1
|
Berkemeier F, Cook PR, Boemo MA. DNA replication timing reveals genome-wide features of transcription and fragility. Nat Commun 2025; 16:4658. [PMID: 40389432 PMCID: PMC12089344 DOI: 10.1038/s41467-025-59991-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 05/12/2025] [Indexed: 05/21/2025] Open
Abstract
DNA replication in humans requires precise regulation to ensure accurate genome duplication and maintain genome integrity. A key indicator of this regulation is replication timing, which reflects the interplay between origin firing and fork dynamics. We present a high-resolution (1-kilobase) mathematical model that infers firing rate distributions from Repli-seq timing data across multiple cell lines, enabling a genome-wide comparison between predicted and observed replication. Notably, regions where the model and data diverge often overlap fragile sites and long genes, highlighting the influence of genomic architecture on replication dynamics. Conversely, regions of strong concordance are associated with open chromatin and active promoters, where elevated firing rates facilitate timely fork progression and reduce replication stress. In this work, we provide a valuable framework for exploring the structural interplay between replication timing, transcription, and chromatin organisation, offering insights into the mechanisms underlying replication stress and its implications for genome stability and disease.
Collapse
Affiliation(s)
- Francisco Berkemeier
- Department of Pathology, University of Cambridge, Cambridge, UK.
- Department of Genetics, University of Cambridge, Cambridge, UK.
| | - Peter R Cook
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Michael A Boemo
- Department of Pathology, University of Cambridge, Cambridge, UK.
- Department of Genetics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Kala M, Babok S, Mikhailava N, Piirsoo M, Piirsoo A. The POU-HD TFs impede the replication efficiency of several human papillomavirus genomes. Virol J 2024; 21:54. [PMID: 38444021 PMCID: PMC10916165 DOI: 10.1186/s12985-024-02334-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Abstract
Human papillomavirus (HPV) is a double-stranded DNA virus that infects cutaneous and mucosal epithelial cells. HPV replication initiates at the origin (ori), located within a noncoding region near the major early promoter. Only two viral proteins, E1 and E2, are essential for replication, with the host cell contributing other necessary factors. However, the role of host cell proteins in regulating HPV replication remains poorly understood. While several binding sites for cellular transcription factors (TFs), such as POU-HD proteins, have been mapped in the regulatory region, their functional importance is unclear. Some POU-HD TFs have been shown to influence replication in a system where E1 and E2 are provided exogenously. In this study, we investigated the impact of several POU-HD TFs on the replication of the HPV5, HPV11, and HPV18 genomes in U2OS cells and human primary keratinocytes. We demonstrated that OCT1, OCT6, BRN5A, and SKN1A are expressed in HPV host cells and that their overexpression inhibits HPV genome replication, whereas knocking down OCT1 had a positive effect. Using the replication-deficient HPV18-E1- genome, we demonstrated that OCT1-mediated inhibition of HPV replication involves modulation of HPV early promoters controlling E1 and E2 expression. Moreover, using Oct6 mutants deficient either in DNA binding or transcriptional regulation, we showed that the inhibition of HPV18 replication is solely dependent on Oct6's DNA binding activity. Our study highlights the complex regulatory roles of POU-HD factors in the HPV replication.
Collapse
Affiliation(s)
- Martin Kala
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sofiya Babok
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Nika Mikhailava
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Marko Piirsoo
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Alla Piirsoo
- Institute of Technology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
3
|
Abstract
The remarkable ability of oocytes to reinstate the totipotent state from a unipotent somatic cell, allowing the cloning of animals and the generation of human stem cells, has fascinated scientists for decades. Due to the complexity of oocytes, it has remained challenging to understand the rapid reprogramming following nuclear transfer at a molecular level. Conversely, the detailed characterization of molecular mechanisms is also often insufficient to comprehend the functional relevance of a complex molecular process, such as the dissociation of transcription factors from chromatin during cell division, the role of chromatin modifications in cellular memory, or of cell type-specific DNA replication. This review attempts to bridge the gap between nuclear transfer and molecular biology by focusing on the role of the cell cycle in reprogramming.
