1
|
Zhou S, Long N, Swanstrom R. Evolution Driven By A Varying Host Environment Selects For Distinct HIV-1 Entry Phenotypes and Other Informative Variants. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2023; 3:1291996. [PMID: 38239974 PMCID: PMC10795538 DOI: 10.3389/fviro.2023.1291996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
HIV-1 generates remarkable intra- and inter-host viral diversity during infection. In response to dynamic selective pressures of the host environment, HIV-1 will evolve distinct phenotypes - biological features that provide fitness advantages. The transmitted form of HIV-1 has been shown to require a high density of CD4 on the target cell surface (as found on CD4+ T cells) and typically uses CCR5 as a co-receptor during entry. This phenotype is referred to as R5 T cell-tropic (or R5 T-tropic); however, HIV-1 can switch to a secondary co-receptor, CXCR4, resulting in a X4 T cell-tropic phenotype. Macrophage-tropic (or M-tropic) HIV-1 can evolve to efficiently enter cells expressing low densities of CD4 on their surface (such as macrophages/microglia). So far only CCR5-using M-tropic viruses have been found. M-tropic HIV-1 is most frequently found within the central nervous system, and infection of the CNS has been associated with neurological impairment. It has been shown that interferon resistance phenotypes have a selective advantage during transmission, but the underlying mechanism of this is still unclear. During untreated infection, HIV-1 evolves under selective pressure from both the humoral/antibody response and CD8+ T cell killing. Sufficiently potent antiviral therapy will suppress viral replication, but if the antiviral drugs are not sufficiently potent to stop replication then the replicating virus will evolve drug resistance. HIV-1 phenotypes are highly relevant to treatment efforts, clinical outcomes, vaccine studies, and cure strategies. Therefore, it is critical to understand the dynamics of the host environment that drive these phenotypes and how they affect HIV-1 pathogenesis. This review will provide a comprehensive discussion of HIV-1 entry, transmission, and drug resistance phenotypes. Finally, we will assess the methods used in previous and current research to characterize these phenotypes.
Collapse
Affiliation(s)
- Shuntai Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nathan Long
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Kotokwe K, Moyo S, Zahralban-Steele M, Holme MP, Melamu P, Koofhethile CK, Choga WT, Mohammed T, Nkhisang T, Mokaleng B, Maruapula D, Ditlhako T, Bareng O, Mokgethi P, Boleo C, Makhema J, Lockman S, Essex M, Ragonnet-Cronin M, Novitsky V, Gaseitsiwe S, PANGEA Consortium. Prediction of Coreceptor Tropism in HIV-1 Subtype C in Botswana. Viruses 2023; 15:403. [PMID: 36851617 PMCID: PMC9963705 DOI: 10.3390/v15020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
It remains unknown whether the C-C motif chemokine receptor type 5 (CCR5) coreceptor is still the predominant coreceptor used by Human Immunodeficiency Virus-1 (HIV-1) in Botswana, where the HIV-1 subtype C predominates. We sought to determine HIV-1C tropism in Botswana using genotypic tools, taking into account the effect of antiretroviral treatment (ART) and virologic suppression. HIV-1 gp120 V3 loop sequences from 5602 participants were analyzed for viral tropism using three coreceptor use predicting algorithms/tools: Geno2pheno, HIV-1C Web Position-Specific Score Matrices (WebPSSM) and the 11/25 charge rule. We then compared the demographic and clinical characteristics of people living with HIV (PLWH) harboring R5- versus X4-tropic viruses using χ2 and Wilcoxon rank sum tests for categorical and continuous data analysis, respectively. The three tools congruently predicted 64% of viruses as either R5-tropic or X4-tropic. Geno2pheno and the 11/25 charge rule had the highest concordance at 89%. We observed a significant difference in ART status between participants harboring X4- versus R5-tropic viruses. X4-tropic viruses were more frequent among PLWH receiving ART (χ2 test, p = 0.03). CCR5 is the predominant coreceptor used by HIV-1C strains circulating in Botswana, underlining the strong potential for CCR5 inhibitor use, even in PLWH with drug resistance. We suggest that the tools for coreceptor prediction should be used in combination.
Collapse
Affiliation(s)
- Kenanao Kotokwe
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Melissa Zahralban-Steele
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Molly Pretorius Holme
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Pinkie Melamu
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
| | - Catherine Kegakilwe Koofhethile
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | | | - Terence Mohammed
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
| | - Tapiwa Nkhisang
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Baitshepi Mokaleng
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
| | - Dorcas Maruapula
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
| | - Tsotlhe Ditlhako
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
| | - Ontlametse Bareng
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
| | - Patrick Mokgethi
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
| | - Corretah Boleo
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
| | - Joseph Makhema
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Shahin Lockman
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Max Essex
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Manon Ragonnet-Cronin
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| | - Vlad Novitsky
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | | |
Collapse
|
3
|
Hu X, Feng Y, Li K, Yu Y, Rashid A, Xing H, Ruan Y, Lu L, Wei M, Shao Y. Unique profile of predominant CCR5-tropic in CRF07_BC HIV-1 infections and discovery of an unusual CXCR4-tropic strain. Front Immunol 2022; 13:911806. [PMID: 36211390 PMCID: PMC9540210 DOI: 10.3389/fimmu.2022.911806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
CRF07_BC is one of the most prevalent HIV-1 strains in China, which contributes over one-third of the virus transmissions in the country. In general, CRF07_BC is associated with slower disease progression, while the underlying mechanisms remain unclear. Our study focused on envelope proteins (Env) and its V3 loop which determine viral binding to co-receptors during infection of cells. We studied a large dataset of 3,937 env sequences in China and found that CRF07_BC had a unique profile of predominantly single CCR5 tropism compared with CCR5 and CXCR4 dual tropisms in other HIV-1 subtypes. The percentages of the CXCR4-tropic virus in B (3.7%) and CRF01_AE (10.4%) infection are much higher than that of CRF07_BC (0.1%), which is supported by median false-positive rates (FPRs) of 69.8%, 25.5%, and 13.4% for CRF07_BC, B, and CRF01_AE respectively, with a cutoff FPR for CXCR4-tropic at 2%. In this study, we identified the first pure CXCR4-tropic virus from one CRF07_BC-infected patient with an extremely low CD4+T cell count (7 cells/mm3). Structural analysis found that the V3 region of this virus has the characteristic 7T and 25R and a substitution of conserved “GPGQ” crown motif for “GPGH”. This study provided compelling evidence that CRF07_BC has the ability to evolve into CXCR4 strains. Our study also lay down the groundwork for studies on tropism switch, which were commonly done for other HIV-1 subtypes, for the long-delayed CRF07_BC.
Collapse
Affiliation(s)
- Xiaoyan Hu
- School of Medicine, Nankai University, Tianjin, China
| | - Yi Feng
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for Acquired Immune Deficiency Syndrome/Sexually Transmitted Diseases (AIDS/STD) Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kang Li
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yueyang Yu
- School of Medicine, Nankai University, Tianjin, China
| | - Abdur Rashid
- School of Medicine, Nankai University, Tianjin, China
| | - Hui Xing
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for Acquired Immune Deficiency Syndrome/Sexually Transmitted Diseases (AIDS/STD) Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuhua Ruan
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for Acquired Immune Deficiency Syndrome/Sexually Transmitted Diseases (AIDS/STD) Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lingling Lu
- School of Medicine, Nankai University, Tianjin, China
| | - Min Wei
- School of Medicine, Nankai University, Tianjin, China
- Nankai University Second People’s Hospital, Nankai University, Tianjin, China
- *Correspondence: Min Wei, ; Yiming Shao,
| | - Yiming Shao
- School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for Acquired Immune Deficiency Syndrome/Sexually Transmitted Diseases (AIDS/STD) Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- *Correspondence: Min Wei, ; Yiming Shao,
| |
Collapse
|
4
|
Connell BJ, Hermans LE, Wensing AMJ, Schellens I, Schipper PJ, van Ham PM, de Jong DTCM, Otto S, Mathe T, Moraba R, Borghans JAM, Papathanasopoulos MA, Kruize Z, Venter FWD, Kootstra NA, Tempelman H, Tesselaar K, Nijhuis M. Immune activation correlates with and predicts CXCR4 co-receptor tropism switch in HIV-1 infection. Sci Rep 2020; 10:15866. [PMID: 32985522 PMCID: PMC7522993 DOI: 10.1038/s41598-020-71699-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/10/2020] [Indexed: 12/31/2022] Open
Abstract
HIV-1 cell entry is mediated by binding to the CD4-receptor and chemokine co-receptors CCR5 (R5) or CXCR4 (X4). R5-tropic viruses are predominantly detected during early infection. A switch to X4-tropism often occurs during the course of infection. X4-tropism switching is strongly associated with accelerated disease progression and jeopardizes CCR5-based HIV-1 cure strategies. It is unclear whether host immunological factors play a causative role in tropism switching. We investigated the relationship between immunological factors and X4-tropism in a cross-sectional study in HIV-1 subtype C (HIV-1C)-infected patients and in a longitudinal HIV-1 subtype B (HIV-1B) seroconverter cohort. Principal component analysis identified a cluster of immunological markers (%HLA-DR+ CD4+ T-cells, %CD38+HLA-DR+ CD4+ T-cells, %CD38+HLA-DR+ CD8+ T-cells, %CD70+ CD4+ T-cells, %CD169+ monocytes, and absolute CD4+ T-cell count) in HIV-1C patients that was independently associated with X4-tropism (aOR 1.044, 95% CI 1.003–1.087, p = 0.0392). Analysis of individual cluster contributors revealed strong correlations of two markers of T-cell activation (%HLA-DR+ CD4+ T-cells, %HLA-DR+CD38+ CD4+ T-cells) with X4-tropism, both in HIV-1C patients (p = 0.01;p = 0.03) and HIV-1B patients (p = 0.0003;p = 0.0001). Follow-up data from HIV-1B patients subsequently revealed that T-cell activation precedes and independently predicts X4-tropism switching (aHR 1.186, 95% CI 1.065–1.321, p = 0.002), providing novel insights into HIV-1 pathogenesis and CCR5-based curative strategies.
Collapse
Affiliation(s)
- Bridgette J Connell
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Lucas E Hermans
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands.,Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa
| | - Annemarie M J Wensing
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands.,Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa
| | - Ingrid Schellens
- Center for Translational Immunology, UMCU, Utrecht, The Netherlands
| | - Pauline J Schipper
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Petra M van Ham
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Dorien T C M de Jong
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Sigrid Otto
- Center for Translational Immunology, UMCU, Utrecht, The Netherlands
| | - Tholakele Mathe
- Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa
| | - Robert Moraba
- Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa
| | | | - Maria A Papathanasopoulos
- HIV Pathogenesis Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zita Kruize
- Amsterdam University Medical Center, Amsterdam Infection and Immunity Institute, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Francois W D Venter
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Neeltje A Kootstra
- Amsterdam University Medical Center, Amsterdam Infection and Immunity Institute, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Hugo Tempelman
- Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa
| | - Kiki Tesselaar
- Center for Translational Immunology, UMCU, Utrecht, The Netherlands
| | - Monique Nijhuis
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands. .,Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa. .,HIV Pathogenesis Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
5
|
Gartner MJ, Gorry PR, Tumpach C, Zhou J, Dantanarayana A, Chang JJ, Angelovich TA, Ellenberg P, Laumaea AE, Nonyane M, Moore PL, Lewin SR, Churchill MJ, Flynn JK, Roche M. Longitudinal analysis of subtype C envelope tropism for memory CD4 + T cell subsets over the first 3 years of untreated HIV-1 infection. Retrovirology 2020; 17:24. [PMID: 32762760 PMCID: PMC7409430 DOI: 10.1186/s12977-020-00532-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Background HIV-1 infects a wide range of CD4+ T cells with different phenotypic properties and differing expression levels of entry coreceptors. We sought to determine the viral tropism of subtype C (C-HIV) Envelope (Env) clones for different CD4+ T cell subsets and whether tropism changes during acute to chronic disease progression. HIV-1 envs were amplified from the plasma of five C-HIV infected women from three untreated time points; less than 2 months, 1-year and 3-years post-infection. Pseudoviruses were generated from Env clones, phenotyped for coreceptor usage and CD4+ T cell subset tropism was measured by flow cytometry. Results A total of 50 C-HIV envs were cloned and screened for functionality in pseudovirus infection assays. Phylogenetic and variable region characteristic analysis demonstrated evolution in envs between time points. We found 45 pseudoviruses were functional and all used CCR5 to mediate entry into NP2/CD4/CCR5 cells. In vitro infection assays showed transitional memory (TM) and effector memory (EM) CD4+ T cells were more frequently infected (median: 46% and 25% of total infected CD4+ T cells respectively) than naïve, stem cell memory, central memory and terminally differentiated cells. This was not due to these subsets contributing a higher proportion of the CD4+ T cell pool, rather these subsets were more susceptible to infection (median: 5.38% EM and 2.15% TM cells infected), consistent with heightened CCR5 expression on EM and TM cells. No inter- or intra-participant changes in CD4+ T cell subset tropism were observed across the three-time points. Conclusions CD4+ T cell subsets that express more CCR5 were more susceptible to infection with C-HIV Envs, suggesting that these may be the major cellular targets during the first 3 years of infection. Moreover, we found that viral tropism for different CD4+ T cell subsets in vitro did not change between Envs cloned from acute to chronic disease stages. Finally, central memory, naïve and stem cell memory CD4+ T cell subsets were susceptible to infection, albeit inefficiently by Envs from all time-points, suggesting that direct infection of these cells may help establish the latent reservoir early in infection.
