1
|
Vassilieff H, Geering ADW, Choisne N, Teycheney PY, Maumus F. Endogenous Caulimovirids: Fossils, Zombies, and Living in Plant Genomes. Biomolecules 2023; 13:1069. [PMID: 37509105 PMCID: PMC10377300 DOI: 10.3390/biom13071069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The Caulimoviridae is a family of double-stranded DNA viruses that infect plants. The genomes of most vascular plants contain endogenous caulimovirids (ECVs), a class of repetitive DNA elements that is abundant in some plant genomes, resulting from the integration of viral DNA in the chromosomes of germline cells during episodes of infection that have sometimes occurred millions of years ago. In this review, we reflect on 25 years of research on ECVs that has shown that members of the Caulimoviridae have occupied an unprecedented range of ecological niches over time and shed light on their diversity and macroevolution. We highlight gaps in knowledge and prospects of future research fueled by increased access to plant genome sequence data and new tools for genome annotation for addressing the extent, impact, and role of ECVs on plant biology and the origin and evolutionary trajectories of the Caulimoviridae.
Collapse
Affiliation(s)
| | - Andrew D W Geering
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Pierre-Yves Teycheney
- CIRAD, UMR PVBMT, F-97410 Saint-Pierre de La Réunion, France
- UMR PVBMT, Université de la Réunion, F-97410 Saint-Pierre de La Réunion, France
| | - Florian Maumus
- INRAE, URGI, Université Paris-Saclay, 78026 Versailles, France
| |
Collapse
|
2
|
Vassilieff H, Haddad S, Jamilloux V, Choisne N, Sharma V, Giraud D, Wan M, Serfraz S, Geering ADW, Teycheney PY, Maumus F. CAULIFINDER: a pipeline for the automated detection and annotation of caulimovirid endogenous viral elements in plant genomes. Mob DNA 2022; 13:31. [PMID: 36463202 PMCID: PMC9719215 DOI: 10.1186/s13100-022-00288-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Plant, animal and protist genomes often contain endogenous viral elements (EVEs), which correspond to partial and sometimes entire viral genomes that have been captured in the genome of their host organism through a variety of integration mechanisms. While the number of sequenced eukaryotic genomes is rapidly increasing, the annotation and characterization of EVEs remains largely overlooked. EVEs that derive from members of the family Caulimoviridae are widespread across tracheophyte plants, and sometimes they occur in very high copy numbers. However, existing programs for annotating repetitive DNA elements in plant genomes are poor at identifying and then classifying these EVEs. Other than accurately annotating plant genomes, there is intrinsic value in a tool that could identify caulimovirid EVEs as they testify to recent or ancient host-virus interactions and provide valuable insights into virus evolution. In response to this research need, we have developed CAULIFINDER, an automated and sensitive annotation software package. CAULIFINDER consists of two complementary workflows, one to reconstruct, annotate and group caulimovirid EVEs in a given plant genome and the second to classify these genetic elements into officially recognized or tentative genera in the Caulimoviridae. We have benchmarked the CAULIFINDER package using the Vitis vinifera reference genome, which contains a rich assortment of caulimovirid EVEs that have previously been characterized using manual methods. The CAULIFINDER package is distributed in the form of a Docker image.
Collapse
Affiliation(s)
- Héléna Vassilieff
- grid.507621.7Université Paris-Saclay, INRAE, URGI, 78026 Versailles, France
| | - Sana Haddad
- grid.507621.7Université Paris-Saclay, INRAE, URGI, 78026 Versailles, France ,grid.460789.40000 0004 4910 6535Present Address: Service d’Etude des Prions et des Infections Atypiques (SEPIA), Institut François Jacob, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-aux-Roses, France
| | - Véronique Jamilloux
- grid.507621.7Université Paris-Saclay, INRAE, URGI, 78026 Versailles, France ,grid.507621.7Present Address: Université Paris-Saclay, INRAE, PROSE, 92160 Antony, France
| | - Nathalie Choisne
- grid.507621.7Université Paris-Saclay, INRAE, URGI, 78026 Versailles, France
| | - Vikas Sharma
- grid.507621.7Université Paris-Saclay, INRAE, URGI, 78026 Versailles, France ,grid.8385.60000 0001 2297 375XPresent Address: Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Delphine Giraud
- UMR AGAP Institut, Univ. Montpellier, CIRAD, INRAE, Institut Agro, 20230 San Giuliano, France
| | - Mariène Wan
- grid.507621.7Université Paris-Saclay, INRAE, URGI, 78026 Versailles, France
| | - Saad Serfraz
- grid.413016.10000 0004 0607 1563CABB, University of Agriculture Faisalabad, Faisalabad, 38000 Pakistan
| | - Andrew D. W. Geering
- grid.1003.20000 0000 9320 7537Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072 Australia
| | | | - Florian Maumus
- grid.507621.7Université Paris-Saclay, INRAE, URGI, 78026 Versailles, France
| |
Collapse
|
3
|
Maachi A, Hernando Y, Aranda MA, Donaire L. Complete genome sequence of malva-associated soymovirus 1: a novel virus infecting common mallow. Virus Genes 2022; 58:372-375. [PMID: 35471489 DOI: 10.1007/s11262-022-01900-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/01/2022] [Indexed: 11/26/2022]
Abstract
In this work, a novel viral genomic sequence with a gene organization typical of members of the genus Soymovirus was identified using high-throughput sequencing data from common mallow. This species is a vigorous wild weed native to the Mediterranean region, commonly found in borders and edges of cultivated fields, making it a suitable reservoir for plant pests and pathogens. Indeed, plant viruses belonging to different genera have been previously found infecting common malva. This new viral genome consists of a single molecule of circular double-stranded DNA of 8391 base pairs and contains eight open reading frames encoding polymerase, movement, coat, translational transactivator protein typical of caulimoviruses, and four hypothetical proteins. Phylogenetic and pairwise distance analyses showed its close relationship with soybean chlorotic mottle virus. Interestingly, a small intergenic region was detected between ORFs Ib and II. Based on the demarcation criteria of the genus Soymovirus, the new virus, provisionally named malva-associated soymovirus 1, could be a member of a new species Soymovirus masolus. To our knowledge, this is the first report of a soymovirus infecting common mallow.