Collapse
Affiliation(s)
- Gloryn Chia
- 1 Department of Pediatrics, Naomi Berric Diabetes Center, Columbia University , New York, NY 10032
| | | |
Collapse
|
4
|
Badding MA, Vaughan EE, Dean DA. Transcription factor plasmid binding modulates microtubule interactions and intracellular trafficking during gene transfer. Gene Ther 2012; 19:338-46. [PMID: 21716302 PMCID: PMC4150871 DOI: 10.1038/gt.2011.96] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 04/11/2011] [Accepted: 04/19/2011] [Indexed: 12/26/2022]
Abstract
For non-viral gene delivery to be successful, plasmids must move through the cytoplasm to the nucleus in order to be transcribed. While the cytoskeletal meshwork acts as a barrier to plasmid DNA movement in the cytoplasm, the microtubule network is required for directed plasmid trafficking to the nucleus. We have shown previously that plasmid-microtubule interactions require cytoplasmic adapter proteins such as molecular motors, transcription factors (TFs) and importins. However, not all plasmid sequences support these interactions to allow movement to the nucleus. We now demonstrate that microtubule-DNA interactions can show sequence specificity with promoters containing binding sites for cyclic AMP response-element binding protein (CREB), including the cytomegalovirus immediate early promoter (CMV(iep)). Plasmids containing CREB-binding sites showed stringent interactions in an in vitro microtubule-binding assay. Using microinjection and real-time particle tracking, we show that the inclusion of TF binding sites within plasmids permits cytoplasmic trafficking of plasmids during gene transfer. We found that CREB-binding sites are bound by CREB in the cytoplasm during transfection, and allow for enhanced rates of movement and subsequent nuclear accumulation. Moreover, small interfering RNA knockdown of CREB prevented this enhanced trafficking. Therefore, TF binding sites within plasmids are necessary for interactions with microtubules and enhance movement to the nucleus.
Collapse
Affiliation(s)
- Melissa A. Badding
- Department of Pediatrics, Division of Neonatology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Erin E. Vaughan
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - David A. Dean
- Department of Pediatrics, Division of Neonatology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
5
|
Restriction of human polyomavirus BK virus DNA replication in murine cells and extracts. J Virol 2009; 83:5708-17. [PMID: 19297467 DOI: 10.1128/jvi.00300-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BK virus (BKV) causes persistent and asymptomatic infections in most humans and is the etiologic agent of polyomavirus-associated nephropathy (PVAN) and other pathologies. Unfortunately, there are no animal models with which to study activation of BKV replication in the human kidney and the accompanying PVAN. Here we report studies of the restriction of BKV replication in murine cells and extracts and the cause(s) of this restriction. Upon infection of murine cells, BKV expressed large T antigen (TAg), but viral DNA replication and progeny were not detected. Transfection of murine cells with BKV TAg expression vectors also caused TAg expression without accompanying DNA replication. Analysis of the replication of DNAs containing chimeric BKV and murine polyomavirus origins revealed the importance of BKV core origin sequences and TAg for DNA replication. A sensitive assay was developed with purified BKV TAg that supported TAg-dependent BKV DNA replication with human but not with murine cell extracts. Addition of human replication proteins, DNA polymerase alpha-primase, replication protein A, or topoisomerase I to the murine extracts with BKV TAg did not rescue viral DNA replication. Notably, addition of murine extracts to human extracts inhibited BKV TAg-dependent DNA replication at a step prior to or during unwinding of the viral origin. These findings and differences in replication specificity between BKV TAg and the TAgs of simian virus 40 (SV40) and JC virus (JCV) and their respective origins implicate features of the BKV TAg and origin distinct from SV40 and JCV in restriction of BKV replication in murine cells.
