1
|
Yue X, Ji N, Ma Y, Yu Q, Bai L, Li Z. Coordination of the host Vps4-Vta1 complex and the viral core protein Ac93 facilitates entry of Autographa californica multiple nucleopolyhedrovirus budded virions. J Virol 2025; 99:e0218224. [PMID: 40135896 PMCID: PMC11998489 DOI: 10.1128/jvi.02182-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/13/2025] [Indexed: 03/27/2025] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) is a protein machine mediating membrane scission. In intraluminal vesicle (ILV) formation, ESCRT-0 targets cargoes and recruits ESCRT-I/-II to create membrane invagination, whereas ESCRT-III coordinates with the AAA ATPase Vps4 and its cofactor Vta1 to catalyze the membrane fission. Recently, ESCRT-I/-III and Vps4 were found to be involved in the entry of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). However, the necessity of other ESCRT components and the interplay of viral proteins and ESCRTs in regulating the virus entry remain elusive. Here, we identified ESCRT-0 (Hse1 and Vps27), ESCRT-II (Vps22, Vps25, and Vps36), and Vta1 of Spodoptera frugiperda. RNAi depletion of Vta1 but not the components of ESCRT-0 or ESCRT-II in Sf9 cells significantly reduced budded virus (BV) production. Quantitative PCR together with confocal microscopy analyses indicated that Vta1 was required for internalization and endosomal trafficking of BV. In the late phase of infection, although Vps4 and Vta1 were both distributed to the nucleus and at the plasma membrane, depletion of Vta1 did not affect BV release. Further analysis revealed that 7 of 14 BV envelope proteins (Ac75, Ac93, E25, F-like, P33, P48, and vUbiquitin) interacted with Vps4 and Vta1. Intriguingly, Ac93 adopted a similar mode as ESCRT-III proteins to interact with the microtubule-interacting and transport (MIT) domains of Vps4 and Vta1 via its C-terminal MIT-interacting motifs (MIM1), and the interactions were necessary for BV internalization. Together, our studies highlight the coordination of Vps4-Vta1 and Ac93, and probably other BV envelope proteins, in facilitating entry of AcMNPV.IMPORTANCEThe endosomal sorting complex required for transport (ESCRT) system is involved in the entry of diverse DNA and RNA viruses. However, the interplay of viral proteins and ESCRTs in promoting virus endocytosis remains largely unknown. Here, we found that the ESCRT early acting factors ESCRT-0/-II were not necessary for infectious budded virus (BV) production of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). In contrast, the Vps4 cofactor Vta1 was required for entry but not egress of BV. Several core or essential BV envelope proteins were identified to interact with Vps4 and Vta1. Among them, Ac93 plays a central role in connecting other viral proteins and mimics ESCRT-III proteins to interact with Vps4-Vta1, facilitating entry of BV virions. These studies provide evidence for the coordination of viral proteins and ESCRTs in regulating entry of large enveloped DNA viruses.
Collapse
Affiliation(s)
- Xiaorong Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ning Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yixiang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qianlong Yu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Lisha Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhaofei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Mo M, Chen J, Yang Y, Yu Y, Wu W, Yang K, Yuan M. Autographa californica multiple nucleopolyhedrovirus ac106 is required for the nuclear egress of nucleocapsids and intranuclear microvesicle formation. J Virol 2024; 98:e0113524. [PMID: 39431847 PMCID: PMC11575290 DOI: 10.1128/jvi.01135-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf106 (ac106) is highly conserved in baculoviruses. Previous studies have shown that ac106 is required for the production of infectious budded virions (BVs). However, the functional role of ac106 in virion morphogenesis remains unknown. In this report, an ac106 knockout virus and an ac106 repair virus were constructed. The effect of ac106 deletion on virion morphogenesis was investigated, and the expression and subcellular localization of the Ac106 protein were characterized. Our data indicated that ac106 is required for the nuclear egress of nucleocapsids and intranuclear microvesicle formation, as well as subsequent BV and occlusion-derived virion (ODV) production and the embedding of ODVs into polyhedra. Ac106 is a baculovirus late protein that is concentrated in discrete foci of virus-induced membrane structures in the intranuclear ring zone of virus-infected cells. Further studies on the relationship between Ac106 and four other proteins that are also required for intranuclear microvesicle formation, Ac75, Ac76, Ac93, and P48 (Ac103), revealed that Ac106 is associated with Ac75, Ac76, Ac93, P48, and itself. Ac106 is required for Ac75, Ac93, and P48 accumulation in foci of virus-induced intranuclear membrane structures and the intranuclear transport of Ac76. Analysis of the subcellular localization of ODV integral envelope proteins upon deletion of the genes required for intranuclear microvesicle formation indicated that intranuclear microvesicle formation may be essential for ODV integral envelope protein transport into the nucleus, supporting the hypothesis that intranuclear microvesicles originate from the nuclear membrane.IMPORTANCEBaculovirus occlusion-derived virions (ODVs) are known to acquire their envelopes from virus-induced intranuclear microvesicles within the nucleoplasm, and this strategy of intranuclear envelopment of nucleocapsids to form virions is unique among viruses. However, the mechanism of ODV morphogenesis, particularly intranuclear microvesicle formation, remains unclear. In this study, we identified ac106 as the fifth gene, in addition to ac75, ac76, ac93, and p48 (ac103), which are required for intranuclear microvesicle formation. Further studies on the relationship between ac106 and the other four genes, as well as the effect of ac106 or ac75 deletion on the localization of ODV integral envelope proteins, indicated that intranuclear microvesicle formation may be essential for the transport of ODV integral envelope proteins into the nucleus, which strongly supports the hypothesis that intranuclear microvesicles originate from the nuclear membrane. These findings greatly enhance our understanding of the molecular mechanism of baculovirus ODV morphogenesis.
Collapse
Affiliation(s)
- Mei Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiannan Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yushan Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yinyin Yu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenbi Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Kai Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Meijin Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Zhu Y, Hu ZG, Chen P, Xiao Q, Xiao Y, Jia XY, Dong ZQ, Pan MH, Lu C. CRISPR/Cas9-mediated disruption of orf76 as an antiviral therapy against BmNPV in the transgenic silkworm. Int J Biol Macromol 2024; 278:134773. [PMID: 39151843 DOI: 10.1016/j.ijbiomac.2024.134773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Viral diseases pose a significant threat to livestock husbandry and plant cultivation. CRISPR/Cas9-mediated targeted editing of viral genes offers a promising approach to antiviral therapy. The silkworm, Bombyx mori, is an economically important insect susceptible to infection by B. mori nucleopolyhedrovirus (BmNPV), and viral outbreaks cause severe economic losses to the sericulture industry. Here, we identified BmNPV orf76 as a viral late gene that is highly similar to Autographa californica multiple nucleopolyhedrovirus Ac93. The deletion of orf76 abolished BmNPV proliferation and hindered the production of infectious budded viruses. We generated a transgenic line, Cas9(+)/sgorf76(+), that did not affect the growth or development of the silkworm and demonstrated that the transgenic line Cas9(+)/sgorf76(+) efficiently cleaved orf76 at the sgorf76 site, resulting in large deletions at 120 h post-infection, with no observed off-target effects. Survival analyses revealed that the transgenic line Cas9(+)/sgorf76(+) exhibited significantly higher survival rates than the control lines Cas9(-)/sgorf76(-), regardless of the BmNPV inoculation dose. Additionally, the number of BmNPV DNA copies and the expression levels of viral genes were markedly inhibited in the transgenic line Cas9(+)/sgorf76(+) compared with the control line Cas9(-)/sgorf76(-). The results provide a promising target for Cas9-mediated antiviral therapy against BmNPV, and the findings provide new insights for baculovirus gene function studies and lepidopteran pest control.
Collapse
Affiliation(s)
- Yan Zhu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Zhi-Gang Hu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Peng Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Qin Xiao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Yu Xiao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Xin-Yue Jia
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Zhan-Qi Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Min-Hui Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China.
| | - Cheng Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China.
| |
Collapse
|
4
|
Yu X, Teng T, Duan Z, Wang J. AcMNPV-miR-2 affects Autographa californica nucleopolyhedrovirus infection by regulating the expression of ac28 and several other viral early genes. J Virol 2024; 98:e0057024. [PMID: 39023251 PMCID: PMC11334470 DOI: 10.1128/jvi.00570-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Virus-encoded microRNAs (miRNAs) exert diverse regulatory roles in the biological processes of both viruses and hosts. This study delves into the functions of AcMNPV-miR-2, an early miRNA encoded by Autographa californica multiple nucleopolyhedrovirus (AcMNPV). AcMNPV-miR-2 targets viral early genes ac28 (lef-6), ac37 (lef-11), ac49, and ac63. Overexpression of AcMNPV-miR-2 leads to reduced production of infectious budded virions (BVs) and diminished viral DNA replication. Delayed polyhedron formation was observed through light and transmission electron microscopy, and the larval lifespan extended in oral infection assays. Moreover, the mRNA expression levels of two Lepidoptera-specific immune-related proteins, Gloverin and Spod-11-tox, significantly decreased. These findings indicate that AcMNPV-miR-2 restrains viral load, reducing host immune sensitivity. This beneficial effect enables the virus to combat host defense mechanisms and reside within the host for an extended duration. IMPORTANCE Virus-encoded miRNAs have been extensively studied for their pivotal roles in finetuning viral infections. Baculoviruses, highly pathogenic in insects, remain underexplored concerning their encoded miRNAs. Previous reports outlined three AcMNPV-encoded miRNAs, AcMNPV-miR-1, -miR-3, and -miR-4. This study delves into the functions of another AcMNPV-encoded miRNA, AcMNPV-miR-2 (Ac-miR-2). Through a comprehensive analysis of target gene expression, the impact on larvae, and variations in host immune-related gene expression, we elucidate a functional pathway for Ac-miR-2. This miRNA suppresses viral load and infectivity and prolongs lifespans of infected larva by downregulating specific viral early genes and host immune-related genes. These mechanisms ultimately serve the virus's primary goal of enhanced propagation. Our study significantly contributes to understanding of the intricate regulatory mechanisms of virus-encoded miRNAs in baculovirus infections.