Collapse
Affiliation(s)
- Ayoub Maachi
- Abiopep S.L., Parque Científico de Murcia, Ctra. de Madrid, Km 388, Complejo de Espinardo, 30100, Espinardo, Murcia, Spain
| | - Yolanda Hernando
- Abiopep S.L., Parque Científico de Murcia, Ctra. de Madrid, Km 388, Complejo de Espinardo, 30100, Espinardo, Murcia, Spain
| | - Miguel A Aranda
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, PO Box 164, 30100, Espinardo, Murcia, Spain
| | - Livia Donaire
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, PO Box 164, 30100, Espinardo, Murcia, Spain.
| |
Collapse
|
4
|
Chingandu N, Kouakou K, Aka R, Ameyaw G, Gutierrez OA, Herrmann HW, Brown JK. The proposed new species, cacao red vein virus, and three previously recognized badnavirus species are associated with cacao swollen shoot disease. Virol J 2017; 14:199. [PMID: 29052506 PMCID: PMC5649073 DOI: 10.1186/s12985-017-0866-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 10/11/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cacao swollen shoot virus (CSSV), Cacao swollen shoot CD virus (CSSCDV), and Cacao swollen shoot Togo A virus (CSSTAV) cause cacao swollen shoot disease (CSSD) in West Africa. During 2000-2003, leaf and shoot-swelling symptoms and rapid tree death were observed in cacao in Cote d'Ivoire and Ghana. Molecular tests showed positive infection in only ~50-60% of symptomatic trees, suggesting the possible emergence of an unknown badnavirus. METHODS The DNA virome was determined from symptomatic cacao samples using Illumina-Hi Seq, and sequence accuracy was verified by Sanger sequencing. The resultant 14, and seven previously known, full-length badnaviral genomic and RT-RNase H sequences were analyzed by pairwise distance analysis to resolve species relationships, and by Maximum likelihood (ML) to reconstruct phylogenetic relationships. The viral coding and non-coding sequences, genome organization, and predicted conserved protein domains (CPDs) were identified and characterized at the species level. RESULTS The 21 CSSD-badnaviral genomes and RT-RNase H sequences shared 70-100% and 72-100% identity, respectively. The RT-RNase H analysis predicted four species, based on an ≥80% species cutoff. The ML genome sequence tree resolved three well-supported clades, with ≥70% bootstrap, whereas, the RT-RNase H phylogeny was poorly resolved, however, both trees grouped CSSD isolates within one large clade, including the newly discovered Cacao red vein virus (CRVV) proposed species. The genome arrangement of the four species consists of four, five, or six predicted open reading frames (ORFs), and the CPDs have similar architectures. By comparison, two New World cacao-infecting badnaviruses encode four ORFs, and harbor CPDs like the West African species. CONCLUSIONS Three previously recognized West African cacao-infecting badnaviral species were identified, and a fourth, previously unidentified species, CRVV, is described for the first time. The CRVV is a suspect causal agent of the rapid decline phenotype, however Koch's Postulates have not been proven. To reconcile viral evolutionary with epidemiology considerations, more detailed information about CSSD-genomic variability is essential. Also, the functional basis for the multiple genome arrangements and subtly distinct CPD architectures among cacao-infecting badnaviruses is poorly understood. New knowledge about functional relationships may help explain the diverse symptomatologies observed in affected cacao trees.