Collapse
|
6
|
Verschoor EJ, Groenewoud MJ, Fagrouch Z, Kewalapat A, van Gessel S, Kik MJL, Heeney JL. Molecular characterization of the first polyomavirus from a New World primate: squirrel monkey polyomavirus. J Gen Virol 2008; 89:130-137. [DOI: 10.1099/vir.0.83287-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA samples from a variety of New World monkeys were screened by using a broad-spectrum PCR targeting the VP1 gene of polyomaviruses. This resulted in the characterization of the first polyomavirus from a New World primate. This virus naturally infects squirrel monkeys (Saimiri sp.) and is provisionally named squirrel monkey polyomavirus (SquiPyV). The complete genome of SquiPyV is 5075 bp in length, and encodes the small T and large T antigens and the three structural proteins VP1, VP2 and VP3. Interestingly, the late region also encodes a putative agnoprotein, a feature that it shares with other polyomaviruses from humans, baboons and African green monkeys. Comparison with other polyomaviruses revealed limited sequence similarity to any other polyomavirus, and phylogenetic analysis of the VP1 gene confirmed its uniqueness.
Collapse
Affiliation(s)
- Ernst J. Verschoor
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Marlous J. Groenewoud
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Zahra Fagrouch
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Aruna Kewalapat
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Sabine van Gessel
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Marja J. L. Kik
- Department of Pathobiology, Pathology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jonathan L. Heeney
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| |
Collapse
|
7
|
Borst EM, Messerle M. Analysis of human cytomegalovirus oriLyt sequence requirements in the context of the viral genome. J Virol 2005; 79:3615-26. [PMID: 15731256 PMCID: PMC1075693 DOI: 10.1128/jvi.79.6.3615-3626.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2004] [Accepted: 10/26/2004] [Indexed: 01/23/2023] Open
Abstract
During the lytic phase of infection, replication of herpesvirus genomes initiates at the lytic origin of replication, oriLyt. Many herpesviruses harbor more than one lytic origin, but so far, only one oriLyt has been identified for human cytomegalovirus (HCMV). Evidence for the existence of additional lytic origins of HCMV has remained elusive. On the basis of transient replication assays with cloned viral fragments, HCMV oriLyt was described as a core region of 1.5 kbp (minimal oriLyt) flanked by auxiliary sequences required for maximal replication activity (complete oriLyt). It remained unclear whether minimal oriLyt alone can drive the replication of HCMV in the absence of its accessory regions. To investigate the sequence requirements of oriLyt in the context of the viral genome, mutant genomes were constructed lacking either minimal or complete oriLyt. These genomes were not infectious, suggesting that HCMV contains only one lytic origin of replication. Either minimal or complete oriLyt was then ectopically reinserted into the oriLyt-depleted genomes. Only the mutant genomes carrying complete oriLyt led to infectious progeny. Remarkably, inversion of the 1.5-kbp core origin relative to its flanking regions resulted in a replication-defective genome. Mutant genomes carrying minimal oriLyt plus the left flanking region gave rise to minifoci, but genomes harboring minimal oriLyt together with the right flanking region were noninfectious. We conclude that the previously defined minimal lytic origin is not sufficient to drive replication of the HCMV genome. Rather, our results underline the importance of the accessory regions and their correct arrangement for the function of HCMV oriLyt.
Collapse
Affiliation(s)
- Eva-Maria Borst
- Virus Cell Interaction Group, ZAMED, Medical Faculty, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | | |
Collapse
|
8
|
Yang M, Ito T, May WS. A novel role for RAX, the cellular activator of PKR, in synergistically stimulating SV40 large T antigen-dependent gene expression. J Biol Chem 2003; 278:38325-32. [PMID: 12874289 DOI: 10.1074/jbc.m303420200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The double-stranded (ds) RNA-binding protein RAX was discovered as a stress-induced cellular activator of the dsRNA-dependent protein kinase (PKR), a key regulator of protein synthesis in response to viral infection and cellular stress. We now report a novel function of RAX, independent of PKR, to enhance SV40 promoter (origin)/enhancer-dependent gene expression. Several mammalian cell lines including COS-7, CV-1, and HeLa cells were tested. Results reveal that the SV40 large T antigen is required for RAX-mediated, synergistic enhancement of gene expression. RAX augments SV40 regulatory element-dependent DNA replication and transcription. The mechanism requires the SV40 enhancer, a viral transcriptional element that is necessary for efficient SV40 DNA replication in vivo. Mutational analysis reveals that the dsRNA-binding domains of RAX are required for the gene expression enhancing function. Thus, in addition to stimulating PKR activity, RAX can positively regulate both SV40 large T antigen-dependent DNA replication and transcription in a mechanism that may alter the interaction of the cellular factor(s) with the SV40 enhancer via the dsRNA-binding domains of RAX. This novel function of RAX may have implications for regulation of mammalian DNA replication and transcription because of the many similarities between the viral and cellular processes.