Collapse
Affiliation(s)
- Matthew J Gartner
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia.,The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Paul R Gorry
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia
| | - Carolin Tumpach
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Jingling Zhou
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia
| | - Ashanti Dantanarayana
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - J Judy Chang
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Thomas A Angelovich
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia.,Life Sciences, Burnet Institute, Melbourne, VIC, Australia
| | - Paula Ellenberg
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Annemarie E Laumaea
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Molati Nonyane
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Penny L Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, Australia
| | - Melissa J Churchill
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia
| | - Jacqueline K Flynn
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia. .,The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia. .,School of Clinical Sciences, Monash University, Melbourne, VIC, Australia.
| | - Michael Roche
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia. .,The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
6
|
Council OD, Joseph SB. Evolution of Host Target Cell Specificity During HIV-1 Infection. Curr HIV Res 2019; 16:13-20. [PMID: 29268687 DOI: 10.2174/1570162x16666171222105721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Many details of HIV-1 molecular virology have been translated into lifesaving antiviral drugs. Yet, we have an incomplete understanding of the cells in which HIV-1 replicates in untreated individuals and persists in during antiretroviral therapy. METHODS In this review we discuss how viral entry phenotypes have been characterized and the insights they have revealed about the target cells supporting HIV-1 replication. In addition, we will examine whether some HIV-1 variants have the ability to enter cells lacking CD4 (such as astrocytes) and the role that trans-infection plays in HIV-1 replication. RESULTS HIV-1 entry into a target cell is determined by whether the viral receptor (CD4) and the coreceptor (CCR5 or CXCR4) are expressed on that cell. Sustained HIV-1 replication in a cell type can produce viral lineages that are tuned to the CD4 density and coreceptor expressed on those cells; a fact that allows us to use Env protein entry phenotypes to infer information about the cells in which a viral lineage has been replicating and adapting. CONCLUSION We now recognize that HIV-1 variants can be divided into three classes representing the primary target cells of HIV-1; R5 T cell-tropic variants that are adapted to entering memory CD4+ T cells, X4 T cell-tropic variants that are adapted to entering naïve CD4+ T cells and Mtropic variants that are adapted to entering macrophages and possibly other cells that express low levels of CD4. While much progress has been made, the relative contribution that infection of different cell subsets makes to viral pathogenesis and persistence is still being unraveled.
Collapse
Affiliation(s)
- Olivia D Council
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sarah B Joseph
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
7
|
Song H, Ou W, Feng Y, Zhang J, Li F, Hu J, Peng H, Xing H, Ma L, Tan Q, Li D, Wang L, Wu B, Shao Y. Disparate impact on CD4 T cell count by two distinct HIV-1 phylogenetic clusters from the same clade. Proc Natl Acad Sci U S A 2019; 116:239-244. [PMID: 30559208 PMCID: PMC6320496 DOI: 10.1073/pnas.1814714116] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HIV-1 evolved into various genetic subtypes and circulating recombinant forms (CRFs) in the global epidemic. The same subtype or CRF is usually considered to have similar phenotype. Being one of the world's major CRFs, CRF01_AE infection was reported to associate with higher prevalence of CXCR4 (X4) viruses and faster CD4 decline. However, the underlying mechanisms remain unclear. We identified eight phylogenetic clusters of CRF01_AE in China and hypothesized that they may have different phenotypes. In the National HIV Molecular Epidemiology Survey, we discovered that people infected by CRF01_AE cluster 4 had significantly lower CD4 counts (391 vs. 470, P < 0.0001) and higher prevalence of X4-using viruses (17.1% vs. 4.4%, P < 0.0001) compared with those infected by cluster 5. In an MSM cohort, X4-using viruses were only isolated from seroconvertors in cluster 4, which was associated with low a CD4 count within the first year of infection (141 vs. 440, P = 0.003). Using a coreceptor binding model, we identified unique V3 signatures in cluster 4 that favor CXCR4 use. We demonstrate that the HIV-1 phenotype and pathogenicity can be determined at the phylogenetic cluster level in the same subtype. Since its initial spread to humans from chimpanzees, estimated to be the first half of the 20th century, HIV-1 continues to undergo rapid evolution in larger and more diverse populations. The divergent phenotype evolution of two major CRF01_AE clusters highlights the importance of monitoring the genetic evolution and phenotypic shift of HIV-1 to provide early warning of the appearance of more pathogenic strains.
Collapse
Affiliation(s)
- Hongshuo Song
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 102206 Beijing, China
| | - Weidong Ou
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 102206 Beijing, China
| | - Yi Feng
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 102206 Beijing, China
| | - Junli Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 102206 Beijing, China
| | - Fan Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 102206 Beijing, China
| | - Jing Hu
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 102206 Beijing, China
| | - Hong Peng
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 102206 Beijing, China
| | - Hui Xing
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 102206 Beijing, China
| | - Liying Ma
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 102206 Beijing, China
| | - Qiuxiang Tan
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203 Shanghai, China
| | - Dongliang Li
- Chaoyang Center for Disease Control and Prevention, 100021 Beijing, China
| | - Lijuan Wang
- Chaoyang Center for Disease Control and Prevention, 100021 Beijing, China
| | - Beili Wu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203 Shanghai, China
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 102206 Beijing, China;
- Center of Infectious Diseases, Peking University, 100191 Beijing, China
- The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003 Hangzhou, China
| |
Collapse
|
8
|
Wiredja DD, Tabler CO, Schlatzer DM, Li M, Chance MR, Tilton JC. Global phosphoproteomics of CCR5-tropic HIV-1 signaling reveals reprogramming of cellular protein production pathways and identifies p70-S6K1 and MK2 as HIV-responsive kinases required for optimal infection of CD4+ T cells. Retrovirology 2018; 15:44. [PMID: 29970186 PMCID: PMC6029029 DOI: 10.1186/s12977-018-0423-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/26/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Viral reprogramming of host cells enhances replication and is initiated by viral interaction with the cell surface. Upon human immunodeficiency virus (HIV) binding to CD4+ T cells, a signal transduction cascade is initiated that reorganizes the actin cytoskeleton, activates transcription factors, and alters mRNA splicing pathways. METHODS We used a quantitative mass spectrometry-based phosphoproteomic approach to investigate signal transduction cascades initiated by CCR5-tropic HIV, which accounts for virtually all transmitted viruses and the vast majority of viruses worldwide. RESULTS CCR5-HIV signaling induced significant reprogramming of the actin cytoskeleton and mRNA splicing pathways, as previously described. In addition, CCR5-HIV signaling induced profound changes to the mRNA transcription, processing, translation, and post-translational modifications pathways, indicating that virtually every stage of protein production is affected. Furthermore, we identified two kinases regulated by CCR5-HIV signaling-p70-S6K1 (RPS6KB1) and MK2 (MAPKAPK2)-that were also required for optimal HIV infection of CD4+ T cells. These kinases regulate protein translation and cytoskeletal architecture, respectively, reinforcing the importance of these pathways in viral replication. Additionally, we found that blockade of CCR5 signaling by maraviroc had relatively modest effects on CCR5-HIV signaling, in agreement with reports that signaling by CCR5 is dispensable for HIV infection but in contrast to the critical effects of CXCR4 on cortical actin reorganization. CONCLUSIONS These results demonstrate that CCR5-tropic HIV induces significant reprogramming of host CD4+ T cell protein production pathways and identifies two novel kinases induced upon viral binding to the cell surface that are critical for HIV replication in host cells.
Collapse
Affiliation(s)
- Danica D Wiredja
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Caroline O Tabler
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Daniela M Schlatzer
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ming Li
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mark R Chance
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - John C Tilton
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
9
|
Matume ND, Tebit DM, Gray LR, Hammarskjold ML, Rekosh D, Bessong PO. Next generation sequencing reveals a high frequency of CXCR4 utilizing viruses in HIV-1 chronically infected drug experienced individuals in South Africa. J Clin Virol 2018; 103:81-87. [PMID: 29661652 DOI: 10.1016/j.jcv.2018.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Entry inhibitors, such as Maraviroc, bind to CCR5 inhibiting entry of CCR5 utilizing viruses (R5 viruses). In the course of HIV infection, CXCR4 utilizing viruses (X4 viruses) may emerge and outgrow R5 viruses, and potentially limit the effectiveness of Maraviroc. The use of Maraviroc is reserved for salvage therapy in South Africa. OBJECTIVE In this study, we examined the frequency of R5 and X4 viruses, using next generation sequencing, in patients under treatment to draw inferences on the utility of Maraviroc in a South African population. STUDY DESIGN Proviral DNA was isolated from peripheral blood mononuclear cells (PBMC) of 72 chronically HIV infected patients on antiretroviral treatment. HIV V3 loop gene was amplified and sequenced on an Illumina MiniSeq platform. Viral subtypes were determined by the jumping profile Hidden Markov Model (jpHMM) and REGA genotyping tools. De Novo consensus sequences were derived for the majority and minority populations for each patient using Geneious® software version 8.1.5. HIV-1 tropism was inferred using PSSMsinsi, Geno2pheno and Phenoseq-C web-based tools. RESULTS Quality V3 loop sequences were obtained from 72 patients, with 5 years (range: 0-16) median duration on treatment. Subtypes A1, B and C viruses were identified at frequencies of 4% (3/72), 4% (3/72) and 92% (66/72) respectively. Fifty four percent (39/72) of patients exclusively harboured R5 viral quasispecies; and 21% (15/72) exclusively harbored X4 viral quasispecies. Twenty five percent of patients (18/72) harbored dual/mixture of R5X4 quasispecies. Of these 18 patients, about 28% (5/18) harbored the R5+X4, a mixture with a majority R5 and minority X4 viruses, while about 72% (13/18) harbored the R5X4+ mixture with a majority X4 and minority R5 viruses. The proportion of all patients who harbored X4 viruses either exclusively or dual/mixture was 46% (33/72). Thirty-five percent (23/66) of the patients who were of HIV-1 subtype C harboured X4 viruses (χ2 = 3.58; p = .058), and 57% of these (13/23) harbored X4 viruses exclusively. CD4+ cell count less than 350 cell/μl was associated with the presence of X4 viruses (χ2 = 4.99; p = .008). CONCLUSION The effectiveness of Maraviroc as a component in salvage therapy may be compromised for a significant number of chronically infected patients harboring CXCR4 utilizing viruses.
Collapse
Affiliation(s)
- Nontokozo D Matume
- HIV/AIDS & Global Health Research Programme, University of Venda, Thohoyandou, South Africa.
| | - Denis M Tebit
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, USA.
| | - Laurie R Gray
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, USA.
| | - Marie-Louise Hammarskjold
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, USA.
| | - David Rekosh
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, USA.
| | - Pascal O Bessong
- HIV/AIDS & Global Health Research Programme, University of Venda, Thohoyandou, South Africa.
| |
Collapse
|
10
|
Leite TCNF, Campos DP, Coelho AB, Teixeira SLM, Veloso V, Morgado MG, Guimarães ML. Impact of HIV-1 Subtypes on AIDS Progression in a Brazilian Cohort. AIDS Res Hum Retroviruses 2017; 33:41-48. [PMID: 27418261 DOI: 10.1089/aid.2016.0126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Viral and host factors are known to play a role in the different patterns of AIDS progression. The cocirculation of HIV-1 subtypes B, F1, BBR, and BF1; the occasional detection of HIV-1 subtype D; and an increasing prevalence of subtype C and other recombinant forms have been described in Rio de Janeiro, Brazil. The aim of this study was to evaluate the potential association of HIV-1 subtypes circulating among HIV-1+ individuals in Rio de Janeiro with AIDS disease progression. For this purpose, 246 HIV-1 individuals under clinical and laboratory follow-up from 1986 to 2011 were classified according to their progression to AIDS in typical progressors (n = 133), rapid progressors (n = 95), and long-term nonprogressors (n = 18). The env-gp120 region was amplified and sequenced. Neighbor-joining phylogenetic inferences were performed in Mega 6 and bootscan analysis was performed in Simplot 3.5.1. The Kaplan-Meier method and Cox modeling were performed to determine the time until an AIDS-defining event based on the HIV-1 subtypes/variants. Similar AIDS progression rates were observed among individuals infected with HIV-1 subtype B and variant BBR. However, a direct association between more rapid AIDS progression and HIV-1 subtypes, D and BF1, was confirmed in the multivariate analysis, corroborating previous results. Our findings contribute to the investigation of the possible influence of HIV-1 subtypes in AIDS outcome.
