1
|
Ferrié M, Alexandre V, Montpellier C, Bouquet P, Tubiana T, Mézière L, Ankavay M, Bentaleb C, Dubuisson J, Bressanelli S, Aliouat-Denis CM, Rouillé Y, Cocquerel L. The AP-1 adaptor complex is essential for intracellular trafficking of the ORF2 capsid protein and assembly of Hepatitis E virus. Cell Mol Life Sci 2024; 81:335. [PMID: 39117755 PMCID: PMC11335258 DOI: 10.1007/s00018-024-05367-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024]
Abstract
Although the Hepatitis E virus (HEV) is an emerging global health burden, little is known about its interaction with the host cell. HEV genome encodes three proteins including the ORF2 capsid protein that is produced in different forms, the ORF2i protein which is the structural component of viral particles, and the ORF2g/c proteins which are massively secreted but are not associated with infectious material. We recently demonstrated that the endocytic recycling compartment (ERC) is hijacked by HEV to serve as a viral factory. However, host determinants involved in the subcellular shuttling of viral proteins to viral factories are unknown. Here, we demonstrate that the AP-1 adaptor complex plays a pivotal role in the targeting of ORF2i protein to viral factories. This complex belongs to the family of adaptor proteins that are involved in vesicular transport between the trans-Golgi network and early/recycling endosomes. An interplay between the AP-1 complex and viral protein(s) has been described for several viral lifecycles. In the present study, we demonstrated that the ORF2i protein colocalizes and interacts with the AP-1 adaptor complex in HEV-producing or infected cells. We showed that silencing or drug-inhibition of the AP-1 complex prevents ORF2i protein localization in viral factories and reduces viral production in hepatocytes. Modeling of the ORF2i/AP-1 complex also revealed that the S domain of ORF2i likely interacts with the σ1 subunit of AP-1 complex. Hence, our study identified for the first time a host factor involved in addressing HEV proteins (i.e. ORF2i protein) to viral factories.
Collapse
Affiliation(s)
- Martin Ferrié
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Virginie Alexandre
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Claire Montpellier
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Peggy Bouquet
- Unit of Clinical Microbiology, Institut Pasteur de Lille, Lille, F-59000, France
| | - Thibault Tubiana
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Léa Mézière
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Maliki Ankavay
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
- Division of Gastroenterology and Hepatology, Institute of Microbiology, Lausanne, Switzerland
| | - Cyrine Bentaleb
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Jean Dubuisson
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Stéphane Bressanelli
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Cécile-Marie Aliouat-Denis
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Yves Rouillé
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Laurence Cocquerel
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France.
| |
Collapse
|
2
|
Seif M, Einsele H, Löffler J. CAR T Cells Beyond Cancer: Hope for Immunomodulatory Therapy of Infectious Diseases. Front Immunol 2019; 10:2711. [PMID: 31824500 PMCID: PMC6881243 DOI: 10.3389/fimmu.2019.02711] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/05/2019] [Indexed: 12/27/2022] Open
Abstract
Infectious diseases are still a significant cause of morbidity and mortality worldwide. Despite the progress in drug development, the occurrence of microbial resistance is still a significant concern. Alternative therapeutic strategies are required for non-responding or relapsing patients. Chimeric antigen receptor (CAR) T cells has revolutionized cancer immunotherapy, providing a potential therapeutic option for patients who are unresponsive to standard treatments. Recently two CAR T cell therapies, Yescarta® (Kite Pharma/Gilead) and Kymriah® (Novartis) were approved by the FDA for the treatments of certain types of non-Hodgkin lymphoma and B-cell precursor acute lymphoblastic leukemia, respectively. The success of adoptive CAR T cell therapy for cancer has inspired researchers to develop CARs for the treatment of infectious diseases. Here, we review the main achievements in CAR T cell therapy targeting viral infections, including Human Immunodeficiency Virus, Hepatitis C Virus, Hepatitis B Virus, Human Cytomegalovirus, and opportunistic fungal infections such as invasive aspergillosis.
Collapse
Affiliation(s)
| | | | - Jürgen Löffler
- Department of Internal Medicine II, University Hospital Wuerzburg, Würzburg, Germany
| |
Collapse
|
3
|
Varicella-Zoster Virus ORF9p Binding to Cellular Adaptor Protein Complex 1 Is Important for Viral Infectivity. J Virol 2018; 92:JVI.00295-18. [PMID: 29793951 DOI: 10.1128/jvi.00295-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/14/2018] [Indexed: 11/20/2022] Open
Abstract
ORF9p (homologous to herpes simplex virus 1 [HSV-1] VP22) is a varicella-zoster virus (VZV) tegument protein essential for viral replication. Even though its precise functions are far from being fully described, a role in the secondary envelopment of the virus has long been suggested. We performed a yeast two-hybrid screen to identify cellular proteins interacting with ORF9p that might be important for this function. We found 31 ORF9p interaction partners, among which was AP1M1, the μ subunit of the adaptor protein complex 1 (AP-1). AP-1 is a heterotetramer involved in intracellular vesicle-mediated transport and regulates the shuttling of cargo proteins between endosomes and the trans-Golgi network via clathrin-coated vesicles. We confirmed that AP-1 interacts with ORF9p in infected cells and mapped potential interaction motifs within ORF9p. We generated VZV mutants in which each of these motifs was individually impaired and identified leucine 231 in ORF9p to be critical for the interaction with AP-1. Disrupting ORF9p binding to AP-1 by mutating leucine 231 to alanine in ORF9p strongly impaired viral growth, most likely by preventing efficient secondary envelopment of the virus. Leucine 231 is part of a dileucine motif conserved among alphaherpesviruses, and we showed that VP22 of Marek's disease virus and HSV-2 also interacts with AP-1. This indicates that the function of this interaction in secondary envelopment might be conserved as well.IMPORTANCE Herpesviruses are responsible for infections that, especially in immunocompromised patients, can lead to severe complications, including neurological symptoms and strokes. The constant emergence of viral strains resistant to classical antivirals (mainly acyclovir and its derivatives) pleads for the identification of new targets for future antiviral treatments. Cellular adaptor protein (AP) complexes have been implicated in the correct addressing of herpesvirus glycoproteins in infected cells, and the discovery that a major constituent of the varicella-zoster virus tegument interacts with AP-1 reveals a previously unsuspected role of this tegument protein. Unraveling the complex mechanisms leading to virion production will certainly be an important step in the discovery of future therapeutic targets.
Collapse
|
4
|
Resistance of Major Histocompatibility Complex Class B (MHC-B) to Nef-Mediated Downregulation Relative to that of MHC-A Is Conserved among Primate Lentiviruses and Influences Antiviral T Cell Responses in HIV-1-Infected Individuals. J Virol 2017; 92:JVI.01409-17. [PMID: 29046444 DOI: 10.1128/jvi.01409-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 10/03/2017] [Indexed: 12/19/2022] Open
Abstract
Patient-derived HIV-1 subtype B Nef clones downregulate HLA-A more efficiently than HLA-B. However, it remains unknown whether this property is common to Nef proteins across primate lentiviruses and how antiviral immune responses may be affected. We examined 263 Nef clones from diverse primate lentiviruses including different pandemic HIV-1 group M subtypes for their ability to downregulate major histocompatibility complex class A (MHC-A) and MHC-B from the cell surface. Though lentiviral Nef proteins differed markedly in their absolute MHC-A and MHC-B downregulation abilities, all lentiviral Nef lineages downregulated MHC-A, on average, 11 to 32% more efficiently than MHC-B. Nef genotype/phenotype analyses in a cohort of HIV-1 subtype C-infected patients (n = 168), together with site-directed mutagenesis, revealed Nef position 9 as a subtype-specific determinant of differential HLA-A versus HLA-B downregulation activity. Nef clones harboring nonconsensus variants at codon 9 downregulated HLA-B (though not HLA-A) significantly better than those harboring the consensus sequence at this site, resulting in reduced recognition of infected target cells by HIV-1-specific CD8+ effector cells in vitro Among persons expressing protective HLA class I alleles, carriage of Nef codon 9 variants was also associated with reduced ex vivo HIV-specific T cell responses. Our results demonstrate that Nef's inferior ability to downregulate MHC-B compared to that of MHC-A is conserved across primate lentiviruses and suggest that this property influences antiviral cellular immune responses.IMPORTANCE Primate lentiviruses encode the Nef protein that plays an essential role in establishing persistent infection in their respective host species. Nef interacts with the cytoplasmic region of MHC-A and MHC-B molecules and downregulates them from the infected cell surface to escape recognition by host cellular immunity. Using a panel of Nef alleles isolated from diverse primate lentiviruses including pandemic HIV-1 group M subtypes, we demonstrate that Nef proteins across all lentiviral lineages downregulate MHC-A approximately 20% more effectively than MHC-B. We further identify a naturally polymorphic site at Nef position 9 that contributes to the MHC-B downregulation function in HIV-1 subtype C and show that carriage of Nef variants with enhanced MHC-B downregulation ability is associated with reduced breadth and magnitude of MHC-B-restricted cellular immune responses in HIV-infected individuals. Our study underscores an evolutionarily conserved interaction between lentiviruses and primate immune systems that may contribute to pathogenesis.