Collapse
Affiliation(s)
- Xinghua Yu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tingkai Teng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhuowen Duan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jinwen Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Chen G, Yang J, Wu Y, Wang H, Zhang X, Feng G. A CRM1-dependent nuclear export signal in Autographa californica multiple nucleopolyhedrovirus Ac93 is important for the formation of intranuclear microvesicles. J Virol 2024; 98:e0029924. [PMID: 38557225 PMCID: PMC11092359 DOI: 10.1128/jvi.00299-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) Ac93 is highly conserved in all sequenced baculovirus genomes, and it plays important roles in both the nuclear egress of nucleocapsids and the formation of intranuclear microvesicles. In this study, we characterized a cellular CRM1-dependent nuclear export signal (NES) of AcMNPV Ac93. Bioinformatic analysis revealed that AcMNPV Ac93 may contain an NES at amino acids 115-125. Green fluorescent protein (GFP) fused to the NES (GFP:NES) of AcMNPV Ac93 is localized to the cytoplasm of transfected cells. Multiple point mutation analysis demonstrated that NES is important for the nuclear export of GFP:NES. Bimolecular fluorescence complementation experiments and co-immunoprecipitation assays confirmed that Ac93 interacts with Spodoptera frugiperda CRM1 (SfCRM1). However, AcMNPV Ac34 inhibits cellular CRM1-dependent nuclear export of GFP:NES. To determine whether the NES in AcMNPV Ac93 is important for the formation of intranuclear microvesicles, an ac93-null AcMNPV bacmid was constructed; the wild-type and NES-mutated Ac93 were reinserted into the ac93-null AcMNPV bacmid. Immunofluorescence analysis showed that Ac93 and SfCRM1 were predominantly colocalized at intranuclear microvesicles in infected cells, while the construct containing point mutations at residues 123 and 125 of Ac93 resulted in a defect in budded virus production and the abolishment of intranuclear microvesicles. Together, these data demonstrate that Ac93 contains a functional NES, which is required for the production of progeny viruses and the formation of intranuclear microvesicles.IMPORTANCEAutographa californica multiple nucleopolyhedrovirus (AcMNPV) Ac93 is important for the formation of intranuclear microvesicles. However, how the baculovirus manipulates Ac93 for the formation of intranuclear microvesicles is unclear. In this study, we identified a nuclear export signal (NES) at amino acids 115-125 of AcMNPV Ac93. Our results showed that the NES is required for the interaction between Ac93 and Spodoptera frugiperda CRM1 (SfCRM1). However, AcMNPV Ac34 inhibits the nuclear export of green fluorescent protein fused to the NES. Our analysis revealed that Ac93 and SfCRM1 were predominantly colocalized at intranuclear microvesicles in AcMNPV-infected cells. Together, our results indicate that Ac93 participates in the formation of intranuclear microvesicles via the Ac93 NES-mediated CRM1 pathway.
Collapse
Affiliation(s)
- Guoqing Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Jing Yang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Yihong Wu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Haoran Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Xinxin Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Guozhong Feng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
6
|
Bai L, Sun Y, Yue X, Ji N, Yan F, Yang T, Feng G, Guo Y, Li Z. Multifaceted interactions between host ESCRT-III and budded virus-related proteins involved in entry and egress of the baculovirus Autographa californica multiple nucleopolyhedrovirus. J Virol 2024; 98:e0190023. [PMID: 38289107 PMCID: PMC10878073 DOI: 10.1128/jvi.01900-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) is a conserved protein machine mediating membrane remodeling and scission. In the context of viral infection, different components of the ESCRT-III complex, which serve as the core machinery to catalyze membrane fission, are involved in diverse viruses' entry, replication, and/or budding. However, the interplay between ESCRT-III and viral factors in the virus life cycle, especially for that of large enveloped DNA viruses, is largely unknown. Recently, the ESCRT-III components Vps2B, Vps20, Vps24, Snf7, Vps46, and Vps60 were determined for entry and/or egress of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). Here, we identified the final three ESCRT-III components Chm7, Ist1, and Vps2A of Spodoptera frugiperda. Overexpression of the dominant-negative forms of these proteins or RNAi downregulation of their transcripts significantly reduced infectious budded viruses (BVs) production of AcMNPV. Quantitative PCR together with confocal and transmission electron microscopy analysis revealed that these proteins were required for internalization and trafficking of BV during entry and egress of nucleocapsids. In infected Sf9 cells, nine ESCRT-III components were distributed on the nuclear envelope and plasma membrane, and except for Chm7, the other components were also localized to the intranuclear ring zone. Y2H and BiFC analysis revealed that 42 out of 64 BV-related proteins including 35 BV structural proteins and 7 non-BV structural proteins interacted with single or multiple ESCRT-III components. By further mapping the interactome of 64 BV-related proteins, we established the interaction networks of ESCRT-III and the viral protein complexes involved in BV entry and egress.IMPORTANCEFrom archaea to eukaryotes, the endosomal sorting complex required for transport (ESCRT)-III complex is hijacked by many enveloped and nonenveloped DNA or RNA viruses for efficient replication. However, the mechanism of ESCRT-III recruitment, especially for that of large enveloped DNA viruses, remains elusive. Recently, we found the ESCRT-III components Vps2B, Vps20, Vps24, Snf7, Vps46, and Vps60 are necessary for the entry and/or egress of budded viruses (BVs) of Autographa californica multiple nucleopolyhedrovirus. Here, we demonstrated that the other three ESCRT-III components Chm7, Ist1, and Vps2A play similar roles in BV infection. By determining the subcellular localization of ESCRT-III components in infected cells and mapping the interaction of nine ESCRT-III components and 64 BV-related proteins, we built the interaction networks of ESCRT-III and the viral protein complexes involved in BV entry and egress. These studies provide a fundamental basis for understanding the mechanism of the ESCRT-mediated membrane remodeling for replication of baculoviruses.
Collapse
Affiliation(s)
- Lisha Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaorong Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Ning Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Fanye Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Tian Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Guozhong Feng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Ya Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhaofei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
7
|
Chen Y, Wu H, Li J, Hu Z, Wang M, Zhang H. Cysteines 128 and 250 are essential for the functions of the baculovirus core gene ac109. Virology 2023; 587:109857. [PMID: 37562288 DOI: 10.1016/j.virol.2023.109857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
The open reading frame 109 (ac109) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is one of the 38 core baculovirus genes. Ac109 was shown to be essential for the production of infectious budded virions (BV), envelopment of the nucleocapsid, and embedding of occlusion-derived virions (ODVs) into occlusion bodies (OBs). Herein, the roles of five cysteines with high conservation (C3, C116, C128, C250, and C325) in Ac109 function were investigated. AcMNPV bacmids lacking ac109 or containing single-mutated ac109 were generated. Transfection/infection assays showed that C128 and C250 in Ac109 were important for infectious BV production. Electron microscopy analysis further confirmed that these two cysteines played critical roles in nucleocapsid assembly, ODV envelopment, and embedding of ODVs into OBs. Altogether, these results demonstrate that the conserved residues Ac109 C128 and C250 are critical for baculovirus infection.
Collapse
Affiliation(s)
- Yao Chen
- School of Bioengineering and Food, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, PR China
| | - Hang Wu
- School of Bioengineering and Food, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, PR China
| | - Jiang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Huanyu Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, PR China.
| |
Collapse
|
8
|
Kong X, Chen G, Li J, Li Y, Wu X. Identification and characterization of BmNPV Bm5 protein required for the formation of nuclear vesicle structures. J Gen Virol 2023; 104. [PMID: 37185135 DOI: 10.1099/jgv.0.001853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
BmNPV infection induces nuclear vesicle-like structures and its Bm5 protein mediates the intranuclear lipid accumulation, which is thought to participate in the formation of nuclear vesicles. However, the relationship between viral-induced nuclear vesicles and Bm5 protein is still unclear. Here, our results indicated that BmNPV Bm5 protein participated in the baculovirus infection-induced nuclear vesicle-like structures' invagination thereby influencing the production of occlusion-derived virion (ODV) and occlusion body (OB). The process of nuclear vesicle-like structures' formation was dispensable for the transport or recruitment of ODV major envelope proteins, such as P74 and Bm14. Furthermore, baculovirus-induced nuclear F-actin might provide a direct mechanical force to mediate the scission of large vesicle-like structures from the nuclear membrane. Collectively, these findings illustrated a BmNPV Bm5 protein-induced nuclear membrane invagination pathway and revealed the function of nuclear vesicle-like structures in ODV production.
Collapse
Affiliation(s)
- Xiangshuo Kong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, PR China
| | - Guanping Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, PR China
| | - Jiale Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, PR China
| | - Yuedong Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, PR China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, PR China
| |
Collapse
|
9
|
Genome analysis of Psilogramma increta granulovirus and its intrapopulation diversity. Virus Res 2022; 322:198946. [PMID: 36179968 DOI: 10.1016/j.virusres.2022.198946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022]
Abstract
The complete genome of Psilogramma increta granulovirus (PsinGV), isolated from P. increta (Lepidoptera: Sphingidae), was ultra-deep sequenced with a Novaseq PE150 platform and de novo assembled and annotated. The PsinGV genome is a circular double-stranded DNA, 103,721 bp in length, with a G+C content of 33.0%, the third lowest G+C content in present sequenced baculoviruses. It encodes 123 putative open reading frames, including 38 baculovirus core genes, 42 lepidopteran baculovirus conserved genes, 38 betabaculovirus conserved genes, and 5 genes unique to PsinGV. Meanwhile, 3 homologous repeated regions with the core sequence TTGCAA and 3 direct repeated sequences were identified within the PsinGV genome. Kimura two-parameters distance analysis confirmed that Psilogramma increta granulovirus is a representative of a prospective new species of the genus Betabaculovirus. Phylogenetic analysis based on the baculovirus core genes showed that PsinGV is closely related to Choristoneura fumiferana granulovirus, Clostera anastomosis granulovirus-B, and Erinnyis ello granulovirus. These four species therefore share a common ancestor residing in the Betabaculovirus genus. The genome of the PsinGV isolate contained two p10 copies: p10 and p10-2. Phylogenetic reconstruction of P10 suggests a transfer event of the p10-2 gene from an alphabaculovirus to the aforementioned common ancestor. Analysis of genomic diversity showed that 203 intrahost variants, including 182 single nucleotide variants and 21 short insertions/deletions, are present within the PsinGV isolate. Meanwhile, allele frequency indicated that the isolate contains three major genotypes, implying the archived isolate consists of several P. increta carcasses killed by PsinGV with different genotypes.
Collapse
|
10
|
Kolliopoulou A, Kontogiannatos D, Mazurek AJ, Prifti I, Christopoulou VM, Labropoulou V, Swevers L. Analysis of luciferase dsRNA production during baculovirus infection of Hi5 cells: RNA hairpins expressed by very late promoters do not trigger gene silencing. FRONTIERS IN INSECT SCIENCE 2022; 2:959077. [PMID: 38468767 PMCID: PMC10926400 DOI: 10.3389/finsc.2022.959077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/29/2022] [Indexed: 03/13/2024]
Abstract
The baculovirus expression vector system (BEVS) has become an important platform for the expression of recombinant proteins and is especially useful for the production of large protein complexes such as virus-like particles (VLPs). An important application for VLPs is their use as vehicles for targeted delivery of drugs or toxins which requires the development of methods for efficient loading with the intended cargo. Our research intends to employ the BEVS for the production of VLPs for the delivery of insecticidal dsRNA molecules to targeted insect pests (as "dsRNA-VLPs"). A convenient strategy would be the co-expression of long dsRNAs with viral capsid proteins and their simultaneous encapsulation during VLP assembly but the capacity of the BEVS for the production of long dsRNA has not been assessed so far. In this study, the efficiency of production of long RNA hairpins targeting the luciferase gene ("dsLuc") by the polyhedrin promoter during baculovirus infection was evaluated. However, RNAi reporter assays could not detect significant amounts of dsLuc in Hi5 cells infected with recombinant baculovirus, even in the presence of co-expressed dsRNA-binding protein B2-GFP or the employment of the MS2-MCP system. Nevertheless, dot blot analyses using anti-dsRNA antibody revealed that baculovirus-mediated expression of B2-GFP resulted in significant increases in dsRNA levels in infected cells that may correspond to hybridized complementary viral transcripts. Using B2-GFP as a genetically encoded sensor, dsRNA foci were detected in the nuclei that partially co-localized with DAPI staining, consistent with their localization at the virogenic stroma. Co-localization experiments with the baculovirus proteins vp39, Ac93, ODV-E25 and gp64 indicated limited overlap between B2-GFP and the ring zone compartment where assembly of nucleocapsids and virions occurs. Stability experiments showed that exogenous dsRNA is resistant to degradation in extracts of non-infected and infected Hi5 cells and it is proposed that strong unwinding activity at the virogenic stroma in the infected nuclei may neutralize the annealing of complementary RNA strands and block the production of long dsRNAs. Because the strong stability of exogenous dsRNA, transfection can be explored as an alternative method for delivery of cargo for dsRNA-VLPs during their assembly in baculovirus-infected Hi5 cells.