Collapse
Affiliation(s)
| | - Koffie Kouakou
- Centre National de Recherche Agronomique (CNRA), Programme Cacao, Divo, Côte d’Ivoire
| | - Romain Aka
- Centre National de Recherche Agronomique (CNRA), Programme Cacao, Divo, Côte d’Ivoire
| | - George Ameyaw
- Cocoa Research Institute of Ghana, New Tafo-Akim, Ghana
| | - Osman A. Gutierrez
- USDA-ARS Subtropical Horticultural Research Station, Miami, FL 33158 USA
| | | | - Judith K. Brown
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
5
|
Sukal A, Kidanemariam D, Dale J, James A, Harding R. Characterization of badnaviruses infecting Dioscorea spp. in the Pacific reveals two putative novel species and the first report of dioscorea bacilliform RT virus 2. Virus Res 2017; 238:29-34. [PMID: 28591557 DOI: 10.1016/j.virusres.2017.05.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 01/20/2023]
Abstract
The complete genome sequences of three new badnaviruses associated with yam (Dioscorea spp.) originating from Fiji, Papua New Guinea and Samoa were determined following rolling circle amplification of the virus genomes. The full-length genomes consisted of a single molecule of circular double-stranded DNA of 8106bp for isolate FJ14, 7871bp for isolate PNG10 and 7426bp for isolate SAM01. FJ14 and PNG10 contained three open reading frames while SAM01 had an additional open reading frame which partially overlapped the 3' end of ORF 3. Amino acid sequence analysis of ORF 3 from the three isolates confirmed the presence of conserved motifs typical of other badnaviruses. Phylogenetic analysis revealed the sequences to be closely related to other Dioscorea-infecting badnaviruses. FJ14 and PNG10 appear to be new species, which we have tentatively named dioscorea bacilliform ES virus (DBESV) and dioscorea bacilliform AL virus 2 (DBALV2), respectively, while SAM01 represents a Pacific isolate of the recently published dioscorea bacilliform RT virus 2 and is described as dioscorea bacilliform RT virus 2-[4RT] (DBRTV2-[4RT]).
Collapse
Affiliation(s)
- Amit Sukal
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology (QUT), 2 George St, Brisbane, 4001, Australia
| | - Dawit Kidanemariam
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology (QUT), 2 George St, Brisbane, 4001, Australia
| | - James Dale
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology (QUT), 2 George St, Brisbane, 4001, Australia
| | - Anthony James
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology (QUT), 2 George St, Brisbane, 4001, Australia
| | - Robert Harding
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology (QUT), 2 George St, Brisbane, 4001, Australia.
| |
Collapse
|
6
|
Chiumenti M, Morelli M, De Stradis A, Elbeaino T, Stavolone L, Minafra A. Unusual genomic features of a badnavirus infecting mulberry. J Gen Virol 2016; 97:3073-3087. [PMID: 27604547 DOI: 10.1099/jgv.0.000600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mulberry badnavirus 1 (MBV1) has been characterized as the aetiological agent of a disease observed on a mulberry tree in Lebanon (accession L34). A small RNA next-generation sequencing library was prepared and analysed from L34 extract, and these data together with genome walking experiments have been used to obtain the full-length virus sequence. Uniquely among badnaviruses, the MBV1 sequence encodes a single ORF containing all the conserved pararetrovirus motifs. Two genome sizes (6 kb and 7 kb) were found to be encapsidated in infected plants, the shortest of which shares 98.95 % sequence identity with the full L34 genome. In the less-than-full-length deleted genome, the translational frame for the replication domains was conserved, but the particle morphology, observed under electron microscopy, was somehow altered. Southern blot hybridization confirmed the coexistence of the two genomic forms in the original L34 accession, as well as the absence of cointegration in the plant genome. Both long and deleted genomes were cloned and proved to be infectious in mulberry. Differently from other similar nuclear-replicating viruses or viroids, the characterization of the MBV1-derived small RNAs showed a reduced amount of the 24-mer class size.