Collapse
|
5
|
Association between a naturally arising polymorphism within a functional region of HIV-1 Nef and disease progression in chronic HIV-1 infection. Arch Virol 2015; 160:2033-41. [PMID: 26060058 DOI: 10.1007/s00705-015-2480-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/31/2015] [Indexed: 01/24/2023]
Abstract
HIV-1 Nef mediates downregulation of HLA class I (HLA-I) through a number of highly conserved sequence motifs. We investigated the in vivo implication(s) of naturally arising polymorphisms in functional motifs in HIV-1 Nef that are associated with HLA-I downregulation, including the acidic cluster, polyproline, di-arginine and Met-20 regions. Plasma samples from treatment-naive, chronically HIV-1 infected subjects were collected after obtaining informed consent, and viral RNA was extracted and amplified by nested RT-PCR. The resultant nef amplicons were sequenced directly, and subtype-B sequences with an intact open reading frame (n = 406) were included in our analyses. There was over-representation of isoleucine at position 20 (Ile-20) in our dataset when compared to sequences in the Los Alamos sequence database (17.7 vs. 6.9 %, p = 0.0309). The presence of having Ile-20 in Nef was found to be associated with higher median plasma viral load (p = 0.013), independent of associated codons or viral lineage effects, whereas no clinical association was found with polymorphisms in the other functional motifs. Moreover, introduction of a Met-20-to-Ile mutation in a laboratory strain SF2 Nef resulted in a modest, albeit not statistically significant, increase in HLA class I downregulation activity (p = 0.06). Taken together, we have identified a naturally arising polymorphism, Ile-20, within HIV-1 subtype B Nef that is associated with poorer disease outcome.
Collapse
|
6
|
Mancini N, Sautto GA, Clementi N, Burioni R, Clementi M. Chimeric antigen receptor (CAR)-redirected T cells: is there a place for them in infectious diseases? Clin Microbiol Infect 2015; 21:715-6. [PMID: 26027914 DOI: 10.1016/j.cmi.2015.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022]
Affiliation(s)
- N Mancini
- Laboratorio di Microbiologia e Virologia, Ospedale San Raffaele, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - G A Sautto
- Laboratorio di Microbiologia e Virologia, Ospedale San Raffaele, Italy
| | - N Clementi
- Laboratorio di Microbiologia e Virologia, Ospedale San Raffaele, Italy
| | - R Burioni
- Laboratorio di Microbiologia e Virologia, Ospedale San Raffaele, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - M Clementi
- Laboratorio di Microbiologia e Virologia, Ospedale San Raffaele, Italy; Università Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|
7
|
Pawlak EN, Dikeakos JD. HIV-1 Nef: a master manipulator of the membrane trafficking machinery mediating immune evasion. Biochim Biophys Acta Gen Subj 2015; 1850:733-41. [PMID: 25585010 DOI: 10.1016/j.bbagen.2015.01.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/09/2014] [Accepted: 01/06/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Many viral genomes encode a limited number of proteins, illustrating their innate efficiency in bypassing host immune surveillance. This concept of genomic efficiency is exemplified by the 9 kb RNA genome of human immunodeficiency virus 1 (HIV-1), encoding 15 proteins sub-divided according to function. The enzymatic group includes proteins such as the drug targets reverse transcriptase and protease. In contrast, the accessory proteins lack any known enzymatic or structural function, yet are essential for viral fitness and HIV-1 pathogenesis. Of these, the HIV-1 accessory protein Nef is a master manipulator of host cellular processes, ensuring efficient counterattack against the host immune response, as well as long-term evasion of immune surveillance. In particular, the ability of Nef to