Collapse
Affiliation(s)
- Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
- Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Dimitrios Kontogiannatos
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Aleksander Józef Mazurek
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
- Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Izabela Prifti
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
- Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Vasiliki-Maria Christopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Vassiliki Labropoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| |
Collapse
|
11
|
Wang Y, He J, Mo M, Cai Q, Wu W, Yuan M, Yang K. The amino acids of Autographa californica multiple nucleopolyhedrovirus P48 critical for the association with Ac93 are important for the nuclear egress of nucleocapsids and efficient formation of intranuclear microvesicles. Virus Res 2022; 308:198644. [PMID: 34813875 DOI: 10.1016/j.virusres.2021.198644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 11/24/2022]
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) undergoes a biphasic life cycle with the production of two physically and functionally distinct virions: budded virions (BVs) and occlusion-derived virions (ODVs). Nuclear egress of nucleocapsids and intranuclear microvesicle formation are critical for the morphogenesis of BVs and ODVs, respectively, but the mechanisms and details of these two processes remain unknown. Our previous studies have shown that AcMNPV p48 (ac103) gene is essential for the nuclear egress of nucleocapsids and efficient formation of intranuclear microvesicles, and protein P48 associates with Ac93, which is also involved in the above processes in virion morphogenesis. In this study, we present evidence that alanine substitution for residues N318, V319, C320, R321, and I323 of P48 disrupted the association with Ac93. Moreover, mutation of these residues blocked the nuclear egress of nucleocapsids and efficient formation of intranuclear microvesicles, and subsequent BV formation, as well as ODV envelopment and embedding of ODVs into polyhedra. These results suggested that the association between P48 and Ac93 may be important for both BV and ODV morphogenesis.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Junjie He
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Mei Mo
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qingyun Cai
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenbi Wu
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Meijin Yuan
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Kai Yang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
12
|
Chen T, Duan X, Hu H, Shang Y, Hu Y, Deng F, Wang H, Wang M, Hu Z. Systematic Analysis of 42 Autographa Californica Multiple Nucleopolyhedrovirus Genes Identifies An Additional Six Genes Involved in the Production of Infectious Budded Virus. Virol Sin 2021; 36:762-773. [PMID: 33683665 PMCID: PMC8379328 DOI: 10.1007/s12250-021-00355-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/29/2020] [Indexed: 01/15/2023] Open
Abstract
Baculoviruses have been widely used as a vector for expressing foreign genes. Among numerous baculoviruses, Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the most frequently used and it encodes 155 open reading frames (ORFs). Here, we systematically investigated the impact of 42 genes of AcMNPV on the production of infectious budded viruses (BVs) by constructing gene-knockout bacmids and subsequently conducting transfection and infection assays. The results showed that among the 39 functionally unverified genes and 3 recently reported genes, 36 are dispensable for infectious BV production, as the one-step growth curves of the gene-knockout viruses were not significantly different from those of the parental virus. Three genes (ac62, ac82 and ac106/107) are essential for infectious BV production, as deletions thereof resulted in complete loss of infectivity while the repaired viruses showed no significant difference in comparison to the parental virus. In addition, three genes (ac13, ac51 and ac120) are important but not essential for infectious BV production, as gene-knockout viruses produced significantly lower BV levels than that of the parental virus or repaired viruses. We then grouped the 155 AcMNPV genes into three categories (Dispensable, Essential, or Important for infectious BV production). Based on our results and previous publications, we constructed a schematic diagram of a potential mini-genome of AcMNPV, which contains only essential and important genes. The results shed light on our understanding of functional genomics of baculoviruses and provide fundamental information for future engineering of baculovirus expression system.
Collapse
Affiliation(s)
- Tong Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Xiaoyan Duan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Hengrui Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Yu Shang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
13
|
Cheng RL, Li XF, Zhang CX. Nudivirus Remnants in the Genomes of Arthropods. Genome Biol Evol 2021; 12:578-588. [PMID: 32282886 PMCID: PMC7250505 DOI: 10.1093/gbe/evaa074] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2020] [Indexed: 12/15/2022] Open
Abstract
Endogenous viral elements (EVEs), derived from all major types of viruses, have been discovered in many eukaryotic genomes, representing "fossil records" of past viral infections. The endogenization of nudiviruses has been reported in several insects, leading to the question of whether genomic integration is a common phenomenon for these viruses. In this study, genomic assemblies of insects and other arthropods were analyzed to identify endogenous sequences related to Nudiviridae. A total of 359 nudivirus-like genes were identified in 43 species belonging to different groups; however, none of these genes were detected in the known hosts of nudiviruses. A large proportion of the putative EVEs identified in this study encode intact open reading frames or are transcribed as mRNAs, suggesting that they result from recent endogenization of nudiviruses. Phylogenetic analyses of the identified EVEs and inspections of their flanking regions indicated that integration of nudiviruses has occurred recurrently during the evolution of arthropods. This is the first report of a comprehensive screening for nudivirus-derived EVEs in arthropod genomes. The results of this study demonstrated that a large variety of arthropods, especially hemipteran and hymenopteran insects, have previously been or are still infected by nudiviruses. These findings have greatly extended the host range of Nudiviridae and provide new insights into viral diversity, evolution, and host-virus interactions.
Collapse
Affiliation(s)
- Ruo-Lin Cheng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.,Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Xiao-Feng Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Chuan-Xi Zhang
- Institute of Plant Virology, Ningbo University, China.,Institute of Insect Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Tang Z, Luo W, Huang Z, Yuan M, Wu W, Yang K. Spodoptera frugiperda mRNA export factor interacts with and mediates the nuclear import of Autographa californica multiple nucleopolyhedrovirus ORF34 (Ac34). Virus Res 2021; 299:198438. [PMID: 33901592 DOI: 10.1016/j.virusres.2021.198438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023]
Abstract
Autographa californica multiple nucleopolyhedrovirus orf34 (ac34) is one of the unique genes of alphabaculoviruses. For successful alphabaculovirus replication, viral proteins must be transported to the nucleus. Our previous study showed that the nuclear localization of Ac34 was required for optimal production of budded virions. To investigate the mechanism of Ac34 nuclear import, mass spectrometric analysis was performed to identify potential proteins that may be involved in the nuclear import of Ac34. The result indicated that Spodoptera frugiperda mRNA export factor (SfMEF) may interact with Ac34 during baculovirus infection. Co-immunoprecipitation assays confirmed that Ac34 could interact with SfMEF in the absence of other baculovirus proteins. The deletion of ac34 did not affect the subcellular localization of SfMEF; however, knocking down Sfmef prevented the nuclear import of Ac34 in virus-infected cells. The mutations of C116 or C119 in a potential CCCH zinc finger motif (C116-X2-C119-X8-C128-X2-H131) of Ac34 led to an exclusive cytoplasmic distribution of Ac34, in consistent with our previous finding of mutations of C128 or H131 in this motif. Co-immunoprecipitation analysis showed that the above mutations in the potential zinc finger motif disrupted the interaction between Ac34 and SfMEF, and the loss of the interaction resulted in decreased BV production. Our findings demonstrated that SfMEF interacts with and mediates the nuclear import of Ac34, which is a new nucleocytoplasmic transport pathway used by alphabaculovirus to achieve successful viral replication within the nucleus of the infected cells.
Collapse
Affiliation(s)
- Zhimin Tang
- State Key Lab of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wangtai Luo
- State Key Lab of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhihong Huang
- State Key Lab of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Meijin Yuan
- State Key Lab of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wenbi Wu
- State Key Lab of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Kai Yang
- State Key Lab of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
15
|
Chen X, Yang J, Yang X, Lei C, Sun X, Hu J. A Conserved Phenylalanine Residue of Autographa Californica Multiple Nucleopolyhedrovirus AC75 Protein Is Required for Occlusion Body Formation. Front Microbiol 2021; 12:663506. [PMID: 33897676 PMCID: PMC8060461 DOI: 10.3389/fmicb.2021.663506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf75 (ac75) is a highly conserved gene that is essential for AcMNPV propagation. However, the key domains or residues of the AC75 protein that play a role in viral propagation have not been identified. In this study, sequence alignment revealed that residues Phe-54 and Gln-81 of AC75 were highly conserved among alphabaculoviruses and betabaculoviurses. Thus, Phe-54 and Gln-81 AC75 mutation bacmids were constructed. We found that Gln-81 was not required for viral propagation, whereas mutating Phe-54 reduced budded virus production by 10-fold and impaired occlusion body formation when compared with that of the wild-type AcMNPV. Electron microscopy observations showed that the Phe-54 mutation affected polyhedrin assembly and also occlusion-derived virus embedding, whereas western blot analysis revealed that mutating Phe-54 reduced the amount of AC75 but did not affect the localization of AC75 in infected cells. A protein stability assay showed that the Phe-54 mutation affected AC75 stability. Taken together, Phe-54 was identified as an important residue of AC75, and ac75 is a pivotal gene in budding virus production and occlusion body formation.
Collapse
Affiliation(s)
- Xingang Chen
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Yang
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoqin Yang
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengfeng Lei
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Xiulian Sun
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Jia Hu
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
16
|
Chen X, Yang X, Lei C, Qin F, Sun X, Hu J. Autographa Californica Multiple Nucleopolyhedrovirus orf13 Is Required for Efficient Nuclear Egress of Nucleocapsids. Virol Sin 2021; 36:968-980. [PMID: 33721216 DOI: 10.1007/s12250-021-00353-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf13 (ac13) is a conserved gene in all sequenced alphabaculoviruses. However, its function in the viral life cycle remains unknown. In this study, we found that ac13 was a late gene and that the encoded protein, bearing a putative nuclear localization signal motif, colocalized with the nuclear lamina. Deletion of ac13 did not affect viral genome replication, nucleocapsid assembly or occlusion body (OB) formation, but reduced virion budding from infected cells by approximately 400-fold compared with the wild-type virus. Deletion of ac13 substantially impaired the egress of nucleocapsids from the nucleus to the cytoplasm, while the OB morphogenesis was unaffected. Taken together, our results indicated that ac13 was required for efficient nuclear egress of nucleocapsids during virion budding, but was dispensable for OB formation.
Collapse
Affiliation(s)
- Xingang Chen
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqin Yang
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengfeng Lei
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fujun Qin
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiulian Sun
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Jia Hu
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
17
|
Arvin MJ, Lorenzi A, Burke GR, Strand MR. MdBVe46 is an envelope protein that is required for virion formation by Microplitis demolitor bracovirus. J Gen Virol 2021; 102:001565. [PMID: 33591247 PMCID: PMC8515855 DOI: 10.1099/jgv.0.001565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/18/2021] [Indexed: 11/18/2022] Open
Abstract
Bracoviruses (BVs) are endogenized nudiviruses that braconid parasitoid wasps have coopted for functions in parasitizing hosts. Microplitis demolitor is a braconid wasp that produces Microplitis demolitor bracovirus (MdBV) and parasitizes the larval stage of the moth Chrysodeixis includens. Some BV core genes are homologs of genes also present in baculoviruses while others are only known from nudiviruses or other BVs. In this study, we had two main goals. The first was to separate MdBV virions into envelope and nucleocapsid fractions before proteomic analysis to identify core gene products that were preferentially associated with one fraction or the other. Results indicated that nearly all MdBV baculovirus-like gene products that were detected by our proteomic analysis had similar distributions to homologs in the occlusion-derived form of baculoviruses. Several core gene products unknown from baculoviruses were also identified as envelope or nucleocapsid components. Our second goal was to functionally characterize a core gene unknown from baculoviruses that was originally named HzNVorf64-like. Immunoblotting assays supported our proteomic data that identified HzNVorf64-like as an envelope protein. We thus renamed HzNVorf64-like as MdBVe46, which we further hypothesized was important for infection of C. includens. Knockdown of MdBVe46 by RNA interference (RNAi) greatly reduced transcript and protein abundance. Knockdown of MdBVe46 also altered virion morphogenesis, near-fully inhibited infection of C. includens, and significantly reduced the proportion of hosts that were successfully parasitized by M. demolitor.
Collapse
Affiliation(s)
- Michael J. Arvin
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Ange Lorenzi
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Gaelen R. Burke
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Michael R. Strand
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
18
|
Abstract
The dynamics of nuclear envelope has a critical role in multiple cellular processes. However, little is known regarding the structural changes occurring inside the nucleus or at the inner and outer nuclear membranes. For viruses assembling inside the nucleus, remodeling of the intranuclear membrane plays an important role in the process of virion assembly. Here, we monitored the changes associated with viral infection in the case of nudiviruses. Our data revealed dramatic membrane remodeling inside the nuclear compartment during infection with Oryctes rhinoceros nudivirus, an important biocontrol agent against coconut rhinoceros beetle, a devastating pest for coconut and oil palm trees. Based on these findings, we propose a model for nudivirus assembly in which nuclear packaging occurs in fully enveloped virions. Enveloped viruses hijack cellular membranes in order to provide the necessary material for virion assembly. In particular, viruses that replicate and assemble inside the nucleus have developed special approaches to modify the nuclear landscape for their advantage. We used electron microscopy to investigate cellular changes occurring during nudivirus infection and we characterized a unique mechanism for assembly, packaging, and transport of new virions across the nuclear membrane and through the cytoplasm. Our three-dimensional reconstructions describe the complex remodeling of the nuclear membrane necessary to release vesicle-associated viruses into the cytoplasm. This is the first report of nuclear morphological reconfigurations that occur during nudiviral infection.
Collapse
|
19
|
Wei W, Hu Z, Jia Y, Gu T, Zhao W, Ji S. Characterization of lamin B receptor of Sf9 cells and its fate during Autographa californica nucleopolyhedrovirus infection. Cytotechnology 2020; 72:315-325. [PMID: 32246222 DOI: 10.1007/s10616-020-00380-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/17/2020] [Indexed: 11/29/2022] Open
Abstract
Baculovirus nucleocapsids egress from the nuclear membrane during infection. However, details of alternation of nuclear membrane structure during baculovirus egress are unknown. In this study, we examined the changes of lamin B receptor (LBR), a main inner nuclear membrane component, during Autographa californica nucleopolyhedrovirus (AcMNPV) infection. Firstly, the open reading frame (Orf) of Sf9 lbr was cloned by reverse transcription PCR, and the distribution of LBR in Sf9 cells were observed by fusing LBR with the red fluorescence protein mcherry. Besides, the amount of endogenous LBR during AcMNPV infection was detected by western blotting. Moreover, the distribution of LBR after AcMNPV infection was observed under the confocal fluorescence microscopy. Furthermore, the effects of protein kinase C (PKC) inhibitor on stability of LBR and release of budded virus (BVs) were determined. The results showed that Sf9 lbr contains an Orf of 2040 nucleotides (NTs), which encodes a predicted protein of 679 amino acids (AAs). Fluorescence microscopy showed that LBR is localized to the nuclear membrane. Western blotting result showed that the amount of endogenous LBR is significantly reduced after AcMNPV infection. Transfection and infection assay demonstrated that the fluorescence of LBR nearly completely disappeared after viral infection. PKC inhibitor can suppress the degradation of LBR induced by AcMNPV, resulting in the reduction of viral titer of progeny viruses. The electron microscopy analysis demonstrated that PKC inhibitor did not influence virion entry, uncoating, and assembly, but may partially protect the nuclear membrane from disruption by AcMNPV. Taken together, AcMNPV infection can distort the expression of LBR, which may promote the egress of nucleocapsids.
Collapse
Affiliation(s)
- Wenqiang Wei
- Laboratory of Cell Signal Transduction and Institute of Biomedical Informatics, Henan University, Kaifeng, 475004, Henan, China. .,Henan International Joint Laboratory for Nuclear Protein in Gene Regulation, Henan University, Kaifeng, 475004, Henan, China. .,Department of Microbiology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
| | - Zichao Hu
- Laboratory of Cell Signal Transduction and Institute of Biomedical Informatics, Henan University, Kaifeng, 475004, Henan, China
| | - Yuting Jia
- Laboratory of Cell Signal Transduction and Institute of Biomedical Informatics, Henan University, Kaifeng, 475004, Henan, China
| | - TingXuan Gu
- Laboratory of Cell Signal Transduction and Institute of Biomedical Informatics, Henan University, Kaifeng, 475004, Henan, China
| | - Wei Zhao
- Laboratory of Cell Signal Transduction and Institute of Biomedical Informatics, Henan University, Kaifeng, 475004, Henan, China
| | - Shaoping Ji
- Laboratory of Cell Signal Transduction and Institute of Biomedical Informatics, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
20
|
Liu T, Li Y, Qiao B, Jiang Y, Ji N, Li Z. Disrupting the association of Autographa californica multiple nucleopolyhedrovirus Ac93 with cellular ESCRT-III/Vps4 hinders nuclear egress of nucleocapsids and intranuclear microvesicles formation. Virology 2020; 541:85-100. [PMID: 32056718 DOI: 10.1016/j.virol.2019.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 11/27/2022]
Abstract
The endosomal sorting complex required for transport (ESCRT) pathway is required for efficient egress of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). In this study, we found that Ac93, a baculovirus core protein, contains a conserved MIM1-like motif. Alanine substitutions for six leucine residues in MIM1-like motif revealed that L142, L145, L146, and L149 are required for association of Ac93 with the MIT domain of Vps4. Mutations of these residues also blocked self-association and the association of Ac93 with ESCRT-III proteins or other viral core proteins Ac76 and Ac103, and resulted in a substantial reduction of infectious virus production, less efficient nuclear egress of progeny nucleocapsids, and the defect of intranuclear microvesicles formation. Combined with the localization of the association of Ac93 with ESCRT-III/Vps4 and other viral proteins at the nuclear membrane, we propose that the coordinated action of these viral proteins and ESCRT-III/Vps4 may be involved in remodeling the nuclear membrane.
Collapse
Affiliation(s)
- Tingting Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuying Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bin Qiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuanyuan Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ning Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhaofei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
21
|
Wang Y, Cai Q, Chen J, Huang Z, Wu W, Yuan M, Yang K. Autographa Californica Multiple Nucleopolyhedrovirus P48 (Ac103) Is Required for the Efficient Formation of Virus-Induced Intranuclear Microvesicles. Virol Sin 2019; 34:712-721. [PMID: 31292829 DOI: 10.1007/s12250-019-00147-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/14/2019] [Indexed: 01/04/2023] Open
Abstract
Our previous study has shown that the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) p48 (ac103) gene is essential for the nuclear egress of nucleocapsids and the formation of occlusion-derived virions (ODVs). However, the exact role of p48 in the morphogenesis of ODVs remains unknown. In this study, we demonstrated that p48 was required for the efficient formation of intranuclear microvesicles. To further understand its functional role in intranuclear microvesicle formation, we characterized the distribution of the P48 protein, which was found to be associated with the nucleocapsid and envelope fractions of both budded virions and ODVs. In AcMNPV-infected cells, P48 was predominantly localized to nucleocapsids in the virogenic stroma and the nucleocapsids enveloped in ODVs, with a limited but discernible distribution in the plasma membrane, nuclear envelope, intranuclear microvesicles, and ODV envelope. Furthermore, coimmunoprecipitation assays showed that among the viral proteins required for intranuclear microvesicle formation, P48 associated with Ac93 in the absence of viral infection.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qingyun Cai
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiannan Chen
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhihong Huang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wenbi Wu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Meijin Yuan
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Kai Yang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
22
|
Lai Q, Zhu L, Xu L, Yuan M, Wu W, Yang K. AcMNPV PKIP is associated with nucleocapsid of budded virions and involved in nucleocapsid assembly. Virus Res 2019; 268:27-37. [DOI: 10.1016/j.virusres.2019.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
|
23
|
Fang Z, Que Y, Li J, Zhang Z. The deletion of the AcMNPV ac124 gene resulted in a decrease in chitinase transcription. Virus Res 2019; 263:151-158. [PMID: 30711578 DOI: 10.1016/j.virusres.2019.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 01/26/2023]
Abstract
The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac124 gene has been previously characterized as a viral pathogenicity factor. In this study, an ac124-knockout virus (vAc124KO) was generated to examine the role of the ac124 gene in the context of the AcMNPV genome during infection. Our results showed that the absence of ac124 does not affect the production of budded virus (BV) and occlusion bodies (OBs) in infected Sf9 cells. Western blotting analysis showed that the deletion of ac124 does not affect the temporal expression and the relative levels of GP64, VP39, P6.9, and polyhedrin. qRT-PCR analysis showed that the transcription level of chitinase but not the adjacent cathepsin in vAc124KO infected cells was significantly lower than that of the vAcWT infected cells from 24 to 96 h p.i. Luciferase assays showed that the overexpression of Ac124 could significantly improve the ability of chitinase promoter to initiate reporter genes. Based on the above data, we hypothesize that Ac124 binds to the promoter of chitinase to regulate the expression of chitinase gene.
Collapse
Affiliation(s)
- Zhixin Fang
- Department of Laboratory Medicine and Central Laboratories, Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou, 510317, Guangdong, People's Republic of China.
| | - Yi Que
- Department of Medical Melanoma and Sarcoma, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Jie Li
- Department of Laboratory Medicine and Central Laboratories, Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou, 510317, Guangdong, People's Republic of China
| | - Zhi Zhang
- Department of Laboratory Medicine and Central Laboratories, Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou, 510317, Guangdong, People's Republic of China.
| |
Collapse
|
24
|
Masson T, Fabre ML, Ferrelli ML, Pidre ML, Romanowski V. Protein composition of the occlusion bodies of Epinotia aporema granulovirus. PLoS One 2019; 14:e0207735. [PMID: 30753194 PMCID: PMC6372164 DOI: 10.1371/journal.pone.0207735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/21/2019] [Indexed: 12/28/2022] Open
Abstract
Within family Baculoviridae, members of the Betabaculovirus genus are employed as biocontrol agents against lepidopteran pests, either alone or in combination with selected members of the Alphabaculovirus genus. Epinotia aporema granulovirus (EpapGV) is a fast killing betabaculovirus that infects the bean shoot borer (E. aporema) and is a promising biopesticide. Because occlusion bodies (OBs) play a key role in baculovirus horizontal transmission, we investigated the composition of EpapGV OBs. Using mass spectrometry-based proteomics we could identify 56 proteins that are included in the OBs during the final stages of larval infection. Our data provides experimental validation of several annotated hypothetical coding sequences. Proteogenomic mapping against genomic sequence detected a previously unannotated ac110-like core gene and a putative translation fusion product of ORFs epap48 and epap49. Comparative studies of the proteomes available for the family Baculoviridae highlight the conservation of core gene products as parts of the occluded virion. Two proteins specific for betabaculoviruses (Epap48 and Epap95) are incorporated into OBs. Moreover, quantification based on emPAI values showed that Epap95 is one of the most abundant components of EpapGV OBs.
Collapse
Affiliation(s)
- Tomás Masson
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - María Laura Fabre
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - María Leticia Ferrelli
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Matías Luis Pidre
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Víctor Romanowski
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
25
|
The Autographa californica Multiple Nucleopolyhedrovirus ac51 Gene Is Required for Efficient Nuclear Egress of Nucleocapsids and Is Essential for In Vivo Virulence. J Virol 2019; 93:JVI.01923-18. [PMID: 30429334 DOI: 10.1128/jvi.01923-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/30/2022] Open
Abstract
Alphabaculoviruses are lepidopteran-specific nucleopolyhedroviruses that replicate within the nucleus; however, the anterograde transport of the nucleocapsids of these viruses, which is an obligatory step for progeny virion production, is not well understood. In the present study, a unique Alphabaculovirus gene with unknown function, namely, the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac51 gene, was found to be required for efficient nuclear egress of AcMNPV nucleocapsids. Our results indicate that ac51 is a late gene, and Ac51 protein was detectable from 24 to 72 h postinfection using an antibody raised against Ac51. Ac51 is distributed in both the cytoplasm and nuclei of infected cells. Upon ac51 deletion, budded virion (BV) production by 96 h posttransfection was reduced by approximately 1,000-fold compared with that of wild-type AcMNPV. Neither viral DNA synthesis nor viral gene expression was affected. Ac51 was demonstrated to be a nucleocapsid protein of BVs, and ac51 deletion did not interrupt nucleocapsid assembly and occlusion-derived virion (ODV) formation. However, BV production in the supernatants of transfected cells during a viral life cycle was substantially decreased when ac51 was deleted. Further analysis showed that, compared with wild-type AcMNPV, ac51 deletion decreased nucleocapsid egress, while the numbers of nucleocapsids in the nuclei were comparable. Deletion of ac51 also eliminated the virulence of AcMNPV in vivo Taken together, our results support the conclusion that ac51 plays an important role in the nuclear egress of nucleocapsids during BV formation and is essential for the in vivo virulence of AcMNPV.
Collapse
|
26
|
Xu W, Fan Y, Wang H, Feng M, Wu X. Bombyx mori nucleopolyhedrovirus F-like protein Bm14 affects the morphogenesis and production of occlusion bodies and the embedding of ODVs. Virology 2019; 526:61-71. [DOI: 10.1016/j.virol.2018.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022]
|
27
|
Li S, Li L, Zhao H, Liu W. Disruption of Autographa Californica Multiple Nucleopolyhedrovirus ac111 Results in Reduced per os Infectivity in a Host-Dependent Manner. Viruses 2018; 10:v10100527. [PMID: 30262719 PMCID: PMC6213390 DOI: 10.3390/v10100527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 01/04/2023] Open
Abstract
The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac111 gene is highly conserved in lepidopteran-specific baculoviruses, and its function in the AcMNPV life cycle is still unknown. To investigate the function of ac111, an ac111-knockout AcMNPV (vAc111KO) was constructed through homologous recombination in Escherichia coli. Viral growth curve analysis and plaque assays showed that the deletion of ac111 had no effect on infectious budded virion production. Quantitative real-time polymerase chain reaction analysis confirmed that viral DNA replication was unaffected in the absence of ac111. Electron microscopy revealed that the ac111 deletion did not affect nucleocapsid assembly, occlusion-derived virion formation, or the embedding of occlusion-derived virions into the occlusion bodies. However, in vivo bioassays showed that although the deletion of ac111 did not affect the per os infectivity of AcMNPV in Spodoptera exigua larvae, it led to an approximately five-fold reduction in infectivity of AcMNPV in Trichoplusia ni larvae, and vAc111KO took approximately 21 h longer to kill Trichoplusia ni larvae than the wild-type viruses. Taken together, our results demonstrated that although ac111 is not essential for virus replication in vitro, it plays an important role in the per os infectivity of AcMNPV in a host-dependent manner.
Collapse
Affiliation(s)
- Sainan Li
- Department of Biology, Zhaoqing University, Zhaoqing 526061, China.
| | - Lu Li
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China.
| | - Haizhou Zhao
- Department of Biology, Zhaoqing University, Zhaoqing 526061, China.
| | - Wenhua Liu
- Department of Biology, Zhaoqing University, Zhaoqing 526061, China.
| |
Collapse
|
28
|
Abstract
Baculoviruses are large DNA viruses of insects that are highly pathogenic in many hosts. In the infection cycle, baculoviruses produce two types of virions. These virion phenotypes are physically and functionally distinct, and each serves a critical role in the biology of the virus. One phenotype, the occlusion-derived virus (ODV), is occluded within a crystallized protein that facilitates oral infection of the host. A large complex of at least nine ODV envelope proteins called per os infectivity factors are critically important for ODV infection of insect midgut epithelial cells. Viral egress from midgut cells is by budding to produce a second virus phenotype, the budded virus (BV). BV binds, enters, and replicates in most other tissues of the host insect. Cell recognition and entry by BV are mediated by a single major envelope glycoprotein: GP64 in some baculoviruses and F in others. Entry and egress by the two virion phenotypes occur by dramatically different mechanisms and reflect a life cycle in which ODV is specifically adapted for oral infection while BV mediates dissemination of the infection within the animal.
Collapse
Affiliation(s)
- Gary W Blissard
- Boyce Thompson Institute at Cornell University, Ithaca, New York 14853, USA;
| | - David A Theilmann
- Summerland Research and Development Center, Agriculture and Agri-Food Canada, Summerland, British Columbia V0H 1Z0, Canada;
| |
Collapse
|
29
|
Li J, Sun Y, Li Y, Liu X, Yue Q, Li Z. Inhibition of cellular fatty acid synthase impairs replication of budded virions of Autographa californica multiple nucleopolyhedrovirus in Spodoptera frugiperda cells. Virus Res 2018; 252:41-47. [PMID: 29746884 DOI: 10.1016/j.virusres.2018.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/20/2018] [Accepted: 05/06/2018] [Indexed: 10/17/2022]
Abstract
Fatty acid synthase (FASN) catalyzes the synthesis of palmitate, which is required for formation of complex fatty acids and phospholipids that are involved in energy production, membrane remodeling and modification of host and viral proteins. Presently, the roles of cellular fatty acid synthesis pathway in Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection is not clear. In this study, we found that the transcripts level of fasn was significantly up-regulated at the early stage of AcMNPV infection. Treatment of AcMNPV-infected Spodoptera frugiperda Sf9 cells with C75, a specific inhibitor of FASN, did not affect the internalization of budded virions into cells, but dramatically reduced the infectious AcMNPV production. Further analysis revealed that the presence of C75 significantly decreased the expression level for two reporter genes, beta-galactosidase and beta-glucuronidase, that were separately directed by the early and late promoter of AcMNPV. Similarly, Western blot analysis showed that, in C75-treated cells, the expression of viral gp64 was delayed and decreased. Additionally, treatment with C75 also resulted in a significant reduction in the accumulation of viral genomic DNA. Together, these results demonstrate that the fatty acid synthesis pathway is required for efficient replication of AcMNPV, but it might not be necessary for AcMNPV entry into insect cells.
Collapse
Affiliation(s)
- Jingfeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Taicheng Road, Yangling, Shaanxi 712100, China
| | - Yu Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Taicheng Road, Yangling, Shaanxi 712100, China
| | - Yuying Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Taicheng Road, Yangling, Shaanxi 712100, China
| | - Ximeng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Taicheng Road, Yangling, Shaanxi 712100, China
| | - Qi Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Taicheng Road, Yangling, Shaanxi 712100, China
| | - Zhaofei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Taicheng Road, Yangling, Shaanxi 712100, China.
| |
Collapse
|
30
|
Shen Y, Feng M, Wu X. Bombyx mori nucleopolyhedrovirus ORF40 is essential for budded virus production and occlusion-derived virus envelopment. J Gen Virol 2018; 99:837-850. [PMID: 29676725 DOI: 10.1099/jgv.0.001066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ORF40 (bm40) of the Bombyx mori nucleopolyhedrovirus (BmNPV) encodes a homologue of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) AC51 and is a highly conserved gene in sequenced alphabaculoviruses. To investigate the role of bm40 in the baculovirus infection cycle, a bm40 knockout BmNPV bacmid was constructed via homologous recombination in Escherichia coli. Western blotting analysis revealed that bm40 is a late gene during virus infection. Compared with wild-type and repair viruses, the knockout virus exhibited a single-cell infection phenotype. Titration assays confirmed that no infectious budded viruses (BVs) were produced due to the bm40 deletion, while there was no effect on viral DNA replication. Electron microscopy revealed that Bm40 is required for nucleocapsid egress from the nucleus to the cytoplasm, nucleocapsid envelopment to form occlusion-derived viruses (ODVs) and subsequent embedding of ODVs into polyhedra. Confocal microscopy showed that Bm40 was predominantly localized in the nuclei from 48 h post-infection and subsequently condensed on the nuclear membrane and polyhedra at the late phase of infection. Taken together, these results demonstrate that Bm40 plays an essential role in BV production and ODV envelopment in the BmNPV infection cycle.
Collapse
Affiliation(s)
- Yunwang Shen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Min Feng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
31
|
The 38K-Mediated Specific Dephosphorylation of the Viral Core Protein P6.9 Plays an Important Role in the Nucleocapsid Assembly of Autographa californica Multiple Nucleopolyhedrovirus. J Virol 2018; 92:JVI.01989-17. [PMID: 29444944 PMCID: PMC5899202 DOI: 10.1128/jvi.01989-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/07/2018] [Indexed: 02/02/2023] Open
Abstract
Encapsidation of the viral genomes, leading to the assembly of the nucleocapsids to form infectious progeny virions, is a key step in many virus life cycles. Baculovirus nucleocapsid assembly is a complex process that involves many proteins. Our previous studies showed that the deletion of the core gene 38K (ac98) interrupted the nucleocapsid assembly by producing capsid sheaths devoid of viral genomes by an unknown mechanism. All homologs of 38K contain conserved motifs of the haloacid dehalogenase superfamily, which are involved in phosphoryl transfer. The requirements of these motifs for nucleocapsid assembly, confirmed in the present study, suggest that 38K may be a functioning haloacid dehalogenase. P6.9 is also encoded by a core gene (ac100) and is required for viral genome encapsidation. It has been reported that multiple phosphorylated species of P6.9 are present in virus-infected cells, while only an unphosphorylated species is detected in the budded virus. Therefore, whether 38K mediates the dephosphorylation of P6.9 was investigated. An additional phosphorylated species of P6.9 in 38K-deleted or -mutated virus-transfected cells was detected, and the dephosphorylated sites mediated by 38K were determined by mass spectrometry. To assess the effects of dephosphorylation of P6.9 mediated by 38K on virus replication, these sites were mutated to glutamic acids (phosphorylation-mimic mutant) or to alanines (phosphorylation-deficient mutant). Studies showed that the nucleocapsid assembly was interrupted in phosphorylation-mimic mutant virus-transfected cells. Taken together, our findings demonstrate that 38K mediates the dephosphorylation of specific sites at the C terminus of P6.9, which is essential for viral genome encapsidation.IMPORTANCE Genome packaging is a fundamental process in the virus life cycle, and viruses have different strategies to perform this step. For several double-stranded DNA (dsDNA) viruses, the procapsid is formed before genome encapsidation, which may require basic proteins that help to neutralize the nucleic acid charge repulsion to facilitate the compaction of the genome within the confined capsid space. Baculovirus encodes a small basic protein, P6.9, which is required for a variety of processes in the virus infection cycle. The phosphorylation of P6.9 is thought to result in nucleocapsid uncoating, while the dephosphorylation of P6.9 is involved in viral DNA encapsidation during nucleocapsid assembly. Here, we demonstrate that a haloacid dehalogenase homolog encoded by baculovirus core gene 38K is involved in nucleocapsid assembly by mediating the dephosphorylation of 5 specific sites at the C terminus of P6.9. This finding contributes to the understanding of the mechanisms of virus nucleocapsid assembly.
Collapse
|
32
|
Shen Y, Wang H, Xu W, Wu X. Bombyx mori nucleopolyhedrovirus orf133 and orf134 are involved in the embedding of occlusion-derived viruses into polyhedra. J Gen Virol 2018; 99:717-729. [PMID: 29624165 DOI: 10.1099/jgv.0.001058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) orf133 (bm133) and orf134 (bm134), the orthologues of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac4 and ac5, are two adjacent genes with opposite transcriptional orientations and are highly conserved in all sequenced group I nucleopolyhedroviruses (NPVs). A double bm133-bm134 knockout bacmid was generated to enable the functional study of each gene independently or together. Compared with wild-type and double-repair viruses, deletion of both bm133 and bm134 did not affect budded virus (BV) production or viral DNA replication in transfected BmN cells. Electron microscopy revealed that the double knockout did not affect nucleocapsid assembly, virus-induced intranuclear microvesicle formation or occlusion-derived virus (ODV) production, but the number of virions embedded in the polyhedra decreased significantly. Further investigations showed that disruption of either gene was unable to recover the defect of ODV occlusion, suggesting that Bm133 and Bm134 are indispensable to the embedding of ODVs into polyhedra. Confocal microscopy analysis showed that Bm133 and Bm134 distributed throughout the whole cell during viral infection and Bm134 concentrated on the mature polyhedra in lysed cells. These results suggest that although Bm133 and Bm134 are not essential for BV or ODV development, they play vital roles in polyhedra morphogenesis.
Collapse
Affiliation(s)
- Yunwang Shen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Haiping Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weifan Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
33
|
Autographa californica Multiple Nucleopolyhedrovirus ac75 Is Required for the Nuclear Egress of Nucleocapsids and Intranuclear Microvesicle Formation. J Virol 2018; 92:JVI.01509-17. [PMID: 29212928 DOI: 10.1128/jvi.01509-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/27/2017] [Indexed: 01/15/2023] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf75 (ac75) is a highly conserved gene of unknown function. In this study, we constructed an ac75 knockout AcMNPV bacmid and investigated the role of ac75 in the baculovirus life cycle. The expression and distribution of the Ac75 protein were characterized, and its interaction with another viral protein was analyzed to further understand its function. Our data indicated that ac75 was required for the nuclear egress of nucleocapsids, intranuclear microvesicle formation, and subsequent budded virion (BV) formation, as well as occlusion-derived virion (ODV) envelopment and embedding of ODVs into polyhedra. Western blot analyses showed that two forms, of 18 and 15 kDa, of FLAG-tagged Ac75 protein were detected. Ac75 was associated with both nucleocapsid and envelope fractions of BVs but with only the nucleocapsid fraction of ODVs; the 18-kDa form was associated with only BVs, whereas the 15-kDa form was associated with both types of virion. Ac75 was localized predominantly in the intranuclear ring zone during infection and exhibited a nuclear rim distribution during the early phase of infection. A phase separation assay suggested that Ac75 was not an integral membrane protein. A coimmunoprecipitation assay revealed an interaction between Ac75 and the integral membrane protein Ac76, and bimolecular fluorescence complementation assays identified the sites of the interaction within the cytoplasm and at the nuclear membrane and ring zone in AcMNPV-infected cells. Our results have identified ac75 as a second gene that is required for both the nuclear egress of nucleocapsids and the formation of intranuclear microvesicles.IMPORTANCE During the baculovirus life cycle, the morphogenesis of both budded virions (BVs) and occlusion-derived virions (ODVs) is proposed to involve a budding process at the nuclear membrane, which occurs while nucleocapsids egress from the nucleus or when intranuclear microvesicles are produced. However, the exact mechanism of virion morphogenesis remains unknown. In this study, we identified ac75 as a second gene, in addition to ac93, that is essential for the nuclear egress of nucleocapsids, intranuclear microvesicle formation, and subsequent BV formation, as well as ODV envelopment and embedding of ODVs into polyhedra. Ac75 is not an integral membrane protein. However, it interacts with an integral membrane protein (Ac76) and is associated with the nuclear membrane. These data enhance our understanding of the commonalities between nuclear egress of nucleocapsids and intranuclear microvesicle formation and may help to reveal insights into the mechanism of baculovirus virion morphogenesis.
Collapse
|
34
|
Distinct Roles of Cellular ESCRT-I and ESCRT-III Proteins in Efficient Entry and Egress of Budded Virions of Autographa californica Multiple Nucleopolyhedrovirus. J Virol 2017; 92:JVI.01636-17. [PMID: 29046462 DOI: 10.1128/jvi.01636-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/06/2017] [Indexed: 11/20/2022] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is necessary for budding of many enveloped viruses. Recently, it was demonstrated that Vps4, the key regulator for recycling of the ESCRT-III complex, is required for efficient infection by the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). However, ESCRT assembly, regulation, and function are complex, and little is known regarding the details of participation of specific ESCRT complexes in AcMNPV infection. In this study, the core components of ESCRT-I (Tsg101 and Vps28) and ESCRT-III (Vps2B, Vps20, Vps24, Snf7, Vps46, and Vps60) were cloned from Spodoptera frugiperda Using a viral complementation system and RNA interference (RNAi) assays, we found that ESCRT-I and ESCRT-III complexes are required for efficient entry of AcMNPV into insect cells. In cells knocking down or overexpressing dominant negative (DN) forms of the components of ESCRT-I and ESCRT-III complexes, entering virions were partially trapped within the cytosol. To examine only egress, cells were transfected with the double-stranded RNA (dsRNA) targeting an individual ESCRT-I or ESCRT-III gene and viral bacmid DNA or viral bacmid DNA that expressed DN forms of ESCRT-I and ESCRT-III components. We found that ESCRT-III components (but not ESCRT-I components) are required for efficient nuclear egress of progeny nucleocapsids. In addition, we found that several baculovirus core or conserved proteins (Ac11, Ac76, Ac78, GP41, Ac93, Ac103, Ac142, and Ac146) interact with Vps4 and components of ESCRT-III. We propose that these viral proteins may form an "egress complex" that is involved in recruiting ESCRT-III components to a virus egress domain on the nuclear membrane.IMPORTANCE The ESCRT system is hijacked by many enveloped viruses to mediate budding and release. Recently, it was found that Vps4, the key regulator of the cellular ESCRT machinery, is necessary for efficient entry and egress of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). However, little is known about the roles of specific ESCRT complexes in AcMNPV infection. In this study, we demonstrated that ESCRT-I and ESCRT-III complexes are required for efficient entry of AcMNPV into insect cells. The components of ESCRT-III (but not ESCRT-I) are also necessary for efficient nuclear egress of progeny nucleocapsids. Several baculovirus core or conserved proteins were found to interact with Vps4 and components of ESCRT-III, and these interactions may suggest the formation of an "egress complex" involved in the nuclear release or transport of viral nucleocapsids.
Collapse
|
35
|
Autographa californica multiple nucleopolyhedrovirus ac75 is required for egress of nucleocapsids from the nucleus and formation of de novo intranuclear membrane microvesicles. PLoS One 2017; 12:e0185630. [PMID: 28968422 PMCID: PMC5624611 DOI: 10.1371/journal.pone.0185630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/30/2017] [Indexed: 01/28/2023] Open
Abstract
In this study, Autographa californica multiple nucleopolyhedrovirus ac75 was functionally characterized. Ac75 has homologs in all sequenced genomes of alphabaculoviruses, betabaculoviruses, and gammabaculoviruses. It was determined to encode a protein that is associated with the nucleocapsid of budded virus and with both envelope and nucleocapsids of occlusion-derived virus. Sf9 cells transfected by an ac75-knockout bacmid resulted in the infection being restricted to single cells. No budded virus were detected although viral DNA replication and late gene expression were unaffected. Electron microscopy revealed that the virogenic stroma, nucleocapsids and occlusion bodies appeared normal in the cells transfected by an ac75-knockout bacmid. However, the nucleocapsids were unenveloped, the occlusion bodies did not contain any virions or nucleocapsids, and no nucleocapsids were found outside the nucleus or spanning the nuclear membrane. In addition, de novo intranuclear membrane microvesicles that are the precursor of occlusion-derived virus envelopes were absent in the nuclei of transfected cells. Confocal microscopy showed that AC75 protein appeared in the cytoplasm as early as 6 hours post infection. It localized to the ring zone at the periphery of the nucleus from 15 to 24 hours post infection and demonstrated light blocky cloud-like distribution in the center of the nucleus. AC75 was found to co-immunoprecipitate with BV and ODV associated envelope protein ODV-E25. The data from this study suggest that ac75 is essential for induction of the intranuclear membrane microvesicles, it appears to be required for the intranuclear envelopment of nucleocapsids, and is also essential for egress of nucleocapsids from the nuclei, in infected cells.
Collapse
|
36
|
Roles of Cellular NSF Protein in Entry and Nuclear Egress of Budded Virions of Autographa californica Multiple Nucleopolyhedrovirus. J Virol 2017; 91:JVI.01111-17. [PMID: 28747507 DOI: 10.1128/jvi.01111-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 07/20/2017] [Indexed: 02/03/2023] Open
Abstract
In eukaryotic cells, the soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) proteins comprise the minimal machinery that triggers fusion of transport vesicles with their target membranes. Comparative studies revealed that genes encoding the components of the SNARE system are highly conserved in yeast, insect, and human genomes. Upon infection of insect cells by the virus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), the transcript levels of most SNARE genes initially were upregulated. We found that overexpression of dominant-negative (DN) forms of NSF or knockdown of the expression of NSF, the key regulator of the SNARE system, significantly affected infectious AcMNPV production. In cells expressing DN NSF, entering virions were trapped in the cytoplasm or transported to the nucleus with low efficiency. The presence of DN NSF also moderately reduced trafficking of the viral envelope glycoprotein GP64 to the plasma membrane but dramatically inhibited production of infectious budded virions (BV). Transmission electron microscopy analysis of infections in cells expressing DN NSF revealed that progeny nucleocapsids were retained in a perinuclear space surrounded by inner and outer nuclear membranes. Several baculovirus conserved (core) proteins (Ac76, Ac78, GP41, Ac93, and Ac103) that are important for infectious budded virion production were found to associate with NSF, and NSF was detected within the assembled BV. Together, these data indicate that the cellular SNARE system is involved in AcMNPV infection and that NSF is required for efficient entry and nuclear egress of budded virions of AcMNPV.IMPORTANCE Little is known regarding the complex interplay between cellular factors and baculoviruses during viral entry and egress. Here, we examined the cellular SNARE system, which mediates the fusion of vesicles in healthy cells, and its relation to baculovirus infection. Using a DN approach and RNA interference knockdown, we demonstrated that a general disruption of the SNARE machinery significantly inhibited the production of infectious BV of AcMNPV. The presence of a DN NSF protein resulted in low-efficiency entry of BV and the retention of progeny nucleocapsids in the perinuclear space during egress. Combined with these effects, we also found that several conserved (core) baculovirus proteins closely associate with NSF, and these results suggest their involvement in the egress of BV. Our findings are the first to demonstrate that the SNARE system is required for efficient entry of BV and nuclear egress of progeny nucleocapsids of baculoviruses.
Collapse
|
37
|
Protein composition analysis of polyhedra matrix of Bombyx mori nucleopolyhedrovirus (BmNPV) showed powerful capacity of polyhedra to encapsulate foreign proteins. Sci Rep 2017; 7:8768. [PMID: 28821766 PMCID: PMC5562830 DOI: 10.1038/s41598-017-08987-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/14/2017] [Indexed: 11/23/2022] Open
Abstract
Polyhedra can encapsulate other proteins and have potential applications as protein stabilizers. The extremely stable polyhedra matrix may provide a platform for future engineered micro-crystal devices. However, the protein composition of the polyhedra matrix remains largely unknown. In this study, the occlusion-derived virus (ODV)-removed BmNPV polyhedra matrix fraction was subjected to SDS-PAGE and then an LC-ESI-MS/MS analysis using a Thermo Scientific Q Exactive mass spectrometer. In total, 28 host and 91 viral proteins were identified. The host components were grouped into one of six categories, i.e., chaperones, ubiquitin and related proteins, host helicases, cytoskeleton-related proteins, RNA-binding proteins and others, according to their predicted Pfam domain(s). Most viral proteins may not be essential for polyhedra assembly, as evidenced by studies in the literature showing that polyhedra formation occurs in the nucleus upon the disruption of individual genes. The structural role of these proteins in baculovirus replication will be of significant interest in future studies. The immobilization of enhanced green fluorescent protein (eGFP) into the polyhedra by fusing with the C-terminus of BM134 that is encoded by open reading frame (ORF) 134 suggested that the polyhedra had a powerful capacity to trap foreign proteins, and BM134 was a potential carrier for incorporating proteins of interest into the polyhedra.
Collapse
|
38
|
Baculovirus infection induces disruption of the nuclear lamina. Sci Rep 2017; 7:7823. [PMID: 28798307 PMCID: PMC5552856 DOI: 10.1038/s41598-017-08437-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/11/2017] [Indexed: 01/18/2023] Open
Abstract
Baculovirus nucleocapsids egress from the nucleus primarily via budding at the nuclear membrane. The nuclear lamina underlying the nuclear membrane represents a substantial barrier to nuclear egress. Whether the nuclear lamina undergoes disruption during baculovirus infection remains unknown. In this report, we generated a clonal cell line, Sf9-L, that stably expresses GFP-tagged Drosophila lamin B. GFP autofluorescence colocalized with immunofluorescent anti-lamin B at the nuclear rim of Sf9-L cells, indicating GFP-lamin B was incorporated into the nuclear lamina. Meanwhile, virus was able to replicate normally in Sf9-L cells. Next, we investigated alterations to the nuclear lamina during baculovirus infection in Sf9-L cells. A portion of GFP-lamin B localized diffusely at the nuclear rim, and some GFP-lamin B was redistributed within the nucleus during the late phase of infection, suggesting the nuclear lamina was partially disrupted. Immunoelectron microscopy revealed associations between GFP-lamin B and the edges of the electron-dense stromal mattes of the virogenic stroma, intranuclear microvesicles, and ODV envelopes and nucleocapsids within the nucleus, indicating the release of some GFP-lamin B from the nuclear lamina. Additionally, GFP-lamin B phosphorylation increased upon infection. Based on these data, baculovirus infection induced lamin B phosphorylation and disruption of the nuclear lamina.
Collapse
|
39
|
Qiu J, Tang Z, Yuan M, Wu W, Yang K. The 91-205 amino acid region of AcMNPV ORF34 (Ac34), which comprises a potential C3H zinc finger, is required for its nuclear localization and optimal virus multiplication. Virus Res 2016; 228:79-89. [PMID: 27894868 DOI: 10.1016/j.virusres.2016.11.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 01/05/2023]
Abstract
During baculovirus infection, most viral proteins must be imported to the nucleus to support virus multiplication. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf34 (ac34) is an alphabaculovirus unique gene that is required for optimal virus production. Ac34 distributes in both the cytoplasm and the nuclei of virus-infected Sf9 cells, but contains no conventional nuclear localization signal (NLS). In this study, we investigated the nuclear targeting domains in Ac34. Transient expression assays showed that Ac34 localized in both the cytoplasm and the nuclei of Sf9 cells, indicating that no viral protein is required for Ac34 nuclear localization. Subcellular localization analysis of Ac34 truncations and internal deletions fused with green fluorescent protein in plasmid-transfected Sf9 cells identified that the 91-205 amino acid (aa) region is required for Ac34 nuclear localization. Mutations in a potential C3H zinc finger (aa 116-131) in Ac34 resulted in exclusive cytoplasmic distribution of GFP:Ac34, suggesting that the zinc finger is required for Ac34 nuclear localization. To assess the functional importance of Ac34 in the nucleus during virus replication, recombinant AcMNPV bacmids containing a series of Ac34 truncations, internal deletions, or site mutations fused with HA tags were constructed. Subcellular localization analysis showed that Ac34 with internal deletions in aa 91-205 or site mutations in the potential zinc finger was predominantly distributed in the cytoplasm. Viral plaque assays and virus growth curves indicated that disruption of Ac34 nuclear localization significantly impaired virus replication. Taken together, our findings demonstrated that the nuclear localization of Ac34 requires the 91-205 aa region and its nuclear localization is essential for optimal virus replication.
Collapse
Affiliation(s)
- Jianxiang Qiu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhimin Tang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Meijin Yuan
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenbi Wu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China.
| | - Kai Yang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
40
|
Fang Z, Li C, Wu W, Yuan M, Yang K. The Autographa californica multiple nucleopolyhedrovirus Ac132 plays a role in nuclear entry. J Gen Virol 2016; 97:3030-3038. [DOI: 10.1099/jgv.0.000602] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Zhixin Fang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chunyan Li
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Wenbi Wu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Meijin Yuan
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Kai Yang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
41
|
Vesicular Nucleo-Cytoplasmic Transport-Herpesviruses as Pioneers in Cell Biology. Viruses 2016; 8:v8100266. [PMID: 27690080 PMCID: PMC5086602 DOI: 10.3390/v8100266] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/12/2016] [Accepted: 09/20/2016] [Indexed: 11/16/2022] Open
Abstract
Herpesviruses use a vesicle-mediated transfer of intranuclearly assembled nucleocapsids through the nuclear envelope (NE) for final maturation in the cytoplasm. The molecular basis for this novel vesicular nucleo-cytoplasmic transport is beginning to be elucidated in detail. The heterodimeric viral nuclear egress complex (NEC), conserved within the classical herpesviruses, mediates vesicle formation from the inner nuclear membrane (INM) by polymerization into a hexagonal lattice followed by fusion of the vesicle membrane with the outer nuclear membrane (ONM). Mechanisms of capsid inclusion as well as vesicle-membrane fusion, however, are largely unclear. Interestingly, a similar transport mechanism through the NE has been demonstrated in nuclear export of large ribonucleoprotein complexes during Drosophila neuromuscular junction formation, indicating a widespread presence of a novel concept of cellular nucleo-cytoplasmic transport.
Collapse
|
42
|
Bigalke JM, Heldwein EE. Have NEC Coat, Will Travel: Structural Basis of Membrane Budding During Nuclear Egress in Herpesviruses. Adv Virus Res 2016; 97:107-141. [PMID: 28057257 DOI: 10.1016/bs.aivir.2016.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Herpesviruses are unusual among enveloped viruses because they bud twice yet acquire a single envelope. Furthermore, unlike other DNA viruses that replicate in the nucleus, herpesviruses do not exit it by passing through the nuclear pores or by rupturing the nuclear envelope. Instead, herpesviruses have a complex mechanism of nuclear escape whereby nascent capsids bud at the inner nuclear membrane to form perinuclear virions that subsequently fuse with the outer nuclear membrane, releasing capsids into the cytosol. This makes them some of the very few known viruses that bud into the nuclear envelope. The envelope acquired during nuclear budding does not end up in the mature viral particle but instead allows the capsid to translocate from the nucleus into the cytosol. The viral nuclear egress complex (NEC) is a critical player in the nuclear egress, yet its function and mechanism have remained enigmatic. Recent studies have demonstrated that the NEC buds membranes without the help of other proteins by forming a honeycomb coat, which established the NEC as the first virally encoded budding machine that operates at the nuclear, as opposed to cytoplasmic, membrane. This review discusses our current understanding of the NEC budding mechanism, with the emphasis on studies that illuminated the structure of the NEC coat and its role in capsid budding during herpesvirus nuclear escape.