Collapse
Affiliation(s)
| | - Dayse Pereira Campos
- Evandro Chagas Nacional Institute of Infectious Diseases, FIOCRUZ, Rio de Janeiro, Brazil
| | - Alessandra Brum Coelho
- Evandro Chagas Nacional Institute of Infectious Diseases, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Valdilea Veloso
- Evandro Chagas Nacional Institute of Infectious Diseases, FIOCRUZ, Rio de Janeiro, Brazil
| | - Mariza Gonçalves Morgado
- Laboratory of AIDS and Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | | |
Collapse
|
11
|
Dauwe K, Mortier V, Schauvliege M, Van Den Heuvel A, Fransen K, Servais JY, Bercoff DP, Seguin-Devaux C, Verhofstede C. Characteristics and spread to the native population of HIV-1 non-B subtypes in two European countries with high migration rate. BMC Infect Dis 2015; 15:524. [PMID: 26572861 PMCID: PMC4647655 DOI: 10.1186/s12879-015-1217-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/14/2015] [Indexed: 12/13/2022] Open
Abstract
Background Non-B subtypes account for at least 50 % of HIV-1 infections diagnosed in Belgium and Luxembourg. They are considered to be acquired through heterosexual contacts and infect primarily individuals of foreign origin. Information on the extent to which non-B subtypes spread to the local population is incomplete. Methods Pol and env gene sequences were collected from 410 non-subtype B infections. Profound subtyping was performed using 5 subtyping tools and sequences of both pol and env. Demographic information, disease markers (viral load, CD4 count) and viral characteristics (co-receptor tropism) were compared between subtypes. Maximum likelihood phylogenetic trees were constructed and examined for clustering. Results The majority of non-B infections were diagnosed in patients originating from Africa (55.8 %), individuals born in Western Europe represented 30.5 %. Heterosexual transmission was the most frequently reported transmission route (79.9 %), MSM transmission accounted for 12.2 % and was significantly more frequently reported for Western Europeans (25.7 % versus 4.3 % for individuals originating from other regions; p < 0.001). Subtypes A and C and the circulating recombinant forms CRF01_AE and CRF02_AG were the most represented and were included in the comparative analysis. Native Western Europeans were underrepresented for subtype A (14.5 %) and overrepresented for CRF01_AE (38.6 %). The frequency of MSM transmission was the highest for CRF01_AE (18.2 %) and the lowest for subtype A (0 %). No differences in age, gender, viral load or CD4 count were observed. Prevalence of CXCR4-use differed between subtypes but largely depended on the tropism prediction algorithm applied. Indications for novel intersubtype recombinants were found in 20 patients (6.3 %). Phylogenetic analysis revealed only few and small clusters of local transmission but could document one cluster of CRF02_AG transmission among Belgian MSM. Conclusions The extent to which non-B subtypes spread in the native Belgian-Luxembourg population is higher than expected, with 30.5 % of the non-B infections diagnosed in native Western Europeans. These infections resulted from hetero- as well as homosexual transmission. Introduction of non-B variants in the local high at risk population of MSM may lead to new sub-epidemics and/or increased genetic variability and is an evolution that needs to be closely monitored.
Collapse
Affiliation(s)
- Kenny Dauwe
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, De Pintelaan 185-Blok A, B-9000, Ghent, Belgium.
| | - Virginie Mortier
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, De Pintelaan 185-Blok A, B-9000, Ghent, Belgium.
| | - Marlies Schauvliege
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, De Pintelaan 185-Blok A, B-9000, Ghent, Belgium.
| | - Annelies Van Den Heuvel
- Aids Reference laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Nationalestraat 155, B-2000, Antwerp, Belgium.
| | - Katrien Fransen
- Aids Reference laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Nationalestraat 155, B-2000, Antwerp, Belgium.
| | - Jean-Yves Servais
- Laboratory of Retrovirology, Department of Infection and Immunity, Luxembourg Institute of Health, Val Fleuri 84, L-1526, Luxembourg, Luxembourg.
| | - Danielle Perez Bercoff
- Laboratory of Retrovirology, Department of Infection and Immunity, Luxembourg Institute of Health, Val Fleuri 84, L-1526, Luxembourg, Luxembourg.
| | - Carole Seguin-Devaux
- Laboratory of Retrovirology, Department of Infection and Immunity, Luxembourg Institute of Health, Val Fleuri 84, L-1526, Luxembourg, Luxembourg.
| | - Chris Verhofstede
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, De Pintelaan 185-Blok A, B-9000, Ghent, Belgium.
| |
Collapse
|
12
|
Nankya IL, Tebit DM, Abraha A, Kyeyune F, Gibson R, Jegede O, Nickel G, Arts EJ. Defining the fitness of HIV-1 isolates with dual/mixed co-receptor usage. AIDS Res Ther 2015; 12:34. [PMID: 26435727 PMCID: PMC4592561 DOI: 10.1186/s12981-015-0066-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 07/28/2015] [Indexed: 02/08/2023] Open
Abstract
Background CCR5-using (r5) HIV-1 predominates during asymptomatic disease followed by occasional emergence of CXCR4-using (x4) or dual tropic (r5x4) virus. We examined the contribution of the x4 and r5 components to replicative fitness of HIV-1 isolates. Methods Dual tropic r5x4 viruses were predicted from average HIV-1 env sequences of two primary subtype C HIV-1 isolates (C19 and C27) and from two patient plasma samples (B12 and B19). Chimeric Env viruses with an NL4-3 backbone were constructed from the B12 and B19 env sequences. To determine replicative fitness, these primary and chimeric dual tropic HIV-1 were then competed against HIV-1 reference isolates in U87.CD4 cells expressing CXCR4 or CCR5 or in PBMCs ± entry inhibitors. Contribution of the x4 and r5 clones within the quasispecies of these chimeric or primary HIV-1 isolates were then compared to the frequency of x4, r5, and dual tropic clones within the quasispecies as predicted by phenotypic assays, clonal sequencing, and 454 deep sequencing. Results In the primary HIV-1 isolates (C19 and C27), subtype C dual tropic clones dominated over x4 clones while pure r5 clones were absent. In two subtype B chimeric viruses (B12 and B19), r5 clones were >100-fold more abundant than x4 or r5/x4 clones. The dual tropic C19 and C27 HIV-1 isolates outcompeted r5 primary HIV-1 isolates, B2 and C3 in PBMCs. When AMD3100 was added or when only U87.CD4.CCR5 cells were used, the B2 and C3 reference viruses now out-competed the r5 component of the dual tropic C19 and C27. In contrast, the same replicative fitness was observed with dualtropic B12 and B19 HIV-1 isolates relative to x4 HIV-1 A8 and E6 or the r5 B2 and C3 viruses, even when the r5 or x4 component was inhibited by maraviroc (or AMD3100) or in U87.CD4.CXCR4 (or CCR5) cells. Conclusions In the dual tropic HIV-1 isolates, the x4 replicative fitness is higher than r5 clones but the x4 or x4/r5 clones are typically at low frequency in the intrapatient virus population. Ex vivo HIV propagation promotes outgrowth of the x4 clones and provides an over-estimate of x4 dominance in replicative fitness within dual tropic viruses. Electronic supplementary material The online version of this article (doi:10.1186/s12981-015-0066-7) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Msimanga PW, Vardas E, Engelbrecht S. HIV-1 diversity in an antiretroviral treatment naïve cohort from Bushbuckridge, Mpumalanga Province, South Africa. Virol J 2015; 12:24. [PMID: 25889106 PMCID: PMC4340098 DOI: 10.1186/s12985-015-0244-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/19/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND South Africa has a generalized and explosive HIV/AIDS epidemic with the largest number of people infected with HIV-1 in the world. Molecular investigations of HIV-1 diversity can help enhance interventions to contain and combat the HIV/AIDS epidemic. However, many studies of HIV-1 diversity in South Africa tend to be limited to the major metropolitan centers and their surrounding provinces. Hardly any studies of HIV diversity have been undertaken in Mpumalanga Province, and this study sought to investigate the HIV-1 diversity in this province, as well as establish the occurrence and extent of transmitted antiretroviral drug resistance mutations. METHODS HIV-1 gag p24, pol p10 and p66/p51, pol p31 and env gp41 gene fragments from 43 participants were amplified and sequenced. Quality control on the sequences was carried out using the LANL QC online tool. HIV-1 subtype was preliminary assigned using the REGA 3.0 and jpHMM online tools. Subtype for the pol gene fragment was further designated using the SCUEAL online tool. Phylogenetic analysis was inferred using the Maximum Likelihood methods in MEGA version 6. HIV-1 antiretroviral drug resistance mutations were determined using the Stanford database. RESULTS Phylogenetic analysis using Maximum Likelihood methods indicated that all sequences in the study clustered with HIV-1 subtype C. The exception was one putative subtype BC unique recombinant form. Antiretroviral drug resistance mutations K103N and E138A were also detected, indicating possible transmission of anti-retroviral drug resistance mutations. CONCLUSIONS The phylogenetic analysis of the HIV sequences revealed that, by 2009, patients in the Bushbuckridge, Mpumalanga were predominantly infected with HIV-1 subtype C. However, the generalized, explosive nature of the HIV/AIDS epidemic in South Africa, in the context of extensive mobility by South Africans who inhabit rural areas, renders the continued molecular monitoring and surveillance of the epidemic imperative.
Collapse
Affiliation(s)
- Patrick Wela Msimanga
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, P.O. Box 241, Cape Town, 8000, South Africa.
- Current Address: National Department of Health, Civitas Building, Corner Thabo Sehume and Struben Streets, P.O. Box X828, Pretoria, 0001, South Africa.
| | - Efthyia Vardas
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, P.O. Box 241, Cape Town, 8000, South Africa.
- Lancet Laboratories, P.O. Box 8475, Johannesburg, 2000, South Africa.
| | - Susan Engelbrecht
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, P.O. Box 241, Cape Town, 8000, South Africa.
- National Health Laboratory Services (NHLS), Western Cape Region, Tygerberg Hospital (Coastal), Tygerberg, Cape Town, South Africa.
| |
Collapse
|
14
|
Seager I, Travers SA, Leeson MD, Crampin AC, French N, Glynn JR, McCormack GP. Coreceptor usage, diversity, and divergence in drug-naive and drug-exposed individuals from Malawi, infected with HIV-1 subtype C for more than 20 years. AIDS Res Hum Retroviruses 2014; 30:975-83. [PMID: 24925099 DOI: 10.1089/aid.2013.0240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
There are few cohorts of individuals who have survived infection with HIV-1 for more than 20 years, reported and followed in the literature, and even fewer from Africa. Here we present data on a cohort of subtype C-infected individuals from rural northern Malawi. By sequencing multiple clones from long-term survivors at different time points, and using multiple genotyping approaches, we show that 5 of the 11 individuals are predicted as CXCR4 using (by ≥3/5 predictors) but only one individual is predicted as CXCR4 using by all five algorithms. Using any one genotyping approach overestimates the number of predicted CXCR4 sequences. Patterns of diversity and divergence were variable between the HIV-1 long-term survivors with some individuals showing very small amounts of variation and change, and others showing a greater amount; both patterns are consistent with what has been described in the literature.