Collapse
Affiliation(s)
- Mingli Yang
- University of Florida Shands Cancer Center and Department of Medicine, University of Florida, Gainesville, Florida 32610-0232, USA
| | | | | |
Collapse
|
9
|
Okuley S, Call M, Mitchell T, Hu B, Woodworth ME. Relationship among location of T-antigen-induced DNA distortion, auxiliary sequences, and DNA replication efficiency. J Virol 2003; 77:10651-7. [PMID: 12970450 PMCID: PMC228485 DOI: 10.1128/jvi.77.19.10651-10657.2003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T-antigen-induced DNA distortion was studied in a series of simian virus 40 (SV40) plasmid constructs whose relative replication efficiency ranges from 0.2 to 36. Bending was detected in the wild-type SV40 regulatory region consisting of three copies of the GC-rich 21-bp repeat but not in constructs with only one or two copies of the 21-bp repeat. In a construct with enhanced replication efficiency, bending occurred in a 69-bp cellular sequence located upstream of a single copy of the 21-bp repeat. Bending occurred both upstream of ori and in the three 21-bp repeats located downstream of ori in a construct with reduced replication efficiency. In a construct with no 21-bp repeats, DNA distortion occurred downstream of ori. The results indicate that SV40 DNA replication is enhanced when the structure of the regulatory region allows the DNA to form a bent structure upstream of the initial movement of the replication fork.
Collapse
Affiliation(s)
- Susan Okuley
- Department of Microbiology, Miami University, Oxford, Ohio 45056, USA
| | | | | | | | | |
Collapse
|
10
|
Wells J, Yan PS, Cechvala M, Huang T, Farnham PJ. Identification of novel pRb binding sites using CpG microarrays suggests that E2F recruits pRb to specific genomic sites during S phase. Oncogene 2003; 22:1445-60. [PMID: 12629508 DOI: 10.1038/sj.onc.1206264] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The retinoblastoma (Rb) tumor suppressor protein is an important regulator of cell proliferation and differentiation. Many studies have shown that pRb can negatively regulate the activity of the E2F family of transcription factors during G(0) and G(1) phases of the cell cycle, perhaps by serving as a bridge between the E2Fs and transcriptional repressors such as histone deacetylases and methylases. However, pRb has also been shown to localize to discrete DNA foci during S phase, a time at which pRb is thought to be dissociated from E2F. Numerous other DNA binding proteins have been shown to interact with pRb, suggesting that pRb may control progression through S phase by binding to sites in the genome distinct from E2F target gene promoters. To test this hypothesis, we have identified novel pRb binding sites within the human genome using an unbiased approach which relies upon a combination of chromatin immunoprecipitation and CpG microarray analysis. To provide the greatest opportunity of finding distinct sets of pRb binding sites, we examined pRb binding in chromatin obtained from human Raji cells synchronized in either G(0)/G(1) phase or S phase. These experiments have allowed us to identify a large set of new genomic binding sites for the pRb protein. We found that some sites are occupied by pRb only during G(0)/G(1) phase, as would be predicted from previous models of pRb function. We also identified sites to which pRb bound only during S phase and other sites which were bound constitutively by pRb. Surprisingly, we found that E2F1 was present at most of the CpG islands bound by pRb, independent of the phase of the cell cycle. Thus, although pRb has the potential to interact with numerous transcription factors, our data suggest that the majority of DNA-bound pRb is recruited to E2F target promoters during both G(0)/G(1) and S phases.