Collapse
Affiliation(s)
- Michela Chiumenti
- Consiglio Nazionale delle Ricerche - Istituto per la Protezione Sostenibile delle Piante, Bari, Italy
| | - Massimiliano Morelli
- Consiglio Nazionale delle Ricerche - Istituto per la Protezione Sostenibile delle Piante, Bari, Italy
| | - Angelo De Stradis
- Consiglio Nazionale delle Ricerche - Istituto per la Protezione Sostenibile delle Piante, Bari, Italy
| | | | - Livia Stavolone
- Consiglio Nazionale delle Ricerche - Istituto per la Protezione Sostenibile delle Piante, Bari, Italy.,International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Angelantonio Minafra
- Consiglio Nazionale delle Ricerche - Istituto per la Protezione Sostenibile delle Piante, Bari, Italy
| |
Collapse
|
7
|
Bömer M, Turaki AA, Silva G, Kumar PL, Seal SE. A Sequence-Independent Strategy for Amplification and Characterisation of Episomal Badnavirus Sequences Reveals Three Previously Uncharacterised Yam Badnaviruses. Viruses 2016; 8:E188. [PMID: 27399761 PMCID: PMC4974523 DOI: 10.3390/v8070188] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/24/2016] [Accepted: 06/30/2016] [Indexed: 12/17/2022] Open
Abstract
Yam (Dioscorea spp.) plants are potentially hosts to a diverse range of badnavirus species (genus Badnavirus, family Caulimoviridae), but their detection is complicated by the existence of integrated badnavirus sequences in some yam genomes. To date, only two badnavirus genomes have been characterised, namely, Dioscorea bacilliform AL virus (DBALV) and Dioscorea bacilliform SN virus (DBSNV). A further 10 tentative species in yam have been described based on their partial reverse transcriptase (RT)-ribonuclease H (RNaseH) sequences, generically referred to here as Dioscorea bacilliform viruses (DBVs). Further characterisation of DBV species is necessary to determine which represent episomal viruses and which are only present as integrated badnavirus sequences in some yam genomes. In this study, a sequence-independent multiply-primed rolling circle amplification (RCA) method was evaluated for selective amplification of episomal DBV genomes. This resulted in the identification and characterisation of nine complete genomic sequences (7.4-7.7 kbp) of existing and previously undescribed DBV phylogenetic groups from Dioscorea alata and Dioscorea rotundata accessions. These new yam badnavirus genomes expand our understanding of the diversity and genomic organisation of DBVs, and assist the development of improved diagnostic tools. Our findings also suggest that mixed badnavirus infections occur relatively often in West African yam germplasm.
Collapse
Affiliation(s)
- Moritz Bömer
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham, Kent ME4 4TB, UK.
| | - Aliyu A Turaki
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham, Kent ME4 4TB, UK.
| | - Gonçalo Silva
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham, Kent ME4 4TB, UK.
| | - P Lava Kumar
- International Institute of Tropical Agriculture (IITA), Oyo Road, PMB 5320, Ibadan, Nigeria.
| | - Susan E Seal
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham, Kent ME4 4TB, UK.
| |
Collapse
|
8
|
Stainton D, Halafihi M, Collings DA, Varsani A. Genome Sequence of Banana Streak MY Virus from the Pacific Ocean Island of Tonga. GENOME ANNOUNCEMENTS 2015; 3:e00543-15. [PMID: 26021925 PMCID: PMC4447910 DOI: 10.1128/genomea.00543-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 11/20/2022]
Abstract
Banana streak disease is caused by a variety of banana-infecting badnaviruses. A genome of the episomal form of a banana streak MY virus was recovered from an infected banana plant sampled on Vava'u Island, Tonga, and shares >98% pairwise identity with the six other genomes available in public databases.
Collapse
Affiliation(s)
- Daisy Stainton
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Mana'ia Halafihi
- Ministry of Agriculture and Food, Forests and Fisheries of Tonga, Nuku-alofa, Kingdom of Tonga
| | - David A Collings
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | | |
Collapse
|
9
|
Sharma SK, Kumar PV, Baranwal VK. Immunodiagnosis of episomal Banana streak MY virus using polyclonal antibodies to an expressed putative coat protein. J Virol Methods 2014; 207:86-94. [PMID: 24977315 DOI: 10.1016/j.jviromet.2014.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 06/17/2014] [Accepted: 06/20/2014] [Indexed: 11/24/2022]
Abstract
A cryptic Badnavirus species complex, known as banana streak viruses (BSV) poses a serious threat to banana production and genetic improvement worldwide. Due to the presence of integrated BSV sequences in the banana genome, routine detection is largely based on serological and nucleo-serological diagnostic methods which require high titre specific polyclonal antiserum. Viral structural proteins like coat protein (CP) are the best target for in vitro expression, to be used as antigen for antiserum production. However, in badnaviruses precise CP sequences are not known. In this study, two putative CP coding regions (p48 and p37) of Banana streak MY virus (BSMYV) were identified in silico by comparison with caulimoviruses, retroviruses and Rice tungro bacilliform virus. The putative CP coding region (p37) was in vitro expressed in pMAL system and affinity purified. The purified fusion protein was used as antigen for raising polyclonal antiserum in rabbit. The specificity of antiserum was confirmed in Western blots, immunosorbent electron microscopy (ISEM) and antigen coated plate-enzyme linked immunosorbent assay (ACP-ELISA). The antiserum (1:2000) was successfully used in ACP-ELISA for specific detection of BSMYV infection in field and tissue culture raised banana plants. The antiserum was also utilized in immuno-capture PCR (IC-PCR) based indexing of episomal BSMYV infection. This is the first report of in silico identification of putative CP region of BSMYV, production of polyclonal antiserum against recombinant p37 and its successful use in immunodetection.
