1
|
Rogers DL, McClure GB, Ruiz JC, Abee CR, Vanchiere JA. Endemic Viruses of Squirrel Monkeys (Saimiri spp.). Comp Med 2015; 65:232-240. [PMID: 26141448 PMCID: PMC4485632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/10/2014] [Accepted: 01/25/2015] [Indexed: 06/04/2023]
Abstract
Nonhuman primates are the experimental animals of choice for the study of many human diseases. As such, it is important to understand that endemic viruses of primates can potentially affect the design, methods, and results of biomedical studies designed to model human disease. Here we review the viruses known to be endemic in squirrel monkeys (Saimiri spp.). The pathogenic potential of these viruses in squirrel monkeys that undergo experimental manipulation remains largely unexplored but may have implications regarding the use of squirrel monkeys in biomedical research.
Collapse
Affiliation(s)
- Donna L Rogers
- Department of Pediatrics, Section of Infectious Diseases, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Gloria B McClure
- Department of Pediatrics, Section of Infectious Diseases, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Julio C Ruiz
- Keeling Center for Comparative Medicine, Department of Veterinary Sciences, University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Christian R Abee
- Keeling Center for Comparative Medicine, Department of Veterinary Sciences, University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - John A Vanchiere
- Department of Pediatrics, Section of Infectious Diseases, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA.
| |
Collapse
|
2
|
Species restriction of Herpesvirus saimiri and Herpesvirus ateles: Human lymphocyte transformation correlates with distinct signaling properties of viral oncoproteins. Virus Res 2012; 165:179-89. [DOI: 10.1016/j.virusres.2012.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/06/2012] [Accepted: 02/16/2012] [Indexed: 01/05/2023]
|
3
|
Heck E, Friedrich U, Gack MU, Lengenfelder D, Schmidt M, Müller-Fleckenstein I, Fleckenstein B, Ensser A, Biesinger B. Growth transformation of human T cells by herpesvirus saimiri requires multiple Tip-Lck interaction motifs. J Virol 2006; 80:9934-42. [PMID: 17005671 PMCID: PMC1617286 DOI: 10.1128/jvi.01112-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lymphoma induction and T-cell transformation by herpesvirus saimiri strain C488 depends on two viral oncoproteins, StpC and Tip. The major interaction partner of Tip is the protein tyrosine kinase Lck, a key regulator of T-cell activation. The Lck binding domain (LBD) of Tip comprises two interaction motifs, a proline-rich SH3 domain-binding sequence (SH3B) and a region with homology to the C terminus of Src family kinase domains (CSKH). In addition, biophysical binding analyses with purified Lck-SH2 domain suggest the phosphorylated tyrosine residue 127 of Tip (pY127) as a potential third Lck interaction site. Here, we addressed the relevance of the individual binding motifs, SH3B, CSKH, and pY127, for Tip-Lck interaction and for human T-cell transformation. Both motifs within the LBD displayed Lck binding activities and cooperated to achieve a highly efficient interaction, while pY127, the major tyrosine phosphorylation site of Tip, did not enhance Lck binding in T cells. Herpesvirus saimiri strain C488 recombinants lacking one or both LBD motifs of Tip lost their transforming potential on human cord blood lymphocytes. Recombinant virus expressing Tip with a mutation at position Y127 was still able to transform human T lymphocytes but, in contrast to wild-type virus, was strictly dependent on exogenous interleukin-2. Thus, the strong Lck binding mediated by cooperation of both LBD motifs was essential for the transformation of human T cells by herpesvirus saimiri C488. The major tyrosine phosphorylation site Y127 of Tip was particularly required for transformation in the absence of exogenous interleukin-2, suggesting its involvement in cytokine signaling pathways.
Collapse
Affiliation(s)
- Elke Heck
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, D-91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Acute T-lymphoproliferative syndromes are caused by herpesvirus saimiri (HVS) and ateles in neotropical primates; by alcelaphine herpesvirus-1 and ovine herpesvirus-2 strains in domestic cattle and other ungulates; and by the α-herpesvirus of Marek's disease in chickens. T-cell lymphoproliferation caused by these herpesviruses has short incubation periods and a rapid course when compared with retroviral disease. The B-lymphotropic Epstein–Barr virus (EBV) is also associated with some human T-cell malignancies. Analogous to EBV in B cells, HVS isolates of the subgroup C are uniquely capable of transforming human and Old World primate T lymphocytes to continuous growth in cell culture and can provide useful tools for T-cell immunology or gene transfer. Signal transduction pathways stimulated by the viral oncoproteins seem to converge at related cellular effector proteins, in total providing a proproliferative signal. However, the viral oncoproteins most likely evolved to evade immune recognition and to support persistent infection in the natural host, where these viruses are frequently apathogenic.
