1
|
Soto-Machuca AA, Ortiz GE, Carbone-Schellman J, Pastén-Ferrada IA, Retamal-Díaz A, Kalergis AM, González PA. Role of human herpesvirus homologs of infected cell protein 27 (ICP27) in the biogenesis, processing, and maturation of mRNAs. mBio 2025; 16:e0029125. [PMID: 40035535 PMCID: PMC11980605 DOI: 10.1128/mbio.00291-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Herpesviruses are enveloped viruses with large double-stranded DNA genomes that are highly prevalent in the human population and elicit numerous types of clinical manifestations, from mild to severe. These viruses are classified into three subfamilies: alpha-, beta-, and gammaherpesvirinae, all capable of establishing life-long persistent infections in the host. As strict intracellular parasites, these viruses have evolved molecular determinants to support and modulate viral and host gene transcription processes during infection and the translation of messenger RNAs (mRNAs) to synthesize proteins that participate in cellular pathways promoting their replication cycles and virion formation. Notably, some of these proteins have functional RNA-binding domains consisting of arginine-glycine-glycine (RGG) amino acid (aa) sequences that, when methylated, regulate their nucleic acid-binding capacities and can influence the export of mRNAs lacking introns from the nucleus into the cytoplasm. Additional domains and motifs in these proteins mediate their interactions with regulatory proteins related to RNA splicing, either promoting or repressing mRNA processing. Notably, all human herpesviruses (HHVs) encode in their genomes proteins that share homology with infected cell protein 27 (ICP27) of herpes simplex virus type 1 (HSV-1), which can significantly impact the biogenesis of mRNAs and their processing during infection. Here, we review and discuss the roles of ICP27 and the corresponding homologs encoded in different human herpesviruses, focusing on their similarities and differences in structure and function. A more profound knowledge of the role of key viral factors required for effective herpesvirus replication could aid in the design and identification of novel antivirals to treat the diseases produced by these viruses.
Collapse
Affiliation(s)
- Abel A. Soto-Machuca
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gerardo E. Ortiz
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javier Carbone-Schellman
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio A. Pastén-Ferrada
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angello Retamal-Díaz
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
- Centro de Investigación en Inmunología y Biotecnología Biomédica de Antofagasta, Hospital Clínico Universidad de Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Haidar Ahmad S, Al Moussawi F, El Baba R, Nehme Z, Pasquereau S, Kumar A, Molimard C, Monnien F, Algros MP, Karaky R, Stamminger T, Diab Assaf M, Herbein G. Identification of UL69 Gene and Protein in Cytomegalovirus-Transformed Human Mammary Epithelial Cells. Front Oncol 2021; 11:627866. [PMID: 33937031 PMCID: PMC8085531 DOI: 10.3389/fonc.2021.627866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
A growing body of evidence addressing the involvement of human cytomegalovirus (HCMV) in malignancies had directed attention to the oncomodulation paradigm. HCMV-DB infected human mammary epithelial cells (HMECs) in culture showed the emergence of clusters of rapidly proliferating, spheroid-shaped transformed cells named CTH (CMV-Transformed HMECs) cells. CTH cells assessment suggests a direct contribution of HCMV to oncogenesis, from key latent and lytic genes activating oncogenic pathways to fueling tumor evolution. We hypothesized that the presence of HCMV genome in CTH cells is of pivotal importance for determining its oncogenic potential. We previously reported the detection of a long non-coding (lnc) RNA4.9 gene in CTH cells. Therefore, we assessed here the presence of UL69 gene, located nearby and downstream of the lncRNA4.9 gene, in CTH cells. The HCMV UL69 gene in CTH cells was detected using polymerase chain reaction (PCR) and sequencing of UL69 gene was performed using Sanger method. The corresponding amino acid sequence was then blasted against the UL69 sequence derived from HCMV-DB genome using NCBI Protein BLAST tool. A 99% identity was present between the nucleotide sequence present in CTH cells and HCMV-DB genome. UL69 transcript was detected in RNA extracts of CTH cells, using a reverse transcription polymerase chain reaction (RT-PCR) assay, and pUL69 protein was identified in CTH lysates using western blotting. Ganciclovir-treated CTH cells showed a decrease in UL69 gene detection and cellular proliferation. In CTH cells, the knockdown of UL69 with siRNA was assessed by RT-qPCR and western blot to reveal the impact of pUL69 on HCMV replication and CTH cell proliferation. Finally, UL69 gene was detected in breast cancer biopsies. Our results indicate a close link between the UL69 gene detected in the HCMV-DB isolate used to infect HMECs, and the UL69 gene present in transformed CTH cells and tumor biopsies, further highlighting a direct role for HCMV in breast tumor development.