downmodulate major histocompatibility complex class I (MHC-I) is a key cellular event that enables HIV-1 to bypass the host's defenses by evading the adaptive immune response. SCOPE OF REVIEW In this article, we briefly review how various pathogenic viruses control cell-surface MHC-I, and then focus on the mechanisms and implications of HIV-1 Nef-mediated MHC-I downregulation via modulation of the host membrane trafficking machinery. CONCLUSION The extensive interaction network formed between Nef and numerous membrane trafficking regulators suggests that Nef's role in evading the immune surveillance system intersects multiple host membrane trafficking pathways. SIGNIFICANCE Nef's ability to evade the immune surveillance system is linked to AIDS pathogenesis. Thus, a complete understanding of the molecular pathways that are subverted by Nef in order to downregulate MHC-I will enhance our understanding of HIV-1's progression to AIDS.
Collapse
Affiliation(s)
- Emily N Pawlak
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1.
| |
Collapse
|
8
|
Kuo LS, Baugh LL, Denial SJ, Watkins RL, Liu M, Garcia JV, Foster JL. Overlapping effector interfaces define the multiple functions of the HIV-1 Nef polyproline helix. Retrovirology 2012; 9:47. [PMID: 22651890 PMCID: PMC3464899 DOI: 10.1186/1742-4690-9-47] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/31/2012] [Indexed: 11/20/2022] Open
Abstract
Background HIV-1 Nef is a multifunctional protein required for full pathogenicity of the virus. As Nef has no known enzymatic activity, it necessarily functions through protein-protein interaction interfaces. A critical Nef protein interaction interface is centered on its polyproline segment (P69VRPQVPLRP78) which contains the helical SH3 domain binding protein motif, PXXPXR. We hypothesized that any Nef-SH3 domain interactions would be lost upon mutation of the prolines or arginine of PXXPXR. Further, mutation of the non-motif “X” residues, (Q73, V74, and L75) would give altered patterns of inhibition for different Nef/SH3 domain protein interactions. Results We found that mutations of either of the prolines or the arginine of PXXPXR are defective for Nef-Hck binding, Nef/activated PAK2 complex formation and enhancement of virion infectivity (EVI). Mutation of the non-motif “X” residues (Q, V and L) gave similar patterns of inhibition for Nef/activated PAK2 complex formation and EVI which were distinct from the pattern for Hck binding. These results implicate an SH3 domain containing protein other than Hck for Nef/activated PAK2 complex formation and EVI. We have also mutated Nef residues at the N-and C-terminal ends of the polyproline segment to explore interactions outside of PXXPXR. We discovered a new locus GFP/F (G67, F68, P69 and F90) that is required for Nef/activated PAK2 complex formation and EVI. MHC Class I (MHCI) downregulation was only partially inhibited by mutating the PXXPXR motif residues, but was fully inhibited by mutating the C-terminal P78. Further, we observed that MHCI downregulation strictly requires G67 and F68. Our mutational analysis confirms the recently reported structure of the complex between Nef, AP-1 μ1 and the cytoplasmic tail of MHCI, but does not support involvement of an SH3 domain protein in MHCI downregulation. Conclusion Nef has evolved to be dependent on interactions with multiple SH3 domain proteins. To the N- and C- terminal sides of the polyproline helix are multifunctional protein interaction sites. The polyproline segment is also adapted to downregulate MHCI with a non-canonical binding surface. Our results demonstrate that Nef polyproline helix is highly adapted to directly interact with multiple host cell proteins.
Collapse
Affiliation(s)
- Lillian S Kuo
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Y9.206, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|