Collapse
Affiliation(s)
- Armin Ensser
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Klinische und Molekulare Virologie, Schlossgarten 4, 91054 Erlangen, Germany
| |
Collapse
|
5
|
Abstract
gamma2-Herpesviruses, also termed rhadinoviruses, have long been known as animal pathogens causing lymphoproliferative diseases such as malignant catarrhal fever in cattle or T-cell lymphoma in certain Neotropical primates. The rhadinovirus prototype is Herpesvirus saimiri (HVS), a T-lymphotropic agent of squirrel monkeys (Saimiri sciureus); Herpesvirus ateles (HVA) is closely related to HVS. The first human rhadinovirus, human herpesvirus type 8 (HHV-8), was discovered a decade ago in Kaposi's sarcoma (KS) biopsies. It was found to be strongly associated with all forms of KS, as well as with multicentric Castleman's disease and primary effusion lymphoma (PEL). Since DNA of this virus is regularly found in all KS forms, and specifically in the spindle cells of KS, it was also termed KS-associated herpesvirus (KSHV). Several simian rhadinoviruses related to KSHV have been discovered in various Old World primates, though they seem only loosely associated with pathogenicity or tumor induction. In contrast, HVS and HVA cause T-cell lymphoma in numerous non-natural primate hosts; HVS strains of the subgroup C are capable of transforming human and simian T-lymphocytes to continuous growth in cell culture and can provide useful tools for T-cell immunology or gene transfer. Here, we describe their natural history, genome structure, biology, and pathogenesis in T-cell transformation and oncogenesis.
Collapse
Affiliation(s)
- Armin Ensser
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | | |
Collapse
|
6
|
Heck E, Lengenfelder D, Schmidt M, Müller-Fleckenstein I, Fleckenstein B, Biesinger B, Ensser A. T-cell growth transformation by herpesvirus saimiri is independent of STAT3 activation. J Virol 2005; 79:5713-20. [PMID: 15827186 PMCID: PMC1082769 DOI: 10.1128/jvi.79.9.5713-5720.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus saimiri (saimirine herpesvirus 2) (HVS), a T-lymphotropic tumor virus, induces lymphoproliferative disease in several species of New World primates. In addition, strains of HVS subgroup C are able to transform T cells of Old World primates, including humans, to permanently growing T-cell lines. In concert with the Stp oncoprotein, the tyrosine kinase-interacting protein (Tip) of HVS C488 is required for T-cell transformation in vitro and lymphoma induction in vivo. Tip was previously shown to interact with the protein tyrosine kinase Lck. Constitutive activation of signal transducers and activators of transcription (STATs) has been associated with oncogenesis and has also been detected in HVS-transformed T-cell lines. Furthermore, Tip contains a putative consensus YXPQ binding motif for the SH2 (src homology 2) domains of STAT1 and STAT3. Tip tyrosine phosphorylation at this site was required for binding of STATs and induction of STAT-dependent transcription. Here we sought to address the relevance of STAT activation for transformation of human T cells by introducing a tyrosine-to-phenylalanine mutation in the YXPQ motif of Tip of HVS C488. Unexpectedly, the recombinant virus was still able to transform human T lymphocytes, but it had lost its capability to activate STAT3 as well as STAT1. This demonstrates that growth transformation by HVS is independent of STAT3 activation.
Collapse
Affiliation(s)
- Elke Heck
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Schlossgarten 4, D-91054 Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Herpesvirus saimiri (Saimiriine herpesvirus-2), a gamma2-herpesvirus (rhadinovirus) of non-human primates, causes T-lymphoproliferative diseases in susceptible organisms and transforms human and non-human T lymphocytes to continuous growth in vitro in the absence of stimulation. T cells transformed by H. saimiri retain many characteristics of intact T lymphocytes, such as the sensitivity to interleukin-2 and the ability to recognize the corresponding antigens. As a result, H. saimiri is widely used in immunobiology for immortalization of various difficult-to-obtain and/or -to-maintain T cells in order to obtain useful experimental models. In particular, H. saimiri-transformed human T cells are highly susceptible to infection with HIV-1 and -2. This makes them a convenient tool for propagation of poorly replicating strains of HIV, including primary clinical isolates. Therefore, the mechanisms mediating transformation of T cells by H. saimiri are of considerable interest. A single transformation-associated protein, StