
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Suresh K. Tikoo
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.K.); (F.D.)
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
- Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
2
|
Protein–Protein Interactions Facilitate E4orf6-Dependent Regulation of E1B-55K SUMOylation in HAdV-C5 Infection. Viruses 2022; 14:v14030463. [PMID: 35336871 PMCID: PMC8953357 DOI: 10.3390/v14030463] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 11/25/2022] Open
Abstract
The human adenovirus type C5 (HAdV-C5) E1B-55K protein is a multifunctional regulator of HAdV-C5 replication, participating in many processes required for maximal virus production. Its multifunctional properties are primarily regulated by post-translational modifications (PTMs). The most influential E1B-55K PTMs are phosphorylation at highly conserved serine and threonine residues at the C-terminus, and SUMO conjugation to lysines 104 (K104) and 101 (K101) situated in the N-terminal region of the protein, which have been shown to regulate each other. Reversible SUMO conjugation provides a molecular switch that controls key functions of the viral protein, including intracellular trafficking and viral immune evasion. Interestingly, SUMOylation at SUMO conjugation site (SCS) K104 is negatively regulated by another multifunctional HAdV-C5 protein, E4orf6, which is known to form a complex with E1B-55K. To further evaluate the role of E4orf6 in the regulation of SUMO conjugation to E1B-55K, we analyzed different virus mutants expressing E1B-55K proteins with amino acid exchanges in both SCS (K101 and K104) in the presence or absence of E4orf6. We could exclude phosphorylation as factor for E4orf6-mediated reduction of E1B-55K SUMOylation. In fact, we demonstrate that a direct interaction between E1B-55K and E4orf6 is required to reduce E1B-55K SUMOylation. Additionally, we show that an E4orf6-mediated decrease of SUMO conjugation to K101 and K104 result in impaired co-localization of E1B-55K and SUMO in viral replication compartments. These findings indicate that E4orf6 inhibits E1B-55K SUMOylation, which could favor assembly of E4orf6-dependent E3 ubiquitin ligase complexes that are known to degrade a variety of host restriction factors by proteasomal degradation and, thereby, promote viral replication.
Collapse
|
3
|
Conserved E1B-55K SUMOylation in different human adenovirus species is a potent regulator of intracellular localization. J Virol 2021; 96:e0083821. [PMID: 34787461 DOI: 10.1128/jvi.00838-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Over the past decades, studies on the biology of human adenoviruses (HAdVs) mainly focused on the HAdV prototype species C type 5 (HAdV-C5) and revealed fundamental molecular insights into mechanisms of viral replication and viral cell transformation. Recently, other HAdV species are gaining more and more attention in the field. Reports on large E1B proteins (E1B-55K) from different HAdV species showed that these multifactorial proteins possess strikingly different features along with highly conserved functions. In this work, we identified potential SUMO-conjugation motifs (SCMs) in E1B-55K proteins from HAdV species A to F. Mutational inactivation of these SCMs demonstrated that HAdV E1B-55K proteins are SUMOylated at a single lysine residue that is highly conserved among HAdV species B to E. Moreover, we provide evidence that E1B-55K SUMOylation is a potent regulator of intracellular localization and p53-mediated transcription in most HAdV species. We also identified a lysine residue at position 101 (K101), which is unique to HAdV-C5 E1B-55K and specifically regulates its SUMOylation and nucleo-cytoplasmic shuttling. Our findings reveal important new aspects on HAdV E1B-55K proteins and suggest that different E1B-55K species possess conserved SCMs while their SUMOylation has divergent cellular effects during infection. Importance E1B-55K is a multifunctional adenoviral protein and its functions are highly regulated by SUMOylation. Although functional consequences of SUMOylated HAdV-C5 E1B-55K are well studied, we lack information on the effects of SUMOylation on homologous E1B-55K proteins from other HAdV species. Here, we show that SUMOylation is a conserved post-translational modification in most of the E1B-55K proteins, similar to what we know about HAdV-C5 E1B-55K. Moreover, we identify subcellular localization and regulation of p53-dependent transcription as highly conserved SUMOylation-regulated E1B-55K functions. Thus, our results highlight how HAdV proteins might have evolved in different HAdV species with conserved domains involved in virus replication and differing alternative functions and interactions with the host cell machinery. Future research will link these differences and similarities to the diverse pathogenicity and organ tropism of the different HAdV species.
Collapse
|
4
|
Zhao X, Tikoo SK. Nuclear and Nucleolar Localization of Bovine Adenovirus-3 Protein V. Front Microbiol 2021; 11:579593. [PMID: 33488533 PMCID: PMC7815533 DOI: 10.3389/fmicb.2020.579593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/03/2020] [Indexed: 02/01/2023] Open
Abstract
The L2 region of bovine adenovirus-3 (BAdV-3) encodes a Mastadenovirus genus-specific protein, designated as pV, which is important for the production of progeny viruses. Here, we demonstrate that BAdV-3 pV, expressed as 55 kDa protein, localizes to the nucleus and specifically targets nucleolus of the infected cells. Analysis of deletion mutants of pV suggested that amino acids 81–120, 190–210, and 380–389 act as multiple nuclear localization signals (NLS), which also appear to serve as the binding sites for importin α-3 protein, a member of the importin α/β nuclear import receptor pathway. Moreover, pV amino acids 21–50 and 380–389 appear to act as nucleolar localization signals (NoLs). Interestingly, amino acids 380–389 appear to act both as NLS and as NoLS. The presence of NoLS is essential for the production of infectious progeny virions, as deletion of both NoLs are lethal for the production of infectious BAdV-3. Analysis of mutant BAV.pVd1d3 (isolated in pV completing CRL cells) containing deletion/mutation of both NoLS in non-complementing CRL cells not only revealed the altered intracellular localization of mutant pV but also reduced the expression of some late proteins. However, it does not appear to affect the incorporation of viral proteins, including mutant pV, in BAV.pVd1d3 virions. Further analysis of CsCl purified BAV.pVd1d3 suggested the presence of thermo-labile virions with disrupted capsids, which appear to affect the infectivity of the progeny virions. Our results suggest that pV contains overlapping and non-overlapping NoLS/NLS. Moreover, the presence of both NoLS appear essential for the production of stable and infectious progeny BAV.pVd1d3 virions.
Collapse
Affiliation(s)
- Xin Zhao
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Suresh K Tikoo
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada.,Vaccinology and Imuunothepapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Kleinberger T. En Guard! The Interactions between Adenoviruses and the DNA Damage Response. Viruses 2020; 12:v12090996. [PMID: 32906746 PMCID: PMC7552057 DOI: 10.3390/v12090996] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Virus–host cell interactions include several skirmishes between the virus and its host, and the DNA damage response (DDR) network is one of their important battlegrounds. Although some aspects of the DDR are exploited by adenovirus (Ad) to improve virus replication, especially at the early phase of infection, a large body of evidence demonstrates that Ad devotes many of its proteins, including E1B-55K, E4orf3, E4orf4, E4orf6, and core protein VII, and utilizes varied mechanisms to inhibit the DDR. These findings indicate that the DDR would strongly restrict Ad replication if allowed to function efficiently. Various Ad serotypes inactivate DNA damage sensors, including the Mre11-Rad50-Nbs1 (MRN) complex, DNA-dependent protein kinase (DNA-PK), and Poly (ADP-ribose) polymerase 1 (PARP-1). As a result, these viruses inhibit signaling via DDR transducers, such as the ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR) kinases, to downstream effectors. The different Ad serotypes utilize both shared and distinct mechanisms to inhibit various branches of the DDR. The aim of this review is to understand the interactions between Ad proteins and the DDR and to appreciate how these interactions contribute to viral replication.
Collapse
Affiliation(s)
- Tamar Kleinberger
- Department of Molecular Microbiology, Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron St., Bat Galim, Haifa 31096, Israel
| |
Collapse
|
6
|
Woldemariam T, Wang W, Said A, Tikoo SK. Regions of bovine adenovirus-3 IVa2 involved in nuclear/nucleolar localization and interaction with pV. Virology 2020; 546:25-37. [PMID: 32452415 DOI: 10.1016/j.virol.2020.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/18/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022]
Abstract
Bovine adenovirus-3 (BAdV-3) is a non enveloped, icosahedral DNA virus containing a genome of 34446 bps. The intermediate region of BAdV-3 encodes pIX and IVa2 proteins. Here, we report the characterization of BAdV-3 IVa2. Anti-IVa2 serum detected a 50 kDa protein at 24-48 h post infection in BAdV-3 infected cells. The IVa2 localizes to nucleus and nucleolus of BAdV-3 infected cells. Analysis of mutant IVa2 demonstrated that amino acids 1-25 and 373-448 are required for nuclear and nucleolar localization of IVa2, respectively. The nuclear import of IVa2 utilize importin α -1 of importin nuclear import pathway. Although deletion/substitution of amino acids 4-18 is sufficient to abrogate the nuclear localization of IVa2, amino acids 1-25 are required for nuclear localization of a cytoplasmic protein. Furthermore, we demonstrate that amino acids 1-25 and 120-140 of IVa2 interact with importin α-1 and pV proteins, respectively in BAdV-3 infected cells.
Collapse
Affiliation(s)
- Tekeleselassie Woldemariam
- VIDO-InterVac, University of Saskatchewan, SK, Canada; Veterinary Microbiology, WCVM, University of Saskatchewan, Saskatoon, SK, Canada
| | - Wenxiu Wang
- VIDO-InterVac, University of Saskatchewan, SK, Canada; Shandong Binzhou Animal Science & Veterinary Medicine Academy, 256600, Binzhou, Shandong, China
| | - Abdelrahman Said
- VIDO-InterVac, University of Saskatchewan, SK, Canada; Parasitology and Animal Diseases Department, National Research Center, Dokki, Giza, Egypt
| | - Suresh K Tikoo
- VIDO-InterVac, University of Saskatchewan, SK, Canada; Veterinary Microbiology, WCVM, University of Saskatchewan, Saskatoon, SK, Canada; Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
7
|
Said A, Wang W, Woldermariam T, Tikoo SK. Domains of bovine adenovirus-3 protein 22K involved in interacting with viral protein 52K and cellular importins α-5/α-7. Virology 2018; 522:209-219. [PMID: 30053654 DOI: 10.1016/j.virol.2018.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/30/2022]
Abstract
The L6 region of bovine adenovirus-3 (BAdV-3) encodes unspliced and spliced proteins named 22K and 33K, respectively. Earlier, anti-22K sera detected two proteins of 42- and 37-kDa in infected cells and 42-kDa protein in transfected cells. Here, we demonstrate that 22K protein localizes to the nucleus of BAdV-3 infected or transfected cells. Analysis of mutant 22K proteins suggested that amino acids 231-250 of non-conserved C-terminus of 22K are required for nuclear localization. The nuclear import of 22K appears to utilize multiple importin (α-5 and α-7) of importin α/β nuclear import pathway. Mutational analysis of 22K identified four basic residues 238RRRK241, which apparently are essential for the nuclear localization of 22K. Our results suggest that the nuclear localization of 22K appear essential for virus replication and production of progeny BAdV-3. Furthermore, we demonstrate that N-terminus amino acid 35-65 conserved in 22K and 33K interact with 52K protein in BAdV-3 infected cells.
Collapse
Affiliation(s)
- Abdelrahman Said
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3; Parasitology and Animal Diseases Department, National Research Center, Dokki, Giza, Egypt
| | - Wenxiu Wang
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3; Shandong Binzhou Animal Science & Veterinary Medicine Academy, 256600 Binzhou, Shandong, China
| | - Tekeleselassie Woldermariam
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3; Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - Suresh K Tikoo
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3; Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3; Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3.
| |
Collapse
|
8
|
E1B-55K-Mediated Regulation of RNF4 SUMO-Targeted Ubiquitin Ligase Promotes Human Adenovirus Gene Expression. J Virol 2018; 92:JVI.00164-18. [PMID: 29695423 DOI: 10.1128/jvi.00164-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/13/2018] [Indexed: 01/26/2023] Open
Abstract
Human adenovirus (HAdV) E1B-55K is a multifunctional regulator of productive viral replication and oncogenic transformation in nonpermissive mammalian cells. These functions depend on E1B-55K's posttranslational modification with the SUMO protein and its binding to HAdV E4orf6. Both early viral proteins recruit specific host factors to form an E3 ubiquitin ligase complex that targets antiviral host substrates for proteasomal degradation. Recently, we reported that the PML-NB-associated factor Daxx represses efficient HAdV productive infection and is proteasomally degraded via a SUMO-E1B-55K-dependent, E4orf6-independent pathway, the details of which remained to be established. RNF4, a cellular SUMO-targeted ubiquitin ligase (STUbL), induces ubiquitinylation of specific SUMOylated proteins and plays an essential role during DNA repair. Here, we show that E1B-55K recruits RNF4 to the insoluble nuclear matrix fraction of the infected cell to support RNF4/Daxx association, promoting Daxx PTM and thus inhibiting this antiviral factor. Removing RNF4 from infected cells using RNA interference resulted in blocking the proper establishment of viral replication centers and significantly diminished viral gene expression. These results provide a model for how HAdV antagonize the antiviral host responses by exploiting the functional capacity of cellular STUbLs. Thus, RNF4 and its STUbL function represent a positive factor during lytic infection and a novel candidate for future therapeutic antiviral intervention strategies.IMPORTANCE Daxx is a PML-NB-associated transcription factor that was recently shown to repress efficient HAdV productive infection. To counteract this antiviral measurement during infection, Daxx is degraded via a novel pathway including viral E1B-55K and host proteasomes. This virus-mediated degradation is independent of the classical HAdV E3 ubiquitin ligase complex, which is essential during viral infection to target other host antiviral substrates. To maintain a productive viral life cycle, HAdV E1B-55K early viral protein inhibits the chromatin-remodeling factor Daxx in a SUMO-dependent manner. In addition, viral E1B-55K protein recruits the STUbL RNF4 and sequesters it into the insoluble fraction of the infected cell. E1B-55K promotes complex formation between RNF4- and E1B-55K-targeted Daxx protein, supporting Daxx posttranslational modification prior to functional inhibition. Hence, RNF4 represents a novel host factor that is beneficial for HAdV gene expression by supporting Daxx counteraction. In this regard, RNF4 and other STUbL proteins might represent novel targets for therapeutic intervention.
Collapse
|
9
|
Degradation of a Novel DNA Damage Response Protein, Tankyrase 1 Binding Protein 1, following Adenovirus Infection. J Virol 2018; 92:JVI.02034-17. [PMID: 29593045 PMCID: PMC5974482 DOI: 10.1128/jvi.02034-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/09/2018] [Indexed: 01/02/2023] Open
Abstract
Infection by most DNA viruses activates a cellular DNA damage response (DDR), which may be to the detriment or advantage of the virus. In the case of adenoviruses, they neutralize antiviral effects of DDR activation by targeting a number of proteins for rapid proteasome-mediated degradation. We have now identified a novel DDR protein, tankyrase 1 binding protein 1 (TNKS1BP1) (also known as Tab182), which is degraded during infection by adenovirus serotype 5 and adenovirus serotype 12. In both cases, degradation requires the action of the early region 1B55K (E1B55K) and early region 4 open reading frame 6 (E4orf6) viral proteins and is mediated through the proteasome by the action of cullin-based cellular E3 ligases. The degradation of Tab182 appears to be serotype specific, as the protein remains relatively stable following infection with adenovirus serotypes 4, 7, 9, and 11. We have gone on to confirm that Tab182 is an integral component of the CNOT complex, which has transcriptional regulatory, deadenylation, and E3 ligase activities. The levels of at least 2 other members of the complex (CNOT3 and CNOT7) are also reduced during adenovirus infection, whereas the levels of CNOT4 and CNOT1 remain stable. The depletion of Tab182 with small interfering RNA (siRNA) enhances the expression of early region 1A proteins (E1As) to a limited extent during adenovirus infection, but the depletion of CNOT1 is particularly advantageous to the virus and results in a marked increase in the expression of adenovirus early proteins. In addition, the depletion of Tab182 and CNOT1 results in a limited increase in the viral DNA level during infection. We conclude that the cellular CNOT complex is a previously unidentified major target for adenoviruses during infection. IMPORTANCE Adenoviruses target a number of cellular proteins involved in the DNA damage response for rapid degradation. We have now shown that Tab182, which we have confirmed to be an integral component of the mammalian CNOT complex, is degraded following infection by adenovirus serotypes 5 and 12. This requires the viral E1B55K and E4orf6 proteins and is mediated by cullin-based E3 ligases and the proteasome. In addition to Tab182, the levels of other CNOT proteins are also reduced during adenovirus infection. Thus, CNOT3 and CNOT7, for example, are degraded, whereas CNOT4 and CNOT1 are not. The siRNA-mediated depletion of components of the complex enhances the expression of adenovirus early proteins and increases the concentration of viral DNA produced during infection. This study highlights a novel protein complex, CNOT, which is targeted for adenovirus-mediated protein degradation. To our knowledge, this is the first time that the CNOT complex has been identified as an adenoviral target.
Collapse
|
10
|
Pancholi NJ, Weitzman MD. Serotype-specific restriction of wild-type adenoviruses by the cellular Mre11-Rad50-Nbs1 complex. Virology 2018; 518:221-231. [PMID: 29547809 PMCID: PMC5911183 DOI: 10.1016/j.virol.2018.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 02/07/2023]
Abstract
During viral replication in the nucleus, the DNA genomes of adenoviruses are accessible to cellular DNA-binding proteins. Human adenovirus type 5 (Ad5) targets the cellular Mre11-Rad50-Nbs1 complex (MRN) to evade detection by the DNA damage response (DDR). Ad5 mutants that cannot target MRN have reduced viral propagation. Previous studies showed that diverse adenovirus serotypes interact differently with MRN. While these studies revealed diverse MRN interactions among serotypes, it remains unclear how these differences influence viral replication. Here, we examined effects of the DDR on several adenovirus serotypes. We demonstrate that wild-type Ad9 and Ad12 do not overcome MRN impairment. We also examined viral proteins involved in targeting MRN and found that unlike Ad5-E4orf3, expression of Ad9-E4orf3 is not sufficient for MRN mislocalization observed during infection. We conclude that adenovirus serotypes target MRN in distinct ways, and the MRN complex can impair DNA replication of wild-type viruses across the adenovirus family.
Collapse
Affiliation(s)
- Neha J Pancholi
- Cell and Molecular Biology Graduate Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matthew D Weitzman
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Pancholi NJ, Price AM, Weitzman MD. Take your PIKK: tumour viruses and DNA damage response pathways. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0269. [PMID: 28893936 DOI: 10.1098/rstb.2016.0269] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2017] [Indexed: 12/13/2022] Open
Abstract
Viruses regulate cellular processes to facilitate viral replication. Manipulation of nuclear proteins and pathways by nuclear replicating viruses often causes cellular genome instability that contributes to transformation. The cellular DNA damage response (DDR) safeguards the host to maintain genome integrity, but DNA tumour viruses can manipulate the DDR to promote viral propagation. In this review, we describe the interactions of DNA tumour viruses with the phosphatidylinositol 3-kinase-like protein kinase (PIKK) pathways, which are central regulatory arms of the DDR. We review how signalling through the ataxia telangiectasia mutated (ATM), ataxia telangiectasia and Rad3 related (ATR), and DNA-dependent protein kinases (DNA-PK) influences viral life cycles, and how their manipulation by viral proteins may contribute to tumour formation.This article is part of the themed issue 'Human oncogenic viruses'.
Collapse
Affiliation(s)
- Neha J Pancholi
- Division of Cancer Pathobiology and Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Cell and Molecular Biology Graduate Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Alexander M Price
- Division of Cancer Pathobiology and Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matthew D Weitzman
- Division of Cancer Pathobiology and Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA .,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Zhang P, Xue Q, Ma J, Ren J, Xia S, Zhang L, Wang W, Tikoo SK, Du E. Bovine adenovirus type 3 virions cannot be rescued in vivo after full-length viral genome transfection in the absence of detectable polypeptide IX. J Vet Sci 2017; 18:217-227. [PMID: 27586461 PMCID: PMC5489469 DOI: 10.4142/jvs.2017.18.2.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 05/30/2016] [Accepted: 08/26/2016] [Indexed: 11/25/2022] Open
Abstract
Bovine adenovirus type 3 (BAdV3) is being used in the development of potential vehicles for gene therapy and vectored vaccine. To that end, a more comprehensive description of BAdV3 biology is essential. In this study, we focused on the role of pIX in BAdV3 virion rescue after full-length BAdV3 genome transfection. Initially, pIX deletion or initiation codon mutation abolished the production of progeny virions, which suggested that pIX was essential for the rescue of BAdV3 containing a full-length genome. Moreover, through transfection of a panel of pIX mutant BAdV3 genomes, we observed that the conserved N-terminus and the putative leucine zipper element (PLZP) were essential for virion rescue, whereas the C-terminus following the coiled-coil domain was non-essential. In addition, swap of the PLZP element and its following region of BAdV3 pIX to corresponding domains of human adenovirus type 5 (HAdV5) did not affect virion production, whereas swap of the entire pIX abolished production of progeny virions. We suggest that failure of the full-length BAdV3 pIX swap might be due to species specificity of its N-terminus region before the PLZP element.
Collapse
Affiliation(s)
- Peng Zhang
- College of Veterinary Medicine, North-west A&F University, Yangling 712100, China
| | - Qinghong Xue
- Chinese Institute of Veterinary Drug Controls, Beijing 100000, China
| | - Jing Ma
- College of Veterinary Medicine, North-west A&F University, Yangling 712100, China
| | - Jingjing Ren
- College of Veterinary Medicine, North-west A&F University, Yangling 712100, China
| | - Shuili Xia
- College of Veterinary Medicine, North-west A&F University, Yangling 712100, China
| | - Lu Zhang
- College of Veterinary Medicine, North-west A&F University, Yangling 712100, China
| | - Wenbin Wang
- College of Veterinary Medicine, North-west A&F University, Yangling 712100, China
| | - Suresh K Tikoo
- VIDO-InteVac, University of Saskatchewan Saskatoon, Saskatchewan, Canada.,Vaccinology & Immunotherapeutics program, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Enqi Du
- College of Veterinary Medicine, North-west A&F University, Yangling 712100, China
| |
Collapse
|
13
|
Efficient Transformation of Primary Human Mesenchymal Stromal Cells by Adenovirus Early Region 1 Oncogenes. J Virol 2016; 91:JVI.01782-16. [PMID: 27795433 DOI: 10.1128/jvi.01782-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/15/2016] [Indexed: 11/20/2022] Open
Abstract
Previous observations that human amniotic fluid cells (AFC) can be transformed by human adenovirus type 5 (HAdV-5) E1A/E1B oncogenes prompted us to identify the target cells in the AFC population that are susceptible to transformation. Our results demonstrate that one cell type corresponding to mesenchymal stem/stroma cells (hMSCs) can be reproducibly transformed by HAdV-5 E1A/E1B oncogenes as efficiently as primary rodent cultures. HAdV-5 E1-transformed hMSCs exhibit all properties commonly associated with a high grade of oncogenic transformation, including enhanced cell proliferation, anchorage-independent growth, increased growth rate, and high telomerase activity as well as numerical and structural chromosomal aberrations. These data confirm previous work showing that HAdV preferentially transforms cells of mesenchymal origin in rodents. More importantly, they demonstrate for the first time that human cells with stem cell characteristics can be completely transformed by HAdV oncogenes in tissue culture with high efficiency. Our findings strongly support the hypothesis that undifferentiated progenitor cells or cells with stem cell-like properties are highly susceptible targets for HAdV-mediated cell transformation and suggest that virus-associated tumors in humans may originate, at least in part, from infections of these cell types. We expect that primary hMSCs will replace the primary rodent cultures in HAdV viral transformation studies and are confident that these investigations will continue to uncover general principles of viral oncogenesis that can be extended to human DNA tumor viruses as well. IMPORTANCE It is generally believed that transformation of primary human cells with HAdV-5 E1 oncogenes is very inefficient. However, a few cell lines have been successfully transformed with HAdV-5 E1A and E1B, indicating that there is a certain cell type which is susceptible to HAdV-mediated transformation. Interestingly, all those cell lines have been derived from human embryonic tissue, albeit the exact cell type is not known yet. We show for the first time the successful transformation of primary human mesenchymal stromal cells (hMSCs) by HAdV-5 E1A and E1B. Further, we show upon HAdV-5 E1A and E1B expression that these primary progenitor cells exhibit features of tumor cells and can no longer be differentiated into the adipogenic, chondrogenic, or osteogenic lineage. Hence, primary hMSCs represent a robust and novel model system to elucidate the underlying molecular mechanisms of adenovirus-mediated transformation of multipotent human progenitor cells.
Collapse
|
14
|
Characterization of aggregate/aggresome structures formed by polyhedrin of Bombyx mori nucleopolyhedrovirus. Sci Rep 2015; 5:14601. [PMID: 26440217 PMCID: PMC4594129 DOI: 10.1038/srep14601] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/24/2015] [Indexed: 12/20/2022] Open
Abstract
Virus infections often lead to formation of aggregates and aggresomes in host cells. In this study, production of aggregates and aggresomes by the highly expressed protein polyhedrin of Bombyx mori nucleopolyhedrovirus (BmNPV) at 24 h postinfection (p.i.) was detected with a fluorescent molecular dye, and verified by colocalization of polyhedrin with aggresomal markers, GFP-250 and γ-tubulin. Polyhedrin aggregates showed hallmark characteristics of aggresomes: formation was microtubule-dependent; they colocalized with heat shock cognates/proteins of the 70-kDa family (HSC/HSP70s), ubiquitinated proteins and recruited the mitochondria. Aggregated polyhedrin protein gradually gained its active conformation accompanying progress of BmNPV infection. At 48 h p.i. recovered polyhedrin bound directly to Bombyx mori microtubule-associated protein 1-light chain 3 (BmLC3), an autophagosome marker, and was colocalized with BmLC3 to the isolation membrane of autophagosome, implying the involvement of polyhedrin in cellular autophagy. Inhibition of autophagy by 3-methyladenine (3-MA) dramatically resulted in decrease of polyhedrin expression and polyhedra particle production. These observations suggested that highly expressed polyhedrin forms aggregate to get involved in cellular autophagy then play an important role in polyhedra production.
Collapse
|
15
|
Makadiya N, Gaba A, Tikoo SK. Cleavage of bovine adenovirus type 3 non-structural 100K protein by protease is required for nuclear localization in infected cells but is not essential for virus replication. J Gen Virol 2015; 96:2749-2763. [PMID: 26033117 DOI: 10.1099/vir.0.000205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The L6 region of bovine adenovirus type 3 (BAdV-3) encodes a non-structural protein named 100K. Rabbit antiserum raised against BAdV-3 100K recognized a protein of 130 kDa at 12-24 h and proteins of 130, 100, 95 and 15 kDa at 36-48 h after BAdV-3 infection. The 100K species localized to the nucleus and the cytoplasm of BAdV-3-infected cells. In contrast, 100K localized predominantly to the cytoplasm of the transfected cells. However, BAdV-3 infection of cells transfected with 100K-enhanced yellow fluorescent protein-expressing plasmid detected fluorescent protein in the nucleus of the cells, suggesting that other viral proteins may be required for the nuclear localization of 100K. Interaction of BAdV-3 100K with BAdV-3 33K protein did not alter the cytoplasmic localization of 100K. However, co-expression of BAdV-3 100K and BAdV-3 protease localized 100K to the nucleolus of the transfected cells. Subsequent analysis suggested that BAdV-3 protease cleaves 100K at two identified potential protease cleavage sites (aa 740-745 and 781-786) in transfected or BAdV-3-infected cells. The cleaved C terminus (107 aa) was localized to the nucleolus of the transfected cells. Further analysis suggested that the cleaved C terminus contains a bipartite nuclear localization signal and utilizes import receptor importin-α3 of the classical importin-α/β transport pathway for nuclear transport. Successful isolation of recombinant BAdV-3 expressing mutant 100K (substitution of alanine for glycine in the potential protease cleavage site) suggested that cytoplasmic cleavage of BAdV-3 100K by adenoviral protease is not essential for virus replication.
Collapse
Affiliation(s)
- Nirajkumar Makadiya
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3 Canada.,Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3 Canada
| | - Amit Gaba
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3 Canada.,Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3 Canada
| | - Suresh K Tikoo
- Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3 Canada.,VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3 Canada.,Vaccinology & Immunotherapeutics program, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3 Canada
| |
Collapse
|
16
|
The Mre11 Cellular Protein Is Modified by Conjugation of Both SUMO-1 and SUMO-2/3 during Adenovirus Infection. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/989160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The adenovirus type 5 (Ad5) E1B 55 kDa and E4 Orf6 proteins assemble a Cullin 5-E3 ubiquitin (Ub) ligase that targets, among other cellular proteins, p53 and the Mre11-Rad50-Nbs1 (MRN) complex for degradation. The latter is also inhibited by the E4 Orf3 protein, which promotes the recruitment of Mre11 into specific nuclear sites to promote viral DNA replication. The activities associated with the E1B 55 kDa and E4 Orf6 viral proteins depend mostly on the assembly of this E3-Ub ligase. However, E1B 55 kDa can also function as an E3-SUMO ligase, suggesting not only that regulation of cellular proteins by these viral early proteins may depend on polyubiquitination and proteasomal degradation but also that SUMOylation of target proteins may play a key role in their activities. Since Mre11 is a target of both the E1B/E4 Orf6 complex and E4 Orf3, we decided to determine whether Mre11 displayed similar properties to those of other cellular targets, in Ad5-infected cells. We have found that during Ad5-infection, Mre11 is modified by SUMO-1 and SUMO-2/3 conjugation. Unexpectedly, SUMOylation of Mre11 is not exclusively dependent on E1B 55 kDa, E4 Orf6, or E4 Orf3, rather it seems to be influenced by a molecular interplay that involves each of these viral early proteins.