Collapse
Affiliation(s)
- Julie Wells
- McArdle Laboratory for Cancer Research, University of Wisconsin, Medical School, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
11
|
Xie AY, Bermudez VP, Folk WR. Stimulation of DNA replication from the polyomavirus origin by PCAF and GCN5 acetyltransferases: acetylation of large T antigen. Mol Cell Biol 2002; 22:7907-18. [PMID: 12391158 PMCID: PMC134729 DOI: 10.1128/mcb.22.22.7907-7918.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PCAF and GCN5 acetyltransferases, but not p300 or CBP, stimulate DNA replication when tethered near the polyomavirus origin. Replication stimulation by PCAF and GCN5 is blocked by mutational inactivation of their acetyltransferase domains but not by deletion of sequences that bind p300 or CBP. Acetylation of histones near the polyomavirus origin assembled into chromatin in vivo is not detectably altered by expression of these acetyltransferases. PCAF and GCN5 interact with polyomavirus large T antigen in vivo, PCAF acetylates large T antigen in vitro, and large T-antigen acetylation in vivo is dependent upon the integrity of the PCAF acetyltransferase domain. These data suggest replication stimulation occurs through recruitment of large T antigen to the origin and acetylation by PCAF or GCN5.
Collapse
Affiliation(s)
- An-Yong Xie
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
12
|
Keller C, Ladenburger EM, Kremer M, Knippers R. The origin recognition complex marks a replication origin in the human TOP1 gene promoter. J Biol Chem 2002; 277:31430-40. [PMID: 12004060 DOI: 10.1074/jbc.m202165200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The locations of the origin recognition complex (ORC) in mammalian genomes have been elusive. We have therefore analyzed the DNA sequences associated with human ORC via in vivo cross-linking and chromatin immunoprecipitation. Antibodies specific for hOrc2 protein precipitate chromatin fragments that also contain other ORC proteins, suggesting that the proteins form multisubunit complexes on chromatin in vivo. A binding region for ORC was identified at the CpG island upstream of the human TOP1 gene. Nascent strand abundance assays show that the ORC binding region coincides with an origin of bidirectional replication. The TOP1 gene includes two well characterized matrix attachment regions. The matrix attachment region elements analyzed contain no ORC and constitute no sites for replication initiation. In initial attempts to use the chromatin immunoprecipitation technique for the identification of additional ORC sites in the human genome, we isolated a sequence close to another actively transcribed gene (TOM1) and an alphoid satellite sequence that underlies centromeric heterochromatin. Nascent strand abundance assays gave no indication that the heterochromatin sequence serves as a replication initiation site, suggesting that an ORC on this site may perform functions other than replication initiation.
Collapse
Affiliation(s)
- Christian Keller
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany.
| | | | | | | |
Collapse
|
13
|
Garber AC, Hu J, Renne R. Latency-associated nuclear antigen (LANA) cooperatively binds to two sites within the terminal repeat, and both sites contribute to the ability of LANA to suppress transcription and to facilitate DNA replication. J Biol Chem 2002; 277:27401-11. [PMID: 12015325 DOI: 10.1074/jbc.m203489200] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus is a multifunctional protein with important roles in both transcriptional regulation and episomal maintenance. LANA is also a DNA-binding protein and has been shown to specifically bind to a region within the terminal repeat. Here, we have performed a detailed analysis of the DNA-binding activity of LANA and show that it binds two sites separated by 22 bp. We used electrophoretic mobility shift assay to quantitatively analyze the binding sites and determined that the K(d) of the high affinity site is 1.51 +/- 0.16 nm. Examination of the contribution of nucleotides near the ends of the site showed that the core binding site consists of 16 bp, 13 of which are conserved between both sites. Analysis of the affinity of each site alone and in tandem revealed that the binding to the second site is primarily due to cooperativity with the first site. Using deletion and point mutations, we show that both sites contribute to the ability of LANA to suppress transcription and to facilitate DNA replication. In addition, we show that the ability of LANA to carry out these functions is directly proportional to its affinity for the sites in this region. The affinities, spacing, and cooperative binding between the two sites is similar to that of the Epstein-Barr virus dyad symmetry element oriP, suggesting a requirement for such an element in latent replication of these related DNA tumor viruses.
Collapse
Affiliation(s)
- Alexander C Garber
- Division of Hematology/Oncology, Department of Molecular Biology and Microbiology, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH 44106, USA
| | | | | |
Collapse
|