Collapse
Affiliation(s)
- Susheel Kumar Sharma
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - P Vignesh Kumar
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Virendra Kumar Baranwal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India.
| |
Collapse
|
10
|
Borah BK, Sharma S, Kant R, Johnson AMA, Saigopal DVR, Dasgupta I. Bacilliform DNA-containing plant viruses in the tropics: commonalities within a genetically diverse group. MOLECULAR PLANT PATHOLOGY 2013; 14:759-71. [PMID: 23763585 PMCID: PMC6638767 DOI: 10.1111/mpp.12046] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
UNLABELLED Plant viruses, possessing a bacilliform shape and containing double-stranded DNA, are emerging as important pathogens in a number of agricultural and horticultural crops in the tropics. They have been reported from a large number of countries in African and Asian continents, as well as from islands from the Pacific region. The viruses, belonging to two genera, Badnavirus and Tungrovirus, within the family Caulimoviridae, have genomes displaying a common plan, yet are highly variable, sometimes even between isolates of the same virus. In this article, we summarize the current knowledge with a view to revealing the common features embedded within the genetic diversity of this group of viruses. TAXONOMY Virus; order Unassigned; family Caulimoviridae; genera Badnavirus and Tungrovirus; species Banana streak viruses, Bougainvillea spectabilis chlorotic vein banding virus, Cacao swollen shoot virus, Citrus yellow mosaic badnavirus, Dioscorea bacilliform viruses, Rice tungro bacilliform virus, Sugarcane bacilliform viruses and Taro bacilliform virus. MICROBIOLOGICAL PROPERTIES Bacilliform in shape; length, 60-900 nm; width, 35-50 nm; circular double-stranded DNA of approximately 7.5 kbp with one or more single-stranded discontinuities. HOST RANGE Each virus generally limited to its own host, including banana, bougainvillea, black pepper, cacao, citrus species, Dioscorea alata, rice, sugarcane and taro. DISEASE SYMPTOMS Foliar streaking in banana and sugarcane, swelling of shoots in cacao, yellow mosaic in leaves and stems in citrus, brown spot in the tubers in yam and yellow-orange discoloration and stunting in rice. USEFUL WEBSITES http://www.dpvweb.net.
Collapse
Affiliation(s)
- Basanta K Borah
- Department of Plant Molecular Biology, Delhi University South Campus, New Delhi 110021, India
| | | | | | | | | | | |
Collapse
|
11
|
Kalischuk ML, Fusaro AF, Waterhouse PM, Pappu HR, Kawchuk LM. Complete genomic sequence of a Rubus yellow net virus isolate and detection of genome-wide pararetrovirus-derived small RNAs. Virus Res 2013; 178:306-13. [PMID: 24076299 DOI: 10.1016/j.virusres.2013.09.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 12/29/2022]
Abstract
Rubus yellow net virus (RYNV) was cloned and sequenced from a red raspberry (Rubus idaeus L.) plant exhibiting symptoms of mosaic and mottling in the leaves. Its genomic sequence indicates that it is a distinct member of the genus Badnavirus, with 7932bp and seven ORFs, the first three corresponding in size and location to the ORFs found in the type member Commelina yellow mottle virus. Bioinformatic analysis of the genomic sequence detected several features including nucleic acid binding motifs, multiple zinc finger-like sequences and domains associated with cellular signaling. Subsequent sequencing of the small RNAs (sRNAs) from RYNV-infected R. idaeus leaf tissue was used to determine any RYNV sequences targeted by RNA silencing and identified abundant virus-derived small RNAs (vsRNAs). The majority of the vsRNAs were 22-nt in length. We observed a highly uneven genome-wide distribution of vsRNAs with strong clustering to small defined regions distributed over both strands of the RYNV genome. Together, our data show that sequences of the aphid-transmitted pararetrovirus RYNV are targeted in red raspberry by the interfering RNA pathway, a predominant antiviral defense mechanism in plants.
Collapse
Affiliation(s)
- Melanie L Kalischuk
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-106, United States; Agriculture and Agri-Food Canada, P.O. Box 3000, Lethbridge, Alberta T1J 4B1, Canada
| | | | | | | | | |
Collapse
|
12
|
Hohn T. Plant pararetroviruses: interactions of cauliflower mosaic virus with plants and insects. Curr Opin Virol 2013; 3:629-38. [PMID: 24075119 DOI: 10.1016/j.coviro.2013.08.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/26/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
Abstract
Virion associated protein (VAP) binds to the icosahedral capsid of cauliflower mosaic virus (CaMV) - a plant pararetrovirus. The interactive coiled-coil domains of this protein can interact with the coiled-coils of either the movement protein or the aphid transmission factor, thereby mediating both cell-to-cell movement and aphid transmission. The host counters CaMV infection with two lines of defense: innate immunity and silencing. The viral protein 'transactivator/viroplasmin' (TAV) is recognized as an effector and either initiates the innate immunity reaction in a non-permissive host or interferes with it in a permissive host. As a silencing suppressor, TAV interferes with dicing of dsRNAs.