Collapse
Affiliation(s)
- Sandy Haidar Ahmad
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France.,Molecular Cancer and Pharmaceutical Biology Laboratory, Lebanese University, Beyrouth, Lebanon
| | - Fatima Al Moussawi
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France.,Molecular Cancer and Pharmaceutical Biology Laboratory, Lebanese University, Beyrouth, Lebanon
| | - Ranim El Baba
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France.,Molecular Cancer and Pharmaceutical Biology Laboratory, Lebanese University, Beyrouth, Lebanon
| | - Zeina Nehme
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France.,Molecular Cancer and Pharmaceutical Biology Laboratory, Lebanese University, Beyrouth, Lebanon
| | - Sébastien Pasquereau
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France
| | - Amit Kumar
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France
| | - Chloé Molimard
- Department of Pathology, CHRU Besançon, Besançon, France
| | - Franck Monnien
- Department of Pathology, CHRU Besançon, Besançon, France
| | | | - Racha Karaky
- Molecular Cancer and Pharmaceutical Biology Laboratory, Lebanese University, Beyrouth, Lebanon
| | | | - Mona Diab Assaf
- Molecular Cancer and Pharmaceutical Biology Laboratory, Lebanese University, Beyrouth, Lebanon
| | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France.,Department of Virology, CHRU Besancon, Besancon, France
| |
Collapse
|
3
|
Spector DH. Human cytomegalovirus riding the cell cycle. Med Microbiol Immunol 2015; 204:409-19. [PMID: 25776080 DOI: 10.1007/s00430-015-0396-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/19/2015] [Indexed: 12/25/2022]
Abstract
Human cytomegalovirus (HCMV) infection modulates the host cell cycle to create an environment that is optimal for viral gene expression, DNA replication, and production of infectious virus. The virus mostly infects quiescent cells and thus must push the cell into G1 phase of the cell cycle to co-opt the cellular mechanisms that could be used for DNA synthesis. However, at the same time, cellular functions must be subverted such that synthesis of viral DNA is favored over that of the host. The molecular mechanisms by which this is accomplished include altered RNA transcription, changes in the levels and activity of cyclin-dependent kinases, and other proteins involved in cell cycle control, posttranslational modifications of proteins, modulation of protein stability through targeted effects on the ubiquitin-proteasome degradation pathway, and movement of proteins to different cellular locations. When the cell is in the optimal G0/G1 phase, multiple signaling pathways are altered to allow rapid induction of viral gene expression once negative factors have been eliminated. For the most part, the cell cycle will stop prior to initiation of host cell DNA synthesis (S phase), although many cell cycle proteins characteristic of the S/G2/M phase accumulate. The environment of a cell progressing through the cell cycle and dividing is not favorable for viral replication, and HCMV has evolved ways to sense whether cells are in S/G2 phase, and if so, to prevent initiation of viral gene expression until the cells cycle back to G1. A major target of HCMV is the anaphase-promoting complex E3 ubiquitin ligase, which is responsible for the ubiquitination and subsequent degradation of cyclins A and B and other cell cycle proteins at specific phases in the cell cycle. This review will discuss the effects of HCMV infection on cell cycle regulatory pathways, with the focus on selected viral proteins that are responsible for these effects.
Collapse
Affiliation(s)
- Deborah H Spector
- Department of Cellular and Molecular Medicine, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093-0712, USA,
| |
Collapse
|
4
|
Histone deacetylases and phosphorylated polymerase II C-terminal domain recruit Spt6 for cotranscriptional histone reassembly. Mol Cell Biol 2014; 34:4115-29. [PMID: 25182531 DOI: 10.1128/mcb.00695-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spt6 is a multifunctional histone chaperone involved in the maintenance of chromatin structure during elongation by RNA polymerase II (Pol II). Spt6 has a tandem SH2 (tSH2) domain within its C terminus that recognizes Pol II C-terminal domain (CTD) peptides phosphorylated on Ser2, Ser5, or Try1 in vitro. Deleting the tSH2 domain, however, only has a partial effect on Spt6 occupancy in vivo, suggesting that more complex mechanisms are involved in the Spt6 recruitment. Our results show that the Ser2 kinases Bur1 and Ctk1, but not the Ser5 kinase Kin28, cooperate in recruiting Spt6, genome-wide. Interestingly, the Ser2 kinases promote the association of Spt6 in early transcribed regions and not toward the 3' ends of genes, where phosphorylated Ser2 reaches its maximum level. In addition, our results uncover an unexpected role for histone deacetylases (Rpd3 and Hos2) in promoting Spt6 interaction with elongating Pol II. Finally, our data suggest that phosphorylation of the Pol II CTD on Tyr1 promotes the association of Spt6 with the 3' ends of transcribed genes, independently of Ser2 phosphorylation. Collectively, our results show that a complex network of interactions, involving the Spt6 tSH2 domain, CTD phosphorylation, and histone deacetylases, coordinate the recruitment of Spt6 to transcribed genes in vivo.