Collapse
Affiliation(s)
- Ishla Seager
- Molecular Evolution and Systematics Laboratory, Zoology, Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Simon A. Travers
- Molecular Evolution and Systematics Laboratory, Zoology, Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
- South African National Bioinformatics Institute, SA Medical Research Council Bioinformatics Unit, University of the Western Cape, Bellville, South Africa
| | - Michael D. Leeson
- Molecular Evolution and Systematics Laboratory, Zoology, Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Amelia C. Crampin
- Karonga Prevention Study, Chilumba, Malawi
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Neil French
- Karonga Prevention Study, Chilumba, Malawi
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Institute of Infection & Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Judith R. Glynn
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Grace P. McCormack
- Molecular Evolution and Systematics Laboratory, Zoology, Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
15
|
Rao VR, Ruiz AP, Prasad VR. Viral and cellular factors underlying neuropathogenesis in HIV associated neurocognitive disorders (HAND). AIDS Res Ther 2014; 11:13. [PMID: 24894206 PMCID: PMC4043700 DOI: 10.1186/1742-6405-11-13] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 05/08/2014] [Indexed: 11/11/2022] Open
Abstract
As the HIV-1 epidemic enters its fourth decade, HIV-1 associated neurological disorders (HAND) continue to be a major concern in the infected population, despite the widespread use of anti-retroviral therapy. Advancing age and increased life expectancy of the HIV-1 infected population have been shown to increase the risk of cognitive dysfunction. Over the past 10 years, there has been a significant progress in our understanding of the mechanisms and the risk factors involved in the development of HAND. Key events that lead up to neuronal damage in HIV-1 infected individuals can be categorized based on the interaction of HIV-1 with the various cell types, including but not limited to macrophages, brain endothelial cells, microglia, astrocytes and the neurons. This review attempts to decipher these interactions, beginning with HIV-1 infection of macrophages and ultimately resulting in the release of neurotoxic viral and host products. These include: interaction with endothelial cells, resulting in the impairment of the blood brain barrier; interaction with the astrocytes, leading to metabolic and neurotransmitter imbalance; interactions with resident immune cells in the brain, leading to release of toxic cytokines and chemokines. We also review the mechanisms underlying neuronal damage caused by the factors mentioned above. We have attempted to bring together recent findings in these areas to help appreciate the viral and host factors that bring about neurological dysfunction. In addition, we review host factors and viral genotypic differences that affect phenotypic pathological outcomes, as well as recent advances in treatment options to specifically address the neurotoxic mechanisms in play.
Collapse
|
16
|
Sollerkvist LP, Gaseitsiwe S, Mine M, Sebetso G, Mphoyakgosi T, Diphoko T, Essex M, Ehrnst A. Increased CXCR4 use of HIV-1 subtype C identified by population sequencing in patients failing antiretroviral treatment compared with treatment-naive patients in Botswana. AIDS Res Hum Retroviruses 2014; 30:436-45. [PMID: 24205895 DOI: 10.1089/aid.2013.0203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
HIV-1 uses the coreceptors CCR5 and/or CXCR4 for cell entry. Monotropic CCR5-using variants are found early in the infection while CXCR4-using variants may appear after progression to AIDS. CXCR4 use may consist of both monotropic and dualtropic viruses. The viral phenotype is important in evaluating the response to CCR5 inhibitors, a new class of antiviral drugs. The coreceptor use of HIV-1 was investigated using population sequencing in 24 patients from Botswana, carrying HIV-1 subtype C and failing antiretroviral treatment, while 26 treatment-naive patients acted as controls. Single genome sequencing was used to discern minor HIV-1 populations in the treatment-experienced group. The Geno2Pheno method was employed to predict the coreceptor use phenotype from HIV-1 env gp120 V3 DNA sequences. The glycan-charge model adjusted for subtype C was also used for phenotype prediction. The viral phenotype of population sequences was predicted using Geno2Pheno in 24/24 treatment-experienced patients, of whom eight (33%) were predicted to harbor CXCR4-using strains as compared to 2/26 in the treatment-naive group (p=0.03). Single genome sequencing generated 4-23 clones/patient in the treatment-experienced group. Altogether, 90/295 (31%) putative CXCR4-using clones were identified. In 10/24 (42%) treated patients at least one clone was predicted to be CXCR4-using, further increasing the amount of identified treatment-experienced patients with CXCR4 use. Although subtype C is usually associated with comparatively little CXCR4 use, the frequency of CXCR4 use in treatment-experienced patients with subtype C can be higher, which may have implications for the administration of CCR5 inhibitors in this patient group.
Collapse
Affiliation(s)
| | - Simani Gaseitsiwe
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
- Botswana-Harvard School of Public Health AIDS Initiative Partnership for HIV Research and Education, Gaborone, Botswana
| | - Madisa Mine
- Ministry of Health, Botswana Harvard HIV Reference Laboratory, Gaborone, Botswana
| | - Gaseene Sebetso
- Ministry of Health, Botswana Harvard HIV Reference Laboratory, Gaborone, Botswana
| | | | - Thabo Diphoko
- Botswana-Harvard School of Public Health AIDS Initiative Partnership for HIV Research and Education, Gaborone, Botswana
| | - Max Essex
- Botswana-Harvard School of Public Health AIDS Initiative Partnership for HIV Research and Education, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, and the Harvard School of Public Health AIDS Initiative, Harvard School of Public Health, Boston, Massachusetts
| | - Anneka Ehrnst
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Ketseoglou I, Lukhwareni A, Steegen K, Carmona S, Stevens WS, Papathanasopoulos MA. Viral tropism and antiretroviral drug resistance in HIV-1 subtype C-infected patients failing highly active antiretroviral therapy in Johannesburg, South Africa. AIDS Res Hum Retroviruses 2014; 30:289-93. [PMID: 24224886 DOI: 10.1089/aid.2013.0267] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Reports show that up to 30% of antiretroviral drug-naive patients in Johannesburg have CXCR4-utilizing HIV-1 subtype C. We assessed whether HIV-1 subtype C-infected individuals failing highly active antiretroviral therapy (HAART) have a higher proportion of CXCR4-utilizing viruses compared to antiretroviral drug-naive patients. The V3 loop was sequenced from plasma from 100 randomly selected HAART-failing patients, and tropism was established using predictive algorithms. All patients harbored HIV-1 subtype C with at least one antiretroviral drug resistance mutation. Viral tropism prediction in individuals failing HAART revealed similar proportions (29%) of X4-utilizing viruses compared to antiretroviral drug-naive patients (30%). Findings are in contrast to reports from Durban in which 60% of HAART-failing subjects harbored X4/dual/mixed-tropic viruses. Despite differences in proportions of X4-tropism within South Africa, the high proportion of thymidine analogue mutations (TAMs) and CXCR4-utilizing HIV-1 highlights the need for intensified monitoring of HAART patients and the predicament of diminishing drug options, including CCR5 antagonists, for patients failing therapy.
Collapse
Affiliation(s)
- Irene Ketseoglou
- 1 Faculty of Health Sciences, University of the Witwatersrand Medical School , Johannesburg, South Africa
| | | | | | | | | | | |
Collapse
|
18
|
Aiamkitsumrit B, Dampier W, Antell G, Rivera N, Martin-Garcia J, Pirrone V, Nonnemacher MR, Wigdahl B. Bioinformatic analysis of HIV-1 entry and pathogenesis. Curr HIV Res 2014; 12:132-61. [PMID: 24862329 PMCID: PMC4382797 DOI: 10.2174/1570162x12666140526121746] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 03/18/2014] [Accepted: 05/06/2014] [Indexed: 02/07/2023]
Abstract
The evolution of human immunodeficiency virus type 1 (HIV-1) with respect to co-receptor utilization has been shown to be relevant to HIV-1 pathogenesis and disease. The CCR5-utilizing (R5) virus has been shown to be important in the very early stages of transmission and highly prevalent during asymptomatic infection and chronic disease. In addition, the R5 virus has been proposed to be involved in neuroinvasion and central nervous system (CNS) disease. In contrast, the CXCR4-utilizing (X4) virus is more prevalent during the course of disease progression and concurrent with the loss of CD4(+) T cells. The dual-tropic virus is able to utilize both co-receptors (CXCR4 and CCR5) and has been thought to represent an intermediate transitional virus that possesses properties of both X4 and R5 viruses that can be encountered at many stages of disease. The use of computational tools and bioinformatic approaches in the prediction of HIV-1 co-receptor usage has been growing in importance with respect to understanding HIV-1 pathogenesis and disease, developing diagnostic tools, and improving the efficacy of therapeutic strategies focused on blocking viral entry. Current strategies have enhanced the sensitivity, specificity, and reproducibility relative to the prediction of co-receptor use; however, these technologies need to be improved with respect to their efficient and accurate use across the HIV-1 subtypes. The most effective approach may center on the combined use of different algorithms involving sequences within and outside of the env-V3 loop. This review focuses on the HIV-1 entry process and on co-receptor utilization, including bioinformatic tools utilized in the prediction of co-receptor usage. It also provides novel preliminary analyses for enabling identification of linkages between amino acids in V3 with other components of the HIV-1 genome and demonstrates that these linkages are different between X4 and R5 viruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA 19102.
| |
Collapse
|
19
|
Dahiya S, Irish BP, Nonnemacher MR, Wigdahl B. Genetic variation and HIV-associated neurologic disease. Adv Virus Res 2013; 87:183-240. [PMID: 23809924 DOI: 10.1016/b978-0-12-407698-3.00006-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
HIV-associated neurologic disease continues to be a significant complication in the era of highly active antiretroviral therapy. A substantial subset of the HIV-infected population shows impaired neuropsychological performance as a result of HIV-mediated neuroinflammation and eventual central nervous system (CNS) injury. CNS compartmentalization of HIV, coupled with the evolution of genetically isolated populations in the CNS, is responsible for poor prognosis in patients with AIDS, warranting further investigation and possible additions to the current therapeutic strategy. This chapter reviews key advances in the field of neuropathogenesis and studies that have highlighted how molecular diversity within the HIV genome may impact HIV-associated neurologic disease. We also discuss the possible functional implications of genetic variation within the viral promoter and possibly other regions of the viral genome, especially in the cells of monocyte-macrophage lineage, which are arguably key cellular players in HIV-associated CNS disease.
Collapse
Affiliation(s)
- Satinder Dahiya
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Bryan P Irish
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Cashin K, Jakobsen MR, Sterjovski J, Roche M, Ellett A, Flynn JK, Borm K, Gouillou M, Churchill MJ, Gorry PR. Linkages between HIV-1 specificity for CCR5 or CXCR4 and in vitro usage of alternative coreceptors during progressive HIV-1 subtype C infection. Retrovirology 2013; 10:98. [PMID: 24041034 PMCID: PMC3849974 DOI: 10.1186/1742-4690-10-98] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/11/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1) subtype C (C-HIV) is spreading rapidly and is now responsible for >50% of HIV-1 infections worldwide, and >95% of infections in southern Africa and central Asia. These regions are burdened with the overwhelming majority of HIV-1 infections, yet we know very little about the pathogenesis of C-HIV. In addition to CCR5 and CXCR4, the HIV-1 envelope glycoproteins (Env) may engage a variety of alternative coreceptors for entry into transfected cells. Whilst alternative coreceptors do not appear to have a broad role in mediating the entry of HIV-1 into primary cells, characterizing patterns of alternative coreceptor usage in vitro can provide valuable insights into mechanisms of Env-coreceptor engagement that may be important for HIV-1 pathogenesis. RESULTS Here, we characterized the ability of luciferase reporter viruses pseudotyped with HIV-1 Envs (n = 300) cloned sequentially from plasma of 21 antiretroviral therapy (ART)-naïve subjects experiencing progression from chronic to advanced C-HIV infection over an approximately 3-year period, who either exclusively maintained CCR5-using (R5) variants (n = 20 subjects) or who experienced a coreceptor switch to CXCR4-using (X4) variants (n = 1 subject), to utilize alternative coreceptors for entry. At a population level, CCR5 usage by R5 C-HIV Envs was strongly linked to usage of FPRL1, CCR3 and CCR8 as alternative coreceptors, with the linkages to FPRL1 and CCR3 usage becoming statistically more robust as infection progressed from chronic to advanced stages of disease. In contrast, acquisition of an X4 Env phenotype at advanced infection was accompanied by a dramatic loss of FPRL1 usage. Env mutagenesis studies confirmed a direct link between CCR5 and FPRL1 usage, and showed that the V3 loop crown, but not other V3 determinants of CCR5-specificity, was the principal Env determinant governing the ability of R5 C-HIV Envs from one particular subject to engage FPRL1. CONCLUSIONS Our results suggest that, in the absence of coreceptor switching, the ability of R5 C-HIV viruses to engage certain alternative coreceptors in vitro, in particular FPRL1, may reflect an altered use of CCR5 that is selected for during progressive C-HIV infection, and which may contribute to C-HIV pathogenicity.