Collapse
Affiliation(s)
- Thomas Hohn
- Basel University, Botanical Institute, Basel, Switzerland.
| |
Collapse
|
13
|
Molecular characterization of Banana streak virus isolate from Musa Acuminata in China. Virol Sin 2011; 26:393-402. [PMID: 22160939 DOI: 10.1007/s12250-011-3212-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/24/2011] [Indexed: 12/24/2022] Open
Abstract
Banana streak virus (BSV), a member of genus Badnavirus, is a causal agent of banana streak disease throughout the world. The genetic diversity of BSVs from different regions of banana plantations has previously been investigated, but there are relatively few reports of the genetic characteristic of episomal (non-integrated) BSV genomes isolated from China. Here, the complete genome, a total of 7722bp (GenBank accession number DQ092436), of an isolate of Banana streak virus (BSV) on cultivar Cavendish (BSAcYNV) in Yunnan, China was determined. The genome organises in the typical manner of badnaviruses. The intergenic region of genomic DNA contains a large stem-loop, which may contribute to the ribosome shift into the following open reading frames (ORFs). The coding region of BSAcYNV consists of three overlapping ORFs, ORF1 with a non-AUG start codon and ORF2 encoding two small proteins are individually involved in viral movement and ORF3 encodes a polyprotein. Besides the complete genome, a defective genome lacking the whole RNA leader region and a majority of ORF1 and which encompasses 6525bp was also isolated and sequenced from this BSV DNA reservoir in infected banana plants. Sequence analyses showed that BSAcYNV has closest similarity in terms of genome organization and the coding assignments with an BSV isolate from Vietnam (BSAcVNV). The corresponding coding regions shared identities of 88% and -95% at nucleotide and amino acid levels, respectively. Phylogenetic analysis also indicated BSAcYNV shared the closest geographical evolutionary relationship to BSAcVNV among sequenced banana streak badnaviruses.
Collapse
|
14
|
Yeast two-hybrid and itc studies of alpha and beta spectrin interaction at the tetramerization site. Cell Mol Biol Lett 2011; 16:452-61. [PMID: 21786033 PMCID: PMC3169182 DOI: 10.2478/s11658-011-0017-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/12/2011] [Indexed: 11/20/2022] Open
Abstract
Yeast two-hybrid (Y2H) and isothermal titration calorimetry (ITC) methods were used to further study the mutational effect of non-erythroid alpha spectrin (αII) at position 22 in tetramer formation with beta spectrin (βII). Four mutants, αII-V22D, V22F, V22M and V22W, were studied. For the Y2H system, we used plasmids pGBKT7, consisting of the cDNA of the first 359 residues at the N-terminal region of αII, and pGADT7, consisting of the cDNA of residues 1697–2145 at the C-terminal region of βII. Strain AH109 yeast cells were used for colony growth assays and strain Y187 was used for β-galactosidase activity assays. Y2H results showed that the C-terminal region of βII interacts with the N-terminal region of αII, either the wild type, or those with V22F, V22M or V22W mutations. The V22D mutant did not interact with βII. For ITC studies, we used recombinant proteins of the αII N-terminal fragment and of the erythroid beta spectrin (βI) C-terminal fragment; results showed that the Kd values for V22F were similar to those for the wild-type (about 7 nM), whereas the Kd values were about 35 nM for V22M and about 90 nM for V22W. We were not able to detect any binding for V22D with ITC methods. This study clearly demonstrates that the single mutation at position 22 of αII, a region critical to the function of nonerythroid α spectrin, may lead to a reduced level of spectrin tetramers and abnormal spectrin-based membrane skeleton. These abnormalities could cause abnormal neural activities in cells.
Collapse
|
15
|
Structural insights into the molecular mechanisms of cauliflower mosaic virus transmission by its insect vector. J Virol 2010; 84:4706-13. [PMID: 20181714 DOI: 10.1128/jvi.02662-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cauliflower mosaic virus (CaMV) is transmitted from plant to plant through a seemingly simple interaction with insect vectors. This process involves an aphid receptor and two viral proteins, P2 and P3. P2 binds to both the aphid receptor and P3, itself tightly associated with the virus particle, with the ensemble forming a transmissible viral complex. Here, we describe the conformations of both unliganded CaMV P3 protein and its virion-associated form. X-ray crystallography revealed that the N-terminal domain of unliganded P3 is a tetrameric parallel coiled coil with a unique organization showing two successive four-stranded subdomains with opposite supercoiling handedness stabilized by a ring of interchain disulfide bridges. A structural model of virus-liganded P3 proteins, folding as an antiparallel coiled-coil network coating the virus surface, was derived from molecular modeling. Our results highlight the structural and biological versatility of this coiled-coil structure and provide new insights into the molecular mechanisms involved in CaMV acquisition and transmission by the insect vector.