Collapse
|
5
|
Highly acidic C-terminal region of cytomegalovirus pUL96 determines its functions during virus maturation independently of a direct pp150 interaction. J Virol 2014; 88:4493-503. [PMID: 24501413 DOI: 10.1128/jvi.03784-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED Tegument proteins pp150 and pUL96 function at a late step in cytomegalovirus (CMV) maturation. Here, we show that pp150 interacts directly with pUL96; however, the N-terminal region of pp150 and the C-terminal region of pUL96, which are critical for these proteins to function, are not required for this interaction. Moreover, the largely dispensable C-terminal region of pp150 is critical for pp150-pUL96 interaction. To further study the role of pUL96, several point and clustered mutations were engineered into the CMV Towne bacterial artificial chromosome (Towne-BAC) genome, replacing the conserved negatively charged C-terminal residues of pUL96. Although individual point mutations (E122A, D124A, and D125A) reduced virus growth slightly, the clustered mutations of 122EVDDAV127 significantly reduced virus growth, produced small syncytial plaque phenotypes, and impacted a late stage of virus maturation. When the UL96 C-terminal alanine conversion mutant (B6-BAC) virus was serially passaged in cell culture, it gained a plaque size comparable to that of Towne-BAC, displayed an altered restriction fragment length pattern, and replicated with increased growth kinetics. Whole-genome sequencing of this passaged virus (UL96P10) and the similarly passaged Towne-BAC virus revealed major differences only in the RNA4.9 and UL96 regions. When one of the mutations in the UL96 coding region was engineered into the B6-BAC virus, it significantly increased the plaque size and rescued the virus growth rate. Thus, accumulation of compensatory mutations only in UL96 in this revertant and the specific involvement of functionally dispensable regions of pp150 in the pUL96-pp150 interaction point toward a role for pUL96 in virus maturation that does not depend upon pp150. IMPORTANCE Human cytomegalovirus causes significant medical problems in newborns, as well as in people with low immunity. In this study, we investigated the functions of two essential virus proteins, pp150 and pUL96, and determined the impact of their mutual interaction on virus replication. These studies provide valuable information that is critical for the development of targeted antiviral therapies.
Collapse
|
6
|
Identification of a novel protein interaction motif in the regulatory subunit of casein kinase 2. Mol Cell Biol 2013; 34:246-58. [PMID: 24216761 DOI: 10.1128/mcb.00968-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Casein kinase 2 (CK2) regulates multiple cellular processes and can promote oncogenesis. Interactions with the CK2β regulatory subunit of the enzyme target its catalytic subunit (CK2α or CK2α') to specific substrates; however, little is known about the mechanisms by which these interactions occur. We previously showed that by binding CK2β, the Epstein-Barr virus (EBV) EBNA1 protein recruits CK2 to promyelocytic leukemia (PML) nuclear bodies, where increased CK2-mediated phosphorylation of PML proteins triggers their degradation. Here we have identified a KSSR motif near the dimerization interface of CK2β as forming part of a protein interaction pocket that mediates interaction with EBNA1. We show that the EBNA1-CK2β interaction is primed by phosphorylation of EBNA1 on S393 (within a polyserine region). This phosphoserine is critical for EBNA1-induced PML degradation but does not affect EBNA1 functions in EBV replication or segregation. Using comparative proteomics of wild-type (WT) and KSSR mutant CK2β, we identified an uncharacterized cellular protein, C18orf25/ARKL1, that also binds CK2β through the KSSR motif and show that this involves a polyserine sequence resembling the CK2β binding sequence in EBNA1. Therefore, we have identified a new mechanism of CK2 interaction used by viral and cellular proteins.
Collapse
|