Collapse
Affiliation(s)
- Kieran Cashin
- Center for Biomedical Research, Burnet Institute, 85 Commercial Rd, Melbourne, Victoria 3004, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Evaluating immunologic response and clinical deterioration in treatment-naive patients initiating first-line therapies infected with HIV-1 CRF01_AE and subtype B. J Acquir Immune Defic Syndr 2013; 62:293-300. [PMID: 23138836 DOI: 10.1097/qai.0b013e31827a2e8f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND HIV-1 group M viruses diverge 25%-35% in envelope, important for viral attachment during infection, and 10%-15% in the pol region, under selection pressure from common antiretrovirals. In Asia, subtypes B and CRF01_AE are common genotypes. Our objectives were to determine whether clinical, immunological, or virological treatment responses differed by genotype in treatment-naive patients initiating first-line therapy. METHODS Prospectively collected longitudinal data from patients in Thailand, Hong Kong, Malaysia, Japan, Taiwan, and South Korea were provided for analysis. Covariates included demographics, hepatitis B and C coinfections, baseline CD4 T lymphocyte count, and plasma HIV-1 RNA levels. Clinical deterioration (a new diagnosis of Centers for Disease Control and Prevention category B/AIDS-defining illness or death) was assessed by proportional hazards models. Surrogate endpoints were 12-month change in CD4 cell count and virologic suppression post therapy, evaluated by linear and logistic regression, respectively. RESULTS Of 1105 patients, 1036 (93.8%) infected with CRF01_AE or subtype B were eligible for inclusion in clinical deterioration analyses and contributed 1546.7 person-years of follow-up (median: 413 days, interquartile range: 169-672 days). Patients >40 years demonstrated smaller immunological increases (P = 0.002) and higher risk of clinical deterioration (hazard ratio = 2.17; P = 0.008). Patients with baseline CD4 cell counts >200 cells per microliter had lower risk of clinical deterioration (hazard ratio = 0.373; P = 0.003). A total of 532 patients (48.1% of eligible) had CD4 counts available at baseline and 12 months post therapy for inclusion in immunolgic analyses. Patients infected with subtype B had larger increases in CD4 counts at 12 months (P = 0.024). A total of 530 patients (48.0% of eligible) were included in virological analyses with no differences in response found between genotypes. CONCLUSIONS Results suggest that patients infected with CRF01_AE have reduced immunologic response to therapy at 12 months, compared with subtype B-infected counterparts. Clinical deterioration was associated with low baseline CD4 counts and older age. The lack of differences in virologic outcomes suggests that all patients have opportunities for virological suppression.
Collapse
|
22
|
Pérez-Álvarez L, Delgado E, Vega Y, Montero V, Cuevas T, Fernández-García A, García-Riart B, Pérez-Castro S, Rodríguez-Real R, López-Álvarez MJ, Fernández-Rodríguez R, Lezaun MJ, Ordóñez P, Ramos C, Bereciartua E, Calleja S, Sánchez-García AM, Thomson MM. Predominance of CXCR4 tropism in HIV-1 CRF14_BG strains from newly diagnosed infections. J Antimicrob Chemother 2013; 69:246-53. [PMID: 23900735 DOI: 10.1093/jac/dkt305] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES R5-tropic viruses are associated with HIV-1 transmission and predominate during the early stages of infection. X4-tropic populations have been detected in ~50% of patients with late-stage disease infected with subtype B viruses. In this study, we compared the frequency of X4 tropism in individuals infected with HIV-1 CRF14_BG viruses, which have a V3 loop of subtype B, with a control group of individuals infected with subtype B viruses. METHODS Sixty-three individuals infected with HIV-1 CRF14_BG (n = 31) or subtype B (n = 32) were studied. Similar proportions of newly diagnosed and chronically infected individuals were included in the subtype B and CRF14_BG groups. V3 sequences were obtained and coreceptor tropism was predicted using the Geno2pheno[coreceptor] algorithm. V3 net charge and 11/25 rules were also used for coreceptor prediction. RESULTS Overall, X4 tropism was more frequent among individuals infected with CRF14_BG viruses (87.1%) than subtype B viruses (34.3%), a difference that was statistically highly significant (P = 0.00001). Importantly, the frequencies among newly diagnosed individuals were 90% and 13.3%, respectively (P = 0.0007). Characteristic amino acids in the V3 loop (T13, M14, V19 and W20) were identified at higher frequencies in CRF14_BG viruses (54%) than subtype B viruses (0%; P < 0.000001). CONCLUSIONS CRF14_BG is the genetic form with the highest proportion of X4-tropic viruses reported to date in newly diagnosed and chronic infections. This suggests high pathogenicity for CRF14_BG viruses, potentially leading to rapid disease progression. CCR5 antagonists will be ineffective in most CRF14_BG-infected patients, even at early stages of infection.
Collapse
Affiliation(s)
- Lucía Pérez-Álvarez
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Longitudinal Analysis of CCR5 and CXCR4 Usage in a Cohort of Antiretroviral Therapy-Naïve Subjects with Progressive HIV-1 Subtype C Infection. PLoS One 2013; 8:e65950. [PMID: 23824043 PMCID: PMC3688867 DOI: 10.1371/journal.pone.0065950] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/30/2013] [Indexed: 12/20/2022] Open
Abstract
HIV-1 subtype C (C-HIV) is responsible for most HIV-1 cases worldwide. Although the pathogenesis of C-HIV is thought to predominantly involve CCR5-restricted (R5) strains, we do not have a firm understanding of how frequently CXCR4-using (X4 and R5X4) variants emerge in subjects with progressive C-HIV infection. Nor do we completely understand the molecular determinants of coreceptor switching by C-HIV variants. Here, we characterized a panel of HIV-1 envelope glycoproteins (Envs) (n = 300) cloned sequentially from plasma of 21 antiretroviral therapy (ART)-naïve subjects who experienced progression from chronic to advanced stages of C-HIV infection, and show that CXCR4-using C-HIV variants emerged in only one individual. Mutagenesis studies and structural models suggest that the evolution of R5 to X4 variants in this subject principally involved acquisition of an “Ile-Gly” insertion in the gp120 V3 loop and replacement of the V3 “Gly-Pro-Gly” crown with a “Gly-Arg-Gly” motif, but that the accumulation of additional gp120 “scaffold” mutations was required for these V3 loop changes to confer functional effects. In this context, either of the V3 loop changes could confer possible transitional R5X4 phenotypes, but when present together they completely abolished CCR5 usage and conferred the X4 phenotype. Our results show that the emergence of CXCR4-using strains is rare in this cohort of untreated individuals with advanced C-HIV infection. In the subject where X4 variants did emerge, alterations in the gp120 V3 loop were necessary but not sufficient to confer CXCR4 usage.
Collapse
|
24
|
Bugatti A, Giagulli C, Urbinati C, Caccuri F, Chiodelli P, Oreste P, Fiorentini S, Orro A, Milanesi L, D'Ursi P, Caruso A, Rusnati M. Molecular interaction studies of HIV-1 matrix protein p17 and heparin: identification of the heparin-binding motif of p17 as a target for the development of multitarget antagonists. J Biol Chem 2012; 288:1150-61. [PMID: 23166320 DOI: 10.1074/jbc.m112.400077] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Once released by HIV(+) cells, p17 binds heparan sulfate proteoglycans (HSPGs) and CXCR1 on leukocytes causing their dysfunction. By exploiting an approach integrating computational modeling, site-directed mutagenesis of p17, chemical desulfation of heparin, and surface plasmon resonance, we characterized the interaction of p17 with heparin, a HSPG structural analog, and CXCR1. p17 binds to heparin with an affinity (K(d) = 190 nm) that is similar to those of other heparin-binding viral proteins. Two stretches of basic amino acids (basic motifs) are present in p17 N and C termini. Neutralization (Arg→Ala substitution) of the N-terminal, but not of the C-terminal basic motif, causes the loss of p17 heparin-binding capacity. The N-terminal heparin-binding motif of p17 partially overlaps the CXCR1-binding domain. Accordingly, its neutralization prevents also p17 binding to the chemochine receptor. Competition experiments demonstrated that free heparin and heparan sulfate (HS), but not selectively 2-O-, 6-O-, and N-O desulfated heparins, prevent p17 binding to substrate-immobilized heparin, indicating that the sulfate groups of the glycosaminoglycan mediate p17 interaction. Evaluation of the p17 antagonist activity of a panel of biotechnological heparins derived by chemical sulfation of the Escherichia coli K5 polysaccharide revealed that the highly N,O-sulfated derivative prevents the binding of p17 to both heparin and CXCR1, thus inhibiting p17-driven chemotactic migration of human monocytes with an efficiency that is higher than those of heparin and HS. Here, we characterized at a molecular level the interaction of p17 with its cellular receptors, laying the basis for the development of heparin-mimicking p17 antagonists.
Collapse
Affiliation(s)
- Antonella Bugatti
- Section of Experimental Oncology and Immunology, School of Medicine, University of Brescia, Brescia 25123, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lin NH, Becerril C, Giguel F, Novitsky V, Moyo S, Makhema J, Essex M, Lockman S, Kuritzkes DR, Sagar M. Env sequence determinants in CXCR4-using human immunodeficiency virus type-1 subtype C. Virology 2012; 433:296-307. [PMID: 22954962 DOI: 10.1016/j.virol.2012.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/12/2012] [Accepted: 08/01/2012] [Indexed: 02/09/2023]
Abstract
HIV-1 subtype C (HIV-1C) CXCR4-using virus is isolated infrequently and is poorly characterized. Understanding HIV-1C env characteristics has implications for the clinical use of antiretrovirals that target viral entry. A total of 209 env clones derived from 10 samples with mixed CCR5-(R5), CXCR4-using (X4) or dual-tropic HIV-1C were phenotyped for coreceptor usage. Intra-patient X4 and R5 variants generally formed distinct monophyletic phylogenetic clusters. X4 compared to R5 envs had significantly greater amino acid variability and insertions, higher net positive charge, fewer glycosylation sites and increased basic amino acid substitutions in the GPGQ crown. Basic amino acid substitution and/or insertion prior to the crown are highly sensitive characteristics for predicting X4 viruses. Chimeric env functional studies suggest that the V3 loop is necessary but often not sufficient to impart CXCR4 utilization. Our studies provide insights into the unique genotypic characteristics of X4 variants in HIV-1C.
Collapse
Affiliation(s)
- Nina H Lin
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Alcalde R, Guimarães ML, Duarte AJS, Casseb J. Clinical, epidemiological and molecular features of the HIV-1 subtype C and recombinant forms that are circulating in the city of São Paulo, Brazil. Virol J 2012; 9:156. [PMID: 22877156 PMCID: PMC3511064 DOI: 10.1186/1743-422x-9-156] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 07/11/2012] [Indexed: 12/04/2022] Open
Abstract
Background The city of Sao Paulo has the highest AIDS case rate, with nearly 60% in Brazil. Despite, several studies involving molecular epidemiology, lack of data regarding a large cohort study has not been published from this city. Objectives This study aimed to describe the HIV-1 subtypes, recombinant forms and drug resistance mutations, according to subtype, with emphasis on subtype C and BC recombinants in the city of São Paulo, Brazil. Study design RNA was extracted from the plasma samples of 302 HIV-1-seropositive subjects, of which 211 were drug-naive and 82 were exposed to ART. HIV-1 partial pol region sequences were used in phylogenetic analyses for subtyping and identification of drug resistance mutations. The envelope gene of subtype C and BC samples was also sequenced. Results From partial pol gene analyses, 239 samples (79.1%) were assigned as subtype B, 23 (7.6%) were F1, 16 (5.3%) were subtype C and 24 (8%) were mosaics (3 CRF28/CRF29-like). The subtype C and BC recombinants were mainly identified in drug-naïve patients (72.7%) and the heterosexual risk exposure category (86.3%), whereas for subtype B, these values were 69.9% and 57.3%, respectively (p = 0.97 and p = 0.015, respectively). An increasing trend of subtype C and BC recombinants was observed (p < 0.01). Conclusion The HIV-1 subtype C and CRFs seem to have emerged over the last few years in the city of São Paulo, principally among the heterosexual population. These findings may have an impact on preventive measures and vaccine development in Brazil.