Collapse
|
16
|
The classification and nomenclature of endogenous viruses of the family Caulimoviridae. Arch Virol 2009; 155:123-31. [DOI: 10.1007/s00705-009-0488-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 08/03/2009] [Indexed: 10/20/2022]
|
17
|
Stavolone L, Villani ME, Leclerc D, Hohn T. A coiled-coil interaction mediates cauliflower mosaic virus cell-to-cell movement. Proc Natl Acad Sci U S A 2005; 102:6219-24. [PMID: 15837934 PMCID: PMC1087906 DOI: 10.1073/pnas.0407731102] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The function of the virion-associated protein (VAP) of cauliflower mosaic virus (CaMV) has long been only poorly understood. VAP is associated with the virion but is dispensable for virus morphogenesis and replication. It mediates virus transmission by aphids through simultaneous interaction with both the aphid transmission factor and the virion. However, although insect transmission is not fundamental to CaMV survival, VAP is indispensable for spreading the virus infection within the host plant. We used a GST pull-down technique to demonstrate that VAP interacts with the viral movement protein through coiled-coil domains and surface plasmon resonance to measure the interaction kinetics. We mapped the movement protein coiled-coil to the C terminus of the protein and proved that it self-assembles as a trimer. Immunogold labeling/electron microscopy revealed that the VAP and viral movement protein colocalize on CaMV particles within plasmodesmata. These results highlight the multifunctional potential of the VAP protein conferred by its efficient coiled-coil interaction system and show a plant virus possessing a surface-exposed protein (VAP) mediating viral entry into host cells.
Collapse
Affiliation(s)
- Livia Stavolone
- Friedrich Miescher Institute, P.O. Box 2543, CH-4002, Basel, Switzerland.
| | | | | | | |
Collapse
|
18
|
Takemoto Y, Hibi T. Self-interaction of ORF II protein through the leucine zipper is essential for Soybean chlorotic mottle virus infectivity. Virology 2005; 332:199-205. [PMID: 15661152 DOI: 10.1016/j.virol.2004.11.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 10/15/2004] [Accepted: 11/19/2004] [Indexed: 10/26/2022]
Abstract
The ORF II protein (PII) of Soybean chlorotic mottle virus (SbCMV) is essential for the virus life cycle. We investigated the interactions of SbCMV PII with itself and with other essential virus proteins using a Gal4-based yeast two-hybrid system. PII interacted only with itself and not with any other virus proteins. The PII-PII interaction was confirmed by a Sos-based yeast two-hybrid system and a far-western analysis. Deletion mutagenesis mapped the self-interacting domain to the C-terminal 48 amino acids (amino acids 154-201), which contain two putative leucine zipper motifs. Introduction of amino acid substitutions to leucine/isoleucine in zipper sequences prevented the PII-PII interaction and abolished the infectivity of SbCMV. These results revealed that the self-interaction of PII through a leucine zipper is necessary for virus infection.
Collapse
Affiliation(s)
- Yutaka Takemoto
- Department of Agricultural and Environmental Biology, Laboratory of Plant Pathology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | |
Collapse
|
19
|
Plisson C, Uzest M, Drucker M, Froissart R, Dumas C, Conway J, Thomas D, Blanc S, Bron P. Structure of the Mature P3-virus Particle Complex of Cauliflower Mosaic Virus Revealed by Cryo-electron Microscopy. J Mol Biol 2005; 346:267-77. [PMID: 15663943 DOI: 10.1016/j.jmb.2004.11.052] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 11/15/2004] [Accepted: 11/17/2004] [Indexed: 11/30/2022]
Abstract
The cauliflower mosaic virus (CaMV) has an icosahedral capsid composed of the viral protein P4. The viral product P3 is a multifunctional protein closely associated with the virus particle within host cells. The best-characterized function of P3 is its implication in CaMV plant-to-plant transmission by aphid vectors, involving a P3-virion complex. In this transmission process, the viral protein P2 attaches to virion-bound P3, and creates a molecular bridge between the virus and a putative receptor in the aphid's stylets. Recently, the virion-bound P3 has been suggested to participate in cell-to-cell or long-distance movement of CaMV within the host plant. Thus, as new data accumulate, the importance of the P3-virion complex during the virus life-cycle is becoming more and more evident. To provide a first insight into the knowledge of the transmission process of the virus, we determined the 3D structures of native and P3-decorated virions by cryo-electron microscopy and computer image processing. By difference mapping and biochemical analysis, we show that P3 forms a network around the capsomers and we propose a structural model for the binding of P3 to CaMV capsid in which its C terminus is anchored deeply in the inner shell of the virion, while the N-terminal extremity is facing out of the CaMV capsid, forming dimers by coiled-coil interactions. Our results combined with existing data reinforce the hypothesis that this coiled-coil N-terminal region of P3 could coordinate several functions during the virus life-cycle, such as cell-to-cell movement and aphid-transmission.