Collapse
|
17
|
Schreiner S, Kinkley S, Bürck C, Mund A, Wimmer P, Schubert T, Groitl P, Will H, Dobner T. SPOC1-mediated antiviral host cell response is antagonized early in human adenovirus type 5 infection. PLoS Pathog 2013; 9:e1003775. [PMID: 24278021 PMCID: PMC3836738 DOI: 10.1371/journal.ppat.1003775] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/04/2013] [Indexed: 01/22/2023] Open
Abstract
Little is known about immediate phases after viral infection and how an incoming viral genome complex counteracts host cell defenses, before the start of viral gene expression. Adenovirus (Ad) serves as an ideal model, since entry and onset of gene expression are rapid and highly efficient, and mechanisms used 24–48 hours post infection to counteract host antiviral and DNA repair factors (e.g. p53, Mre11, Daxx) are well studied. Here, we identify an even earlier host cell target for Ad, the chromatin-associated factor and epigenetic reader, SPOC1, recently found recruited to double strand breaks, and playing a role in DNA damage response. SPOC1 co-localized with viral replication centers in the host cell nucleus, interacted with Ad DNA, and repressed viral gene expression at the transcriptional level. We discovered that this SPOC1-mediated restriction imposed upon Ad growth is relieved by its functional association with the Ad major core protein pVII that enters with the viral genome, followed by E1B-55K/E4orf6-dependent proteasomal degradation of SPOC1. Mimicking removal of SPOC1 in the cell, knock down of this cellular restriction factor using RNAi techniques resulted in significantly increased Ad replication, including enhanced viral gene expression. However, depletion of SPOC1 also reduced the efficiency of E1B-55K transcriptional repression of cellular promoters, with possible implications for viral transformation. Intriguingly, not exclusive to Ad infection, other human pathogenic viruses (HSV-1, HSV-2, HIV-1, and HCV) also depleted SPOC1 in infected cells. Our findings provide a general model for how pathogenic human viruses antagonize intrinsic SPOC1-mediated antiviral responses in their host cells. A better understanding of viral entry and early restrictive functions in host cells should provide new perspectives for developing antiviral agents and therapies. Conversely, for Ad vectors used in gene therapy, counteracting mechanisms eradicating incoming viral DNA would increase Ad vector efficacy and safety for the patient. Viruses have acquired functions that target and modulate host cell signaling and diverse regulatory cascades, leading to efficient viral propagation. During the course of productive infection, Ad gene products manipulate destruction pathways to prevent viral clearance or cell death prior to viral genome amplification and release of progeny. Recently, we reported that chromatin formation and cellular SWI/SNF chromatin remodeling processes play a key role in Ad transcriptional regulation. Here, we observe for the first time that SPOC1, identified as a regulator of DNA damage response and chromatin structure, plays an essential role in restricting Ad gene expression and progeny production. This host cell antiviral mechanism is efficiently counteracted by tight association with the major core protein pVII bound to the incoming viral genome. Subsequently, SPOC1 undergoes proteasomal degradation via the Ad E1B-55K/E4orf6-dependent, Cullin-based E3 ubiquitin ligase complex. We also show that other viruses from RNA and DNA families also induce efficient degradation of SPOC1. These analyses of evasion strategies acquired by viruses and other human pathogens should provide important insights into factors manipulating the epigenetic environment to potentially inactivate, or amplify host cell immune responses, since detailed molecular mechanisms and the full repertoire of cellular targets still remain elusive.
Collapse
Affiliation(s)
- Sabrina Schreiner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sarah Kinkley
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Carolin Bürck
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Andreas Mund
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Peter Wimmer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Tobias Schubert
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Peter Groitl
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Hans Will
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- * E-mail:
| |
Collapse
|
18
|
Role of E1B55K in E4orf6/E1B55K E3 ligase complexes formed by different human adenovirus serotypes. J Virol 2013; 87:6232-45. [PMID: 23536656 DOI: 10.1128/jvi.00384-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The E4orf6 protein of serotypes representing all human adenovirus species forms Cullin-based E3 ubiquitin ligase complexes that facilitate virus infection by inducing degradation of cellular proteins that impede efficient viral replication. This complex also includes the viral E1B55K product believed to bind and introduce substrates for ubiquitination. Heterogeneity in the composition of these ligases exists, as some serotypes form Cul5-based complexes whereas others utilize Cul2. Significant variations in substrate specificities also exist among serotypes, as some degrade certain substrates very efficiently whereas others induce more modest or little degradation. As E1B55K is believed to function as the substrate acquisition component of the ligase, we undertook studies to compare the ability of representative E1B55K proteins to bind substrates with the efficacy of degradation by their respective E4orf6-based ligases. Interestingly, although efficient degradation in some cases corresponded to the ability of E1B55K to bind to or relocalize substrates, there were several examples of substrates that bound efficiently to E1B55K but were not degraded and others in which substrates were degraded even though binding to E1B55K was low or undetectable. These results suggest that transient interactions with E1B55K may be sufficient for efficient substrate degradation and that binding alone is not sufficient, implying that the orientation of the substrate in the ligase complex is probably crucial. Nevertheless, we found that the substrate specificity of certain E4orf6-based ligases could be altered through the formation of hybrid complexes containing E1B55K from another serotype, thus confirming identification of E1B55K as the substrate acquisition component of the complex.
Collapse
|