Collapse
Affiliation(s)
- Rosana Alcalde
- Laboratory of Dermatology and Immunodeficiencies, Department of Dermatology, Medical School of São Paulo University, LIM56/FMUSP, São Paulo, SP, Brazil.
| | | | | | | |
Collapse
|
28
|
Wilen CB, Tilton JC, Doms RW. HIV: cell binding and entry. Cold Spring Harb Perspect Med 2012; 2:cshperspect.a006866. [PMID: 22908191 DOI: 10.1101/cshperspect.a006866] [Citation(s) in RCA: 406] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The first step of the human immunodeficiency virus (HIV) replication cycle-binding and entry into the host cell-plays a major role in determining viral tropism and the ability of HIV to degrade the human immune system. HIV uses a complex series of steps to deliver its genome into the host cell cytoplasm while simultaneously evading the host immune response. To infect cells, the HIV protein envelope (Env) binds to the primary cellular receptor CD4 and then to a cellular coreceptor. This sequential binding triggers fusion of the viral and host cell membranes, initiating infection. Revealing the mechanism of HIV entry has profound implications for viral tropism, transmission, pathogenesis, and therapeutic intervention. Here, we provide an overview into the mechanism of HIV entry, provide historical context to key discoveries, discuss recent advances, and speculate on future directions in the field.
Collapse
Affiliation(s)
- Craig B Wilen
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
29
|
Michaud V, Bar-Magen T, Turgeon J, Flockhart D, Desta Z, Wainberg MA. The dual role of pharmacogenetics in HIV treatment: mutations and polymorphisms regulating antiretroviral drug resistance and disposition. Pharmacol Rev 2012; 64:803-33. [PMID: 22759796 DOI: 10.1124/pr.111.005553] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Significant intra- and interindividual variability has been observed in response to use of pharmacological agents in treatment of HIV infection. Treatment of HIV infection is limited by high rates of adverse drug reactions and development of resistance in a significant proportion of patients as a result of suboptimal drug concentrations. The efficacy of antiretroviral therapy is challenged by the emergence of resistant HIV-1 mutants with reduced susceptibility to antiretroviral drugs. Moreover, pharmacotherapy of patients infected with HIV is challenging because a great number of comorbidities increase polypharmacy and the risk for drug-drug interactions. Drug-metabolizing enzymes and drug transporters regulate drug access to the systemic circulation, target cells, and sanctuary sites. These factors, which determine drug exposure, along with the emergence of mutations conferring resistance to HIV medications, could explain variability in efficacy and adverse drug reactions associated with antiretroviral drugs. In this review, the major factors affecting the disposition of antiretroviral drugs, including key drug-metabolizing enzymes and membrane drug transporters, are outlined. Genetic polymorphisms affecting the activity and/or the expression of cytochromes P450 or UGT isozymes and membrane drug transport proteins are highlighted and include such examples as the association of neurotoxicity with efavirenz, nephrotoxicity with tenofovir, hepatotoxicity with nevirapine, and hyperbilirubinemia with indinavir and atazanavir. Mechanisms of drug resistance conferred by specific viral mutations are also reviewed, with particular attention to replicative viral fitness and transmitted HIV drug resistance with the objectives of providing a better understanding of mechanisms involved in HIV drug resistance and helping health care providers to better manage interpatient variability in drug efficacy and toxicity.
Collapse
Affiliation(s)
- Veronique Michaud
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, 3755 Cote-Ste-Catherine Rd., Montréal, Québec, H3T 1E2, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
HIV type 1 (HIV-1) displays a greater degree of genetic and antigenic variability than any other virus studied. This diversity reflects a high mutation rate during viral replication with a large turnover of virus, and a high tolerance of variation while maintaining reproductive capacity. Generation of diversity is a common property of lentiviruses such as HIV. Differences in virulence and in transmissibility are seen between different HIV-1 strains which may have clinical implications. The great degree of HIV diversity presents challenges to maintaining sensitivity to antiretroviral therapy and to the development of preventive strategies such as microbicides and vaccines.
Collapse
|
31
|
Higher prevalence of predicted X4-tropic strains in perinatally infected older children with HIV-1 subtype C in India. J Acquir Immune Defic Syndr 2012; 59:347-53. [PMID: 22107818 DOI: 10.1097/qai.0b013e3182405c7b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Coreceptor switch from CCR5 to CXCR4 is considered to be less common in HIV-1 subtype C even in advanced stages of infection. In this study, we have examined viral genotypic coreceptor tropism and its clinical, virological, and host genetic determinants among perinatally infected children in India. METHODS Genotypic coreceptor tropism analysis was conducted on env V3 sequences using Geno2pheno with a threshold of 10% false-positive rate. A total of 473 sequences were obtained from 72 isolates amplified from children aged 2-17 years. Factors associated with viral tropism in subtype C infections were studied using logistic regression. RESULTS Among the samples, 98.6% (71 of 72) were HIV-1 subtype C. Coreceptor tropism analysis determined 81.7% (58 of 71) as R5 tropic, 9.9% (7 of 71) as X4 tropic, and 8.5% (6 of 71) as R5/X4 tropic or dual-tropic HIV-1 strains. Children with X4 or R5/X4 strains were more likely to be older than those with R5-tropic strains (P < 0.05), have lower CD4 counts (P < 0.05), and have viral populations with greater intrapopulation viral divergence (P < 0.01). Older age was a significant independent predictor for X4 or R5/X4 tropism in these children (P < 0.05). None were identified as being heterozygous or homozygous for the CCR5[INCREMENT]32 deletion. CONCLUSIONS The high prevalence of X4 and R5/X4 tropic strains among older perinatally infected children with HIV-1 subtype C in India indicate that this phenomenon is not uncommon as previously thought and suggest that coreceptor transition can occur with longer duration of infection and greater disease progression in this population of perinatally infected children living with HIV-1 subtype C.
Collapse
|
32
|
Ataher Q, Portsmouth S, Napolitano LA, Eng S, Greenacre A, Kambugu A, Wood R, Badal-Faesen S, Tressler R. The epidemiology and clinical correlates of HIV-1 co-receptor tropism in non-subtype B infections from India, Uganda and South Africa. J Int AIDS Soc 2012; 15:2. [PMID: 22281097 PMCID: PMC3298508 DOI: 10.1186/1758-2652-15-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 01/26/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The introduction of C-C chemokine receptor type-5 (CCR5) antagonists as antiretroviral therapy has led to the need to study HIV co-receptor tropism in different HIV-1 subtypes and geographical locations. This study was undertaken to evaluate HIV-1 co-receptor tropism in the developing world where non-B subtypes predominate, in order to assess the therapeutic and prophylactic potential of CCR5 antagonists in these regions. METHODS HIV-1-infected patients were recruited into this prospective, cross-sectional, epidemiologic study from HIV clinics in South Africa, Uganda and India. Patients were infected with subtypes C (South Africa, India) or A or D (Uganda). HIV-1 subtype and co-receptor tropism were determined and analyzed with disease characteristics, including viral load and CD4(+) and CD8(+) T cell counts. RESULTS CCR5-tropic (R5) HIV-1 was detected in 96% of treatment-naïve (TN) and treatment-experienced (TE) patients in India, 71% of TE South African patients, and 86% (subtype A/A1) and 71% (subtype D) of TN and TE Ugandan patients. Dual/mixed-tropic HIV-1 was found in 4% of Indian, 25% of South African and 13% (subtype A/A1) and 29% (subtype D) of Ugandan patients. Prior antiretroviral treatment was associated with decreased R5 tropism; however, this decrease was less in subtype C from India (TE: 94%, TN: 97%) than in subtypes A (TE: 59%; TN: 91%) and D (TE: 30%; TN: 79%). R5 virus infection in all three subtypes correlated with higher CD4(+) count. CONCLUSIONS R5 HIV-1 was predominant in TN individuals with HIV-1 subtypes C, A, and D and TE individuals with subtypes C and A. Higher CD4(+) count correlated with R5 prevalence, while treatment experience was associated with increased non-R5 infection in all subtypes.
Collapse
|
33
|
Sucupira MCA, Sanabani S, Cortes RM, Giret MTM, Tomiyama H, Sauer MM, Sabino EC, Janini LM, Kallas EG, Diaz RS. Faster HIV-1 disease progression among Brazilian individuals recently infected with CXCR4-utilizing strains. PLoS One 2012; 7:e30292. [PMID: 22291931 PMCID: PMC3266896 DOI: 10.1371/journal.pone.0030292] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 12/13/2011] [Indexed: 02/06/2023] Open
Abstract
Introduction Primary HIV infection is usually caused by R5 viruses, and there is an association between the emergence of CCXR4-utilizing strains and faster disease progression. We characterized HIV-1 from a cohort of recently infected individuals in Brazil, predicted the virus's co-receptor use based on the env genotype and attempted to correlate virus profiles with disease progression. Methods A total of 72 recently infected HIV patients were recruited based on the Serologic Testing Algorithm for Recent HIV Seroconversion and were followed every three to four months for up to 78 weeks. The HIV-1 V3 region was characterized by sequencing nine to twelve weeks after enrollment. Disease progression was characterized by CD4+ T-cell count decline to levels consistently below 350 cells/µL. Results Twelve out of 72 individuals (17%) were predicted to harbor CXCR4-utilizing strains; a baseline CD4<350 was more frequent among these individuals (p = 0.03). Fifty-seven individuals that were predicted to have CCR5-utilizing viruses and 10 individuals having CXCR4-utilizing strains presented with baseline CD4>350; after 78 weeks, 33 individuals with CCR5 strains and one individual with CXCR4 strains had CD4>350 (p = 0.001). There was no association between CD4 decline and demographic characteristics or HIV-1 subtype. Conclusions Our findings confirm the presence of strains with higher in vitro pathogenicity during early HIV infection, suggesting that even among recently infected individuals, rapid progression may be a consequence of the early emergence of CXCR4-utilizing strains. Characterizing the HIV-1 V3 region by sequencing may be useful in predicting disease progression and guiding treatment initiation decisions.
Collapse
Affiliation(s)
| | - Sabri Sanabani
- Sao Paulo Blood Bank, Fundacao Pro-Sangue, Sao Paulo, Brazil
| | - Rodrigo M. Cortes
- Infectious Diseases Division, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Teresa M. Giret
- Division of Clinical Immunology and Allergy, University of Sao Paulo, Sao Paulo, Brazil
| | - Helena Tomiyama
- Infectious Diseases Division, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Mariana M. Sauer
- Infectious Diseases Division, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | - Luiz Mario Janini
- Microbiology Division, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Esper Georges Kallas
- Division of Clinical Immunology and Allergy, University of Sao Paulo, Sao Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Infectious Diseases Division, Federal University of Sao Paulo, Sao Paulo, Brazil
- * E-mail:
| |
Collapse
|
34
|
Chalmet K, Dauwe K, Foquet L, Baatz F, Seguin-Devaux C, Van Der Gucht B, Vogelaers D, Vandekerckhove L, Plum J, Verhofstede C. Presence of CXCR4-Using HIV-1 in Patients With Recently Diagnosed Infection: Correlates and Evidence for Transmission. J Infect Dis 2011; 205:174-84. [DOI: 10.1093/infdis/jir714] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
35
|
Hu L, Song W, Brill I, Mulenga J, Allen S, Hunter E, Shrestha S, Tang J, Kaslow RA. Genetic variations and heterosexual HIV-1 infection: analysis of clustered genes encoding CC-motif chemokine ligands. Genes Immun 2011; 13:202-5. [PMID: 21975429 DOI: 10.1038/gene.2011.70] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Several CC-motif chemokine ligands (CCLs) can block HIV-1-binding sites on CC-motif chemokine receptor 5 (CCR5) and inhibit viral entry. We studied single-nucleotide polymorphisms (SNPs) in genes encoding three CCR5 ligands (CCL3 (MIP-1a), CCL4 (MIP-1b)and CCL5 (RANTES)) along with an adjacent gene encoding a CCR2ligand (CCL2 (MCP-1)) to identify candidate markers for HIV-1 infection and pathogenesis. Analyses of 567 HIV-1 serodiscordant Zambian couples revealed that rs5029410C (in CCL3 intron 2) was associated with lower viral load (VL) in seroconverters, adjusted for gender and age (regression β=-0.57 log(10), P=4x10(-6)). Inaddition, rs34171309A in CCL3 exon 3 was associated with increased risk of HIV-1 acquisition in exposed seronegatives(hazard ratio=1.52, P=0.006 when adjusted for VL of the initially seropositive partner and genital ulcer/inflammation). SNPrs34171309 encodes a conservative Glu-to-Asp substitution. Fiven eighboring SNPs in tight linkage disequilibrium with rs34171309all showed similar associations with HIV-1 acquisition. How these multiple CCL3 SNPs may alter the occurrence or course of HIV-1 infection remains to be determined [corrected].