Collapse
Affiliation(s)
- Célia Plisson
- Université Rennes I, UMR 6026 CNRS, Campus de Beaulieu, 35042 Rennes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Stavolone L, Ragozzino A, Hohn T. Characterization of Cestrum yellow leaf curling virus: a new member of the family Caulimoviridae. J Gen Virol 2003; 84:3459-3464. [PMID: 14645927 DOI: 10.1099/vir.0.19405-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cestrum yellow leaf curling virus (CmYLCV) has been characterized as the aetiological agent of the Cestrum parqui mosaic disease. The virus genome was cloned and the clone was proven to be infectious to C. parqui. The presence of typical viroplasms in virus-infected plant tissue and the information obtained from the complete genomic sequence confirmed CmYLCV as a member of the Caulimoviridae family. All characteristic domains conserved in plant pararetroviruses were found in CmYLCV. Its genome is 8253 bp long and contains seven open reading frames (ORFs). Phylogenetic analysis of the relationships with other members of the Caulimoviridae revealed that CmYLCV is closely related to the Soybean chlorotic mottle virus (SbCMV)-like genus and particularly to SbCMV. However, in contrast to the other members of this genus, the primer-binding site is located in the intercistronic region following ORF Ib rather than within this ORF, and an ORF corresponding to ORF VII is missing.
Collapse
Affiliation(s)
| | | | - Thomas Hohn
- Friedrich Miescher Institute, Basel, Switzerland
| |
Collapse
|
21
|
Jenke M, Sánchez A, Monje F, Stühmer W, Weseloh RM, Pardo LA. C-terminal domains implicated in the functional surface expression of potassium channels. EMBO J 2003; 22:395-403. [PMID: 12554641 PMCID: PMC140720 DOI: 10.1093/emboj/cdg035] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A short C-terminal domain is required for correct tetrameric assembly in some potassium channels. Here, we show that this domain forms a coiled coil that determines not only the stability but also the selectivity of the multimerization. Synthetic peptides comprising the sequence of this domain in Eag1 and other channels are able to form highly stable tetrameric coiled coils and display selective heteromultimeric interactions. We show that loss of function caused by disruption of this domain in Herg1 can be rescued by introducing the equivalent domain from Eag1, and that this chimeric protein can form heteromultimers with Eag1 while wild-type Erg1 cannot. Additionally, a short endoplasmic reticulum retention sequence closely preceding the coiled coil plays a crucial role for surface expression. Both domains appear to co-operate to form fully functional channels on the cell surface and are a frequent finding in ion channels. Many pathological phenotypes may be attributed to mutations affecting one or both domains.
Collapse
Affiliation(s)
- Marc Jenke
- Max Planck Institute for Experimental Medicine, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
Present address: iOnGen AG, Rudolf Wissell Straße 28, 37079 Göttingen, Germany Present address: Oppenheim Research GmbH, Unter Sachsenlausen 4, 50667 Köln, Germany Corresponding author e-mail:
R.M.Weseloh and L.A.Pardo contributed equally to this work
| | | | | | | | - Rüdiger M. Weseloh
- Max Planck Institute for Experimental Medicine, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
Present address: iOnGen AG, Rudolf Wissell Straße 28, 37079 Göttingen, Germany Present address: Oppenheim Research GmbH, Unter Sachsenlausen 4, 50667 Köln, Germany Corresponding author e-mail:
R.M.Weseloh and L.A.Pardo contributed equally to this work
| | - Luis A. Pardo
- Max Planck Institute for Experimental Medicine, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
Present address: iOnGen AG, Rudolf Wissell Straße 28, 37079 Göttingen, Germany Present address: Oppenheim Research GmbH, Unter Sachsenlausen 4, 50667 Köln, Germany Corresponding author e-mail:
R.M.Weseloh and L.A.Pardo contributed equally to this work
| |
Collapse
|
22
|
Kobayashi K, Tsuge S, Stavolone L, Hohn T. The cauliflower mosaic virus virion-associated protein is dispensable for viral replication in single cells. J Virol 2002; 76:9457-64. [PMID: 12186927 PMCID: PMC136477 DOI: 10.1128/jvi.76.18.9457-9464.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2001] [Accepted: 06/03/2002] [Indexed: 11/20/2022] Open
Abstract
Cauliflower mosaic virus (CaMV) open reading frame III (ORF III) codes for a virion-associated protein (Vap), which is one of two viral proteins essential for aphid transmission. However, unlike the aphid transmission factor encoded by CaMV ORF II, Vap is also essential for systemic infection, suggesting that it is a multifunctional protein. To elucidate the additional function or functions of Vap, we tested the replication of noninfectious ORF III-defective mutants in transfected turnip protoplasts. PCR and Western blot analyses revealed that CaMV replication had occurred with an efficiency similar to that of wild-type virus and without leading to reversions. Electron microscopic examination revealed that an ORF III frameshift mutant formed normally structured virions. These results demonstrate that Vap is dispensable for replication in single cells and is not essential for virion morphogenesis. Analysis of inoculated turnip leaves showed that the ORF III frameshift mutant does not cause any detectable local infection. These results are strongly indicative of a role for Vap in virus movement.
Collapse
|