Collapse
Affiliation(s)
- J M Bigalke
- Tufts University School of Medicine, Boston, MA, United States
| | - E E Heldwein
- Tufts University School of Medicine, Boston, MA, United States.
| |
Collapse
|
43
|
Monteiro F, Bernal V, Chaillet M, Berger I, Alves PM. Targeted supplementation design for improved production and quality of enveloped viral particles in insect cell-baculovirus expression system. J Biotechnol 2016; 233:34-41. [DOI: 10.1016/j.jbiotec.2016.06.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/20/2016] [Accepted: 06/30/2016] [Indexed: 12/18/2022]
|
44
|
Autographa californica multiple nucleopolyhedrovirus gene ac81 is required for nucleocapsid envelopment. Virus Res 2016; 221:47-57. [DOI: 10.1016/j.virusres.2016.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/01/2016] [Accepted: 05/06/2016] [Indexed: 11/16/2022]
|
45
|
Abstract
Most DNA viruses replicate in the nucleus and exit it either by passing through the nuclear pores or by rupturing the nuclear envelope. Unusually, herpesviruses have evolved a complex mechanism of nuclear escape whereby nascent capsids bud at the inner nuclear membrane to form perinuclear virions that subsequently fuse with the outer nuclear membrane, releasing capsids into the cytosol. Although this general scheme is accepted in the field, the players and their roles are still debated. Recent studies illuminated critical mechanistic features of this enigmatic process and uncovered surprising parallels with a novel cellular nuclear export process. This review summarizes our current understanding of nuclear egress in herpesviruses, examines the experimental evidence and models, and outlines outstanding questions with the goal of stimulating new research in this area.
Collapse
Affiliation(s)
- Janna M Bigalke
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111;
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111;
| |
Collapse
|
46
|
Functional Regulation of an Autographa californica Nucleopolyhedrovirus-Encoded MicroRNA, AcMNPV-miR-1, in Baculovirus Replication. J Virol 2016; 90:6526-6537. [PMID: 27147751 DOI: 10.1128/jvi.00165-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/29/2016] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED An Autographa californica nucleopolyhedrovirus-encoded microRNA (miRNA), AcMNPV-miR-1, downregulates the ac94 gene, reducing the production of infectious budded virions and accelerating the formation of occlusion-derived virions. In the current study, four viruses that constitutively overexpress AcMNPV-miR-1 were constructed to further explore the function of the miRNA. In addition to the ac94 gene, two new viral gene targets (ac18 and ac95) of AcMNPV-miR-1 were identified, and the possible interacting proteins were verified and tested. In the context of AcMNPV-miR-1 overexpression, ac18 was slightly upregulated, and ac95 was downregulated. Several interacting proteins were identified, and a functional pathway for AcMNPV-miR-1 was deduced. AcMNPV-miR-1 overexpression decreased budded virus infectivity, reduced viral DNA replication, accelerated polyhedron formation, and promoted viral infection efficiency in Trichoplusia ni larvae, suggesting that AcMNPV-miR-1 restrains virus infection of cells but facilitates virus infection of larvae. IMPORTANCE Recently, microRNAs (miRNAs) have been widely reported as moderators or regulators of mammalian cellular processes, especially disease-related pathways in humans. However, the roles played by miRNAs encoded by baculoviruses, which infect numerous beneficial insects and agricultural pests, have rarely been described. To explore the actions of virus-encoded miRNAs, we investigated an miRNA encoded by Autographa californica nucleopolyhedrovirus (AcMNPV-miR-1). We previously identified this miRNA through the exogenous addition of AcMNPV-miR-1 mimics. In the current study, we constitutively overexpressed AcMNPV-miR-1 and analyzed the resultant effects to more comprehensively assess what is indeed the function of this miRNA during viral infection. In addition, we widely explored the target genes for the miRNA in the viral and host genomes and proposed a possible functional network for AcMNPV-miR-1, which provides a better general understanding of virus-encoded miRNAs. In brief, our study implied that AcMNPV-miR-1 constrains viral replication and cellular infection but enhances larval infection.
Collapse
|
47
|
Endoplasmic Reticulum: The Favorite Intracellular Niche for Viral Replication and Assembly. Viruses 2016; 8:v8060160. [PMID: 27338443 PMCID: PMC4926180 DOI: 10.3390/v8060160] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is the largest intracellular organelle. It forms a complex network of continuous sheets and tubules, extending from the nuclear envelope (NE) to the plasma membrane. This network is frequently perturbed by positive-strand RNA viruses utilizing the ER to create membranous replication factories (RFs), where amplification of their genomes occurs. In addition, many enveloped viruses assemble progeny virions in association with ER membranes, and viruses replicating in the nucleus need to overcome the NE barrier, requiring transient changes of the NE morphology. This review first summarizes some key aspects of ER morphology and then focuses on the exploitation of the ER by viruses for the sake of promoting the different steps of their replication cycles.
Collapse
|
48
|
Wei W, Wang H, Li X, Fang N, Yang S, Liu H, Kang X, Sun X, Ji S. Cloning and Characterization of Sf9 Cell Lamin and the Lamin Conformational Changes during Autographa californica multiple nucleopolyhedrovirus Infection. Viruses 2016; 8:v8050126. [PMID: 27164127 PMCID: PMC4885081 DOI: 10.3390/v8050126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/20/2016] [Accepted: 04/26/2016] [Indexed: 01/02/2023] Open
Abstract
At present, the details of lamina alterations after baculovirus infection remain elusive. In this study, a lamin gene in the Sf9 cell line of Spodoptera frugiperda was cloned. The open reading frame (orf) of the Sf9 lamin was 1860 bp and encoded a protein with a molecular weight of 70 kDa. A transfection assay with a red fluorescence protein (rfp)-lamin fusion protein indicated that Sf9 lamin was localized in the nuclear rim. Transmission electron microscopy observations indicated that Autographa californica multiple nucleopolyhedrovirus (AcMNPV) nucleocapsids may pass through the nuclear envelope. Immunofluorescence assay indicated that the lamina showed a ruffled staining pattern with the formation of invaginations in the Sf9 cells infected with AcMNPV, while it was evenly distributed at the nuclear periphery of mock-infected cells. Western blotting results indicated that the total amount of lamin in the baculovirus-infected Sf9 cells was significantly decreased compared with the mock-infected cells. These results imply that AcMNPV infection induces structural and biochemical rearrangements of lamina of Sf9 cells.
Collapse
Affiliation(s)
- Wenqiang Wei
- Laboratory of Cell Signal Transduction, Medical School, Henan University, Kaifeng 475004, China.
| | - Hongju Wang
- Laboratory of Cell Signal Transduction, Medical School, Henan University, Kaifeng 475004, China.
| | - Xiaoya Li
- School of Education Science, Henan University, Kaifeng 475004, China.
| | - Na Fang
- Laboratory of Cell Signal Transduction, Medical School, Henan University, Kaifeng 475004, China.
| | - Shili Yang
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Hongyan Liu
- Laboratory of Cell Signal Transduction, Medical School, Henan University, Kaifeng 475004, China.
| | - Xiaonan Kang
- School of Education Science, Henan University, Kaifeng 475004, China.
| | - Xiulian Sun
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Shaoping Ji
- Laboratory of Cell Signal Transduction, Medical School, Henan University, Kaifeng 475004, China.
| |
Collapse
|
49
|
The Autographa californica Multiple Nucleopolyhedrovirus ac54 Gene Is Crucial for Localization of the Major Capsid Protein VP39 at the Site of Nucleocapsid Assembly. J Virol 2016; 90:4115-4126. [PMID: 26865720 DOI: 10.1128/jvi.02885-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/02/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Baculovirus DNAs are synthesized and inserted into preformed capsids to form nucleocapsids at a site in the infected cell nucleus, termed the virogenic stroma. Nucleocapsid assembly ofAutographa californicamultiple nucleopolyhedrovirus (AcMNPV) requires the major capsid protein VP39 and nine minor capsid proteins, including VP1054. However, how VP1054 participates in nucleocapsid assembly remains elusive. In this study, the VP1054-encoding gene (ac54) was deleted to generate theac54-knockout AcMNPV (vAc54KO). In vAc54KO-transfected cells, nucleocapsid assembly was disrupted, leading to the formation of abnormally elongated capsid structures. Interestingly, unlike cells transfected with AcMNPV mutants lacking other minor capsid proteins, in which capsid structures were distributed within the virogenic stroma,ac54ablation resulted in a distinctive location of capsid structures and VP39 at the periphery of the nucleus. The altered distribution pattern of capsid structures was also observed in cells transfected with AcMNPV lacking BV/ODV-C42 or in cytochalasind-treated AcMNPV-infected cells. BV/ODV-C42, along with PP78/83, has been shown to promote nuclear filamentous actin (F-actin) formation, which is another requisite for nucleocapsid assembly. Immunofluorescence using phalloidin indicated that the formation and distribution of nuclear F-actin were not affected byac54deletion. However, immunoelectron microscopy revealed that BV/ODV-C42, PP78/83, and 38K failed to integrate into capsid structures in the absence of VP1054, and immunoprecipitation further demonstrated that in transient expression assays, VP1054 interacted with BV/ODV-C42 and VP80 but not VP39. Our findings suggest that VP1054 plays an important role in the transport of capsid proteins to the nucleocapsid assembly site prior to the process of nucleocapsid assembly. IMPORTANCE Baculoviruses are large DNA viruses whose replication occurs within the host nucleus. The localization of capsids into the capsid assembly site requires virus-induced nuclear F-actin; the inhibition of nuclear F-actin formation results in the retention of capsid structures at the periphery of the nucleus. In this paper, we note that the minor capsid protein VP1054 is essential for the localization of capsid structures, the major capsid protein VP39, and the minor capsid protein 38K into the capsid assembly site. Moreover, VP1054 is crucial for correct targeting of the nuclear F-actin factors BV/ODV-C42 and PP78/83 for capsid maturation. However, the formation and distribution of nuclear F-actin are not affected by the lack of VP1054. We further reveal that VP1054 interacts with BV/ODV-C42 and a capsid transport-related protein, VP80. Taken together, our findings suggest that VP1054 plays a unique role in the pathway(s) for transport of capsid proteins.
Collapse
|
50
|
Hellberg T, Paßvogel L, Schulz KS, Klupp BG, Mettenleiter TC. Nuclear Egress of Herpesviruses: The Prototypic Vesicular Nucleocytoplasmic Transport. Adv Virus Res 2016; 94:81-140. [PMID: 26997591 DOI: 10.1016/bs.aivir.2015.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herpesvirus particles mature in two different cellular compartments. While capsid assembly and packaging of the genomic linear double-stranded DNA occur in the nucleus, virion formation takes place in the cytoplasm by the addition of numerous tegument proteins as well as acquisition of the viral envelope by budding into cellular vesicles derived from the trans-Golgi network containing virally encoded glycoproteins. To gain access to the final maturation compartment, herpesvirus nucleocapsids have to cross a formidable barrier, the nuclear envelope (NE). Since the ca. 120 nm diameter capsids are unable to traverse via nuclear pores, herpesviruses employ a vesicular transport through both leaflets of the NE. This process involves proteins which support local dissolution of the nuclear lamina to allow access of capsids to the inner nuclear membrane (INM), drive vesicle formation from the INM and mediate inclusion of the capsid as well as scission of the capsid-containing vesicle (also designated as "primary virion"). Fusion of the vesicle membrane (i.e., the "primary envelope") with the outer nuclear membrane subsequently results in release of the nucleocapsid into the cytoplasm for continuing virion morphogenesis. While this process has long been thought to be unique for herpesviruses, a similar pathway for nuclear egress of macromolecular complexes has recently been observed in Drosophila. Thus, herpesviruses may have coopted a hitherto unrecognized cellular mechanism of vesicle-mediated nucleocytoplasmic transport. This could have far reaching consequences for our understanding of cellular functions as again unraveled by the study of viruses.
Collapse
Affiliation(s)
- Teresa Hellberg
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Lars Paßvogel
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Katharina S Schulz
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|