Collapse
Affiliation(s)
- L Hu
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294-0022, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Prevalence and clinical associations of CXCR4-using HIV-1 among treatment-naive subtype C-infected women in Botswana. J Acquir Immune Defic Syndr 2011; 57:46-50. [PMID: 21346588 DOI: 10.1097/qai.0b013e318214fe27] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HIV-1 coreceptor use was determined using a phenotypic assay in plasma samples from treatment-naive women infected with subtype C virus who had CD4 cell counts below 200 cells/mm3. Of 148 women, 14.9% were infected with dual/mixed virus; the remainder had R5 virus. A greater proportion of women in the lowest CD4 cell count stratum had dual/mixed virus (P = 0.026); change in coreceptor use after antiretroviral therapy exposure was uncommon. CXCR4-using HIV-1 was less common in subtype C-infected women than reported in subtype B cohorts but was most prevalent in women with the lowest CD4 cell counts.
Collapse
|
37
|
Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, Kumarasamy N, Hakim JG, Kumwenda J, Grinsztejn B, Pilotto JHS, Godbole SV, Mehendale S, Chariyalertsak S, Santos BR, Mayer KH, Hoffman IF, Eshleman SH, Piwowar-Manning E, Wang L, Makhema J, Mills LA, de Bruyn G, Sanne I, Eron J, Gallant J, Havlir D, Swindells S, Ribaudo H, Elharrar V, Burns D, Taha TE, Nielsen-Saines K, Celentano D, Essex M, Fleming TR. Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med 2011; 365:493-505. [PMID: 21767103 PMCID: PMC3200068 DOI: 10.1056/nejmoa1105243] [Citation(s) in RCA: 5355] [Impact Index Per Article: 382.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Antiretroviral therapy that reduces viral replication could limit the transmission of human immunodeficiency virus type 1 (HIV-1) in serodiscordant couples. METHODS In nine countries, we enrolled 1763 couples in which one partner was HIV-1-positive and the other was HIV-1-negative; 54% of the subjects were from Africa, and 50% of infected partners were men. HIV-1-infected subjects with CD4 counts between 350 and 550 cells per cubic millimeter were randomly assigned in a 1:1 ratio to receive antiretroviral therapy either immediately (early therapy) or after a decline in the CD4 count or the onset of HIV-1-related symptoms (delayed therapy). The primary prevention end point was linked HIV-1 transmission in HIV-1-negative partners. The primary clinical end point was the earliest occurrence of pulmonary tuberculosis, severe bacterial infection, a World Health Organization stage 4 event, or death. RESULTS As of February 21, 2011, a total of 39 HIV-1 transmissions were observed (incidence rate, 1.2 per 100 person-years; 95% confidence interval [CI], 0.9 to 1.7); of these, 28 were virologically linked to the infected partner (incidence rate, 0.9 per 100 person-years, 95% CI, 0.6 to 1.3). Of the 28 linked transmissions, only 1 occurred in the early-therapy group (hazard ratio, 0.04; 95% CI, 0.01 to 0.27; P<0.001). Subjects receiving early therapy had fewer treatment end points (hazard ratio, 0.59; 95% CI, 0.40 to 0.88; P=0.01). CONCLUSIONS The early initiation of antiretroviral therapy reduced rates of sexual transmission of HIV-1 and clinical events, indicating both personal and public health benefits from such therapy. (Funded by the National Institute of Allergy and Infectious Diseases and others; HPTN 052 ClinicalTrials.gov number, NCT00074581.).
Collapse
Affiliation(s)
- Myron S Cohen
- University of North Carolina at Chapel Hill, Institute for Global Health and Infectious Diseases, Suite 2115, Bioinformatics Bldg., 130 Mason Farm Rd., CB 7030, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Smith K, Powers KA, Kashuba AD, Cohen MS. HIV-1 treatment as prevention: the good, the bad, and the challenges. Curr Opin HIV AIDS 2011; 6:315-25. [PMID: 21646878 PMCID: PMC3666589 DOI: 10.1097/coh.0b013e32834788e7] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW This work focuses on the use of antiretroviral agents to prevent the sexual transmission of HIV-1. RECENT FINDINGS Two randomized clinical trials demonstrated that antiretroviral agents provided before exposure to HIV-1 offer substantial protection, ostensibly directly proportional to the concentration of antiretroviral therapy (ART) in the genital secretions. Intense focus on the use of HIV treatment as prevention has led to publication of modeling exercises, ecological studies, and observational studies, most of which support the potential benefits of ART. However, the logistical requirements for successful use of ART for prevention are considerable. SUMMARY ART will serve as a cornerstone of combination prevention of HIV-1. Continued research will be essential to measure anticipated benefits and to detect implementation barriers and untoward consequences of such a program, especially increases in primary ART resistance.
Collapse
Affiliation(s)
- Kumi Smith
- Department of Epidemiology, University of North Carolina
| | - Kimberly A. Powers
- Department of Epidemiology, University of North Carolina
- Department of Medicine, University of North Carolina
| | - Angela D.M. Kashuba
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Myron S. Cohen
- Department of Epidemiology, University of North Carolina
- Department of Medicine, University of North Carolina
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
40
|
Association of chemokine receptor gene (CCR2-CCR5) haplotypes with acquisition and control of HIV-1 infection in Zambians. Retrovirology 2011; 8:22. [PMID: 21429204 PMCID: PMC3075214 DOI: 10.1186/1742-4690-8-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 03/23/2011] [Indexed: 11/10/2022] Open
Abstract
Background Polymorphisms in chemokine (C-C motif) receptors 2 and 5 genes (CCR2 and CCR5) have been associated with HIV-1 infection and disease progression. We investigated the impact of CCR2-CCR5 haplotypes on HIV-1 viral load (VL) and heterosexual transmission in an African cohort. Between 1995 and 2006, cohabiting Zambian couples discordant for HIV-1 (index seropositive and HIV-1 exposed seronegative {HESN}) were monitored prospectively to determine the role of host genetic factors in HIV-1 control and heterosexual transmission. Genotyping for eight CCR2 and CCR5 variants resolved nine previously recognized haplotypes. By regression and survival analytic techniques, controlling for non-genetic factors, we estimated the effects of these haplotypic variants on a) index partner VL, b) seroconverter VL, c) HIV-1 transmission by index partners, d) HIV-1 acquisition by HESN partners. Results Among 567 couples, 240 virologically linked transmission events had occurred through 2006. HHF*2 homozygosity was associated with significantly lower VL in seroconverters (mean beta = -0.58, log10 P = 0.027) and the HHD/HHE diplotype was associated with significantly higher VL in the seroconverters (mean beta = 0.54, log10 P = 0.014) adjusted for age and gender in multivariable model. HHD/HHE was associated with more rapid acquisition of infection by the HESNs (HR = 2.0, 95% CI = 1.20-3.43, P = 0.008), after adjustments for index partner VL and the presence of genital ulcer or inflammation in either partner in Cox multivariable models. The HHD/HHE effect was stronger in exposed females (HR = 2.1, 95% CI = 1.14-3.95, P = 0.018). Conclusions Among Zambian discordant couples, HIV-1 coreceptor gene haplotypes and diplotypes appear to modulate HIV-1 VL in seroconverters and alter the rate of HIV-1 acquisition by HESNs. These associations replicate or resemble findings reported in other African and European populations.
Collapse
|
41
|
Abstract
The identification of phenotypically distinct HIV-1 variants with different prevalence during the progression of the disease has been one of the earliest discoveries in HIV-1 biology, but its relevance to AIDS pathogenesis remains only partially understood. The physiological basis for the phenotypic variability of HIV-1 was elucidated with the discovery of distinct coreceptors employed by the virus to infect susceptible cells. The role of the viral phenotype in the variable clinical course and treatment outcome of HIV-1 infection has been extensively investigated over the past two decades. In this review, we summarize the major findings on the clinical significance of the HIV-1 coreceptor usage.
Collapse
Affiliation(s)
- Hanneke Schuitemaker
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infection and Immunity Amsterdam (CINIMA) at the Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| | | | | |
Collapse
|
42
|
Abstract
DESIGN the origin and evolution of HIV-1 in breast milk is unclear, despite the continuing significance of this tissue as a transmitting compartment. To elucidate the evolutionary trajectory of viral populations in a transient mucosal compartment, longitudinal sequences of the envelope glycoprotein (gp120) region from plasma and breast milk spanning the first year after delivery were analyzed in six women infected by HIV-1 subtype C. METHODS multiple phylogenetic algorithms were used to elucidate the evolutionary history and spatial structure of virus populations between tissues. RESULTS overall persistent mixing of viral sequences between plasma and breast milk indicated that breast milk is not a distinct genetic viral compartment. Unexpectedly, longitudinal phylogenies showed multiple lineages defined by long branches that included virus from both the breast milk and the plasma. Plasma was unlikely the anatomical origin of the most recent common ancestor (MRCA) in at least three of the patients, although in other women, the temporal origin of the MRCA of the viral populations following delivery occurred well before the onset of breast milk production. CONCLUSIONS these findings suggest that during pregnancy/lactation, a viral variant distinct from the plasma virus initially seeds the breast milk, followed by subsequent gene flow between the plasma and breast milk tissues. This study indicates the potential for reactivation or reintroduction of distinct lineages during major immunological disruptions during the course of natural infection.
Collapse
|
43
|
Coetzer M, Nedellec R, Cilliers T, Meyers T, Morris L, Mosier DE. Extreme genetic divergence is required for coreceptor switching in HIV-1 subtype C. J Acquir Immune Defic Syndr 2011; 56:9-15. [PMID: 20921899 PMCID: PMC3006070 DOI: 10.1097/qai.0b013e3181f63906] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Coreceptor switching from CCR5 to CXCR4 is less common in subtype C HIV-1 infection than in subtype B for reasons that are unclear. We have examined sequential virus samples from a subtype C-infected child who had evidence of coreceptor switching. METHODS To examine HIV-1 envelope evolution towards CXCR4 usage, env sequences were correlated with phenotypic characteristics determined by entry assays, as well as the ability to use alternative coreceptors such as FPRL1, CCR3, CCR8 and others. The value of a phenotype predictor based on V3 sequences was also assessed. RESULTS Ninety-three sequences revealed 3 distinct coexistent virus lineages and only some members of one lineage evolved to use CXCR4. These lineages also had diverse alternative coreceptor patterns including the ability to use FPRL1, CCR3, CCR8, APJ, CMKLR1, RDC-1, CXCR6, CCR1, GPCR1, GPR15 and CCR6. Coreceptor switching was associated with extensive and rapid sequence divergence in the V1/V2 region in addition to V3 changes. Furthermore, interlineage recombination within the C2 region resulted in low predictability of a V3 sequence-based phenotype algorithm, and highlighted the importance of V1/V2 and V3 sequences in coreceptor usage. CONCLUSION These results suggest that the evolution to coreceptor switching in subtype C infection requires more mutations than other subtypes, and this contributes to the reduced incidence of R5X4 viruses.
Collapse
MESH Headings
- Child
- Cloning, Molecular
- HIV Infections/immunology
- HIV Infections/virology
- HIV-1/genetics
- HIV-1/immunology
- Humans
- Molecular Sequence Data
- Phenotype
- Phylogeny
- Receptors, CCR5/genetics
- Receptors, CCR5/immunology
- Receptors, CXCR4/genetics
- Receptors, CXCR4/immunology
- Receptors, Formyl Peptide/genetics
- Receptors, Formyl Peptide/immunology
- Receptors, Lipoxin/genetics
- Receptors, Lipoxin/immunology
- Recombination, Genetic/genetics
- env Gene Products, Human Immunodeficiency Virus/genetics
Collapse
Affiliation(s)
- Mia Coetzer
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Archary D, Gordon ML, Green TN, Coovadia HM, Goulder PJR, Ndung'u T. HIV-1 subtype C envelope characteristics associated with divergent rates of chronic disease progression. Retrovirology 2010; 7:92. [PMID: 21050445 PMCID: PMC2992043 DOI: 10.1186/1742-4690-7-92] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 11/04/2010] [Indexed: 11/10/2022] Open
Abstract
Background HIV-1 envelope diversity remains a significant challenge for the development of an efficacious vaccine. The evolutionary forces that shape the diversity of envelope are incompletely understood. HIV-1 subtype C envelope in particular shows significant differences and unique characteristics compared to its subtype B counterpart. Here we applied the single genome sequencing strategy of plasma derived virus from a cohort of therapy naïve chronically infected individuals in order to study diversity, divergence patterns and envelope characteristics across the entire HIV-1 subtype C gp160 in 4 slow progressors and 4 progressors over an average of 19.5 months. Results Sequence analysis indicated that intra-patient nucleotide diversity within the entire envelope was higher in slow progressors, but did not reach statistical significance (p = 0.07). However, intra-patient nucleotide diversity was significantly higher in slow progressors compared to progressors in the C2 (p = 0.0006), V3 (p = 0.01) and C3 (p = 0.005) regions. Increased amino acid length and fewer potential N-linked glycosylation sites (PNGs) were observed in the V1-V4 in slow progressors compared to progressors (p = 0.009 and p = 0.02 respectively). Similarly, gp41 in the progressors was significantly longer and had fewer PNGs compared to slow progressors (p = 0.02 and p = 0.02 respectively). Positive selection hotspots mapped mainly to V1, C3, V4, C4 and gp41 in slow progressors, whereas hotspots mapped mainly to gp41 in progressors. Signature consensus sequence differences between the groups occurred mainly in gp41. Conclusions These data suggest that separate regions of envelope are under differential selective forces, and that envelope evolution differs based on disease course. Differences between slow progressors and progressors may reflect differences in immunological pressure and immune evasion mechanisms. These data also indicate that the pattern of envelope evolution is an important correlate of disease progression in chronic HIV-1 subtype C infection.
Collapse
Affiliation(s)
- Derseree Archary
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R, Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | | | | | | | | | | |
Collapse
|
45
|
de Silva TI, Turner R, Hué S, Trikha R, van Tienen C, Onyango C, Jaye A, Foley B, Whittle H, Rowland-Jones SL, Cotten M. HIV-1 subtype distribution in the Gambia and the significant presence of CRF49_cpx, a novel circulating recombinant form. Retrovirology 2010; 7:82. [PMID: 20932333 PMCID: PMC2964586 DOI: 10.1186/1742-4690-7-82] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 10/09/2010] [Indexed: 12/18/2022] Open
Abstract
Background Detailed local HIV-1 sequence data are essential for monitoring the HIV epidemic, for maintaining sensitive sequence-based diagnostics, and to aid in designing vaccines. Results Reported here are full envelope sequences derived from 38 randomly selected HIV-1 infections identified at a Gambian clinic between 1991 and 2009. Special care was taken to generate sequences from circulating viral RNA as uncloned products, either by limiting dilution or single genome amplification polymerase chain reaction (PCR). Within these 38 isolates, eight were subtyped as A and 18 as CRF02_AG. A small number of subtype B, C, D viruses were identified. Surprising, however, was the identification of six isolates with subtype J-like envelopes, a subtype found normally in Central Africa and the Democratic Republic of the Congo (DRC), with gag p24 regions that clustered with subtype A sequences. Near full-length sequence from three of these isolates confirmed that these represent a novel circulating recombinant form of HIV-1, now named CRF49_cpx. Conclusions This study expands the HIV-1 sequence database from the Gambia and will provide important data for HIV diagnostics, patient care, and vaccine development.
Collapse
Affiliation(s)
- Thushan I de Silva
- Medical Research Council (UK) Laboratories, Atlantic Road, Fajara, The Gambia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Liu Y, Nonnemacher MR, Stauff DL, Li L, Banerjee A, Irish B, Kilareski E, Rajagopalan N, Suchitra JB, Khan ZK, Ranga U, Wigdahl B. Structural and functional studies of CCAAT/enhancer binding sites within the human immunodeficiency virus type 1 subtype C LTR. Biomed Pharmacother 2010; 64:672-80. [PMID: 20970301 DOI: 10.1016/j.biopha.2010.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 09/05/2010] [Indexed: 11/17/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) subtype C, which is most predominant in sub-Saharan Africa as well as in Asia and India, is the most prevalent subtype worldwide. A large number of transcription factor families have been shown to be involved in regulating HIV-1 gene expression in T lymphocytes and cells of the monocyte-macrophage lineage. Among these, proteins of the CCAAT/enhancer binding protein (C/EBP) family are of particular importance in regulating HIV-1 gene expression within cells of the monocytic lineage during the course of hematologic development and cellular activation. Few studies have examined the role of C/EBPs in long terminal repeat (LTR)-directed viral gene expression of HIV-1 subtypes other than subtype B. Within subtype B viruses, two functional C/EBP sites located upstream of the TATA box are required for efficient viral replication in cells of the monocyte-macrophage lineage. We report the identification of three putative subtype C C/EBP sites, upstream site 1 and 2 (C-US1 and C-US2) and downstream site 1 (C-DS1). C-US1 and C-DS1 were shown to form specific DNA-protein complexes with members of the C/EBP family (C/EBPα, β, and δ). Functionally, within the U-937 monocytic cell line, subtype B and C LTRs were shown to be equally responsive to C/EBPβ-2, although the basal activity of subtype C LTRs appeared to be higher. Furthermore, the synergistic interaction between C/EBPβ-2 and Tat with the subtype C LTR was also observed in U-937 cells as previously demonstrated with the subtype B LTR.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Butler DM, Delport W, Kosakovsky Pond SL, Lakdawala MK, Cheng PM, Little SJ, Richman DD, Smith DM. The origins of sexually transmitted HIV among men who have sex with men. Sci Transl Med 2010; 2:18re1. [PMID: 20371483 DOI: 10.1126/scitranslmed.3000447] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Although it is known that most HIV-1 infections worldwide result from exposure to virus in semen, it has not yet been established whether transmitted strains originate as RNA virions in seminal plasma or as integrated proviral DNA in infected seminal leukocytes. We present phylogenetic evidence that among six transmitting pairs of men who have sex with men, blood plasma virus in the recipient is consistently more closely related to the seminal plasma virus in the source. All sequences were subtype B, and the env C2V3 of transmitted variants tended to have higher mean isoelectric points, contain potential N-linked glycosylation sites, and favor CCR5 co-receptor usage. A statistically robust phylogenetically corrected analysis did not detect genetic signatures reliably associated with transmission, but further investigation of larger samples of transmitting pairs holds promise for determining which structural and genetic features of viral genomes are associated with transmission.
Collapse
Affiliation(s)
- David M Butler
- University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhang H, Tully DC, Zhang T, Moriyama H, Thompson J, Wood C. Molecular determinants of HIV-1 subtype C coreceptor transition from R5 to R5X4. Virology 2010; 407:68-79. [PMID: 20797755 DOI: 10.1016/j.virol.2010.07.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/01/2010] [Accepted: 07/28/2010] [Indexed: 11/18/2022]
Abstract
The molecular mechanism(s) underlying transition from CCR5 to CXCR4 usage of subtype C viruses remain largely unknown. We previously identified a subtype C HIV-1 infected child whose virus demonstrated CXCR4 usage along with CCR5 upon longitudinal follow-up. Here we delineated the molecular determinants of Env involved in expanded coreceptor usage. Residue changes in three positions of Env V3 domain are critical for the dual tropic phenotype. These include: substitution of arginine at position 11, MG or LG insertion between positions 13 and 14, and substitution of threonine at the position immediately downstream of the GPGQ crown. Introducing these mutations into V3 region of a heterologous R5 virus also conferred dual tropism. Molecular modeling of V3 revealed a possible structural basis for the dual tropic phenotype. Determining what defines a subtype C X4 virus will lead to a better understanding of subtype C HIV-1 pathogenesis, and will provide important information relevant to anti-retroviral therapy.
Collapse
Affiliation(s)
- Hong Zhang
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, USA
| | | | | | | | | | | |
Collapse
|
49
|
Bugatti A, Chiodelli P, Rosenbluh J, Loyter A, Rusnati M. BSA conjugates bearing multiple copies of the basic domain of HIV-1 Tat: Prototype for the development of multitarget inhibitors of extracellular Tat. Antiviral Res 2010; 87:30-9. [PMID: 20398703 DOI: 10.1016/j.antiviral.2010.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 03/02/2010] [Accepted: 04/06/2010] [Indexed: 11/19/2022]
Abstract
The transactivating factor (Tat) of HIV-1 is involved in AIDS progression and associated pathologies. Tat possesses a basic amino acid sequence implicated in heparan sulfate proteoglycan (HSPG)-mediated internalization, nuclear localization and transactivation by Tat and in the interaction of Tat with integrins and with the vascular endothelial growth factor receptor 2 (KDR) (kinase insert domain receptor). A BSA conjugate bearing an average of four copies of a peptide representing the basic domain/nuclear localization signal of Tat (BSA-Tat-NLS) inhibits transactivation by Tat exogenously added to cells but not by Tat endogenously produced after cell transfection with a tat cDNA, indicating that BSA-Tat-NLS does not interfere with Tat at an intracellular level. Surface plasmon resonance (SPR) experiments revealed that BSA-Tat-NLS binds to the HSPG analogue heparin. Accordingly, BSA-Tat-NLS binds to HSPGs of HL3T1 cell surface and inhibits HSPG-dependent Tat internalization. BSA-Tat-NLS retains its inhibitory potential when pre-incubated with HL3T1 cells before Tat administration, possibly by masking cell-surface HSPGs thus preventing Tat binding and internalization. SPR experiments revealed that BSA-Tat-NLS binds also to integrin alpha(v)beta(3) and KDR. Accordingly, it inhibits pro-angiogenic endothelial cell adhesion to Tat and motogenesis. In conclusion, BSA-Tat-NLS binds/masks three different cell-surface receptors of Tat inhibiting different biological activities. These data point to BSA-Tat-NLS as a prototype for the development of Tat-antagonists endowed with a multitargeted mechanism of action.
Collapse
Affiliation(s)
- Antonella Bugatti
- Department of Biomedical Science and Biotechnology, University of Brescia, Italy
| | | | | | | | | |
Collapse
|
50
|
Esbjörnsson J, Månsson F, Martínez-Arias W, Vincic E, Biague AJ, da Silva ZJ, Fenyö EM, Norrgren H, Medstrand P. Frequent CXCR4 tropism of HIV-1 subtype A and CRF02_AG during late-stage disease--indication of an evolving epidemic in West Africa. Retrovirology 2010; 7:23. [PMID: 20307309 PMCID: PMC2855529 DOI: 10.1186/1742-4690-7-23] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 03/22/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND HIV-1 is one of the fastest evolving pathogens, and is distinguished by geographic and genetic variants that have been classified into different subtypes and circulating recombinant forms (CRFs). Early in infection the primary coreceptor is CCR5, but during disease course CXCR4-using HIV-1 populations may emerge. This has been correlated with accelerated disease progression in HIV-1 subtype B. Basic knowledge of HIV-1 coreceptor tropism is important due to the recent introduction of coreceptor antagonists in antiretroviral therapy, and subtype-specific differences regarding how frequently HIV-1 CXCR4-using populations appear in late-stage disease need to be further investigated. To study how frequently CXCR4-using populations appear in late-stage disease among HIV-1 subtype A and CRF02_AG, we evaluated the accuracy of a recombinant virus phenotypic assay for these subtypes, and used it to determine the HIV-1 coreceptor tropism of plasma samples collected during late-stage disease in Guinea-Bissau. We also performed a genotypic analysis and investigated subtype-specific differences in the appearance of CXCR4 tropism late in disease. RESULTS We found that the recombinant virus phenotypic assay accurately predicted HIV-1 coreceptor tropism of subtype A and CRF02_AG. Over the study period (1997-2007), we found an increasing and generally high frequency of CXCR4 tropism (86%) in CRF02_AG. By sequence analysis of the V3 region of our samples we developed a novel genotypic rule for predicting CXCR4 tropism in CRF02_AG, based on the combined criteria of the total number of charged amino acids and net charge. This rule had higher sensitivity than previously described genotypic rules and may be useful for development of future genotypic tools for this CRF. Finally, we conducted a literature analysis, combining data of 498 individuals in late-stage disease, and found high amounts of CXCR4 tropism for all major HIV-1 subtypes (60-77%), except for subtype C (15%). CONCLUSIONS The increase in CXCR4 tropism over time suggests an evolving epidemic of CRF02_AG. The results of the literature analysis demonstrate the need for further studies investigating subtype-specific emergence for CXCR4-tropism; this may be particularly important due to the introduction of CCR5-antagonists in HIV treatment regimens.
Collapse
Affiliation(s)
- Joakim Esbjörnsson
- Department of Experimental Medical Science, Section of Molecular Virology, Lund University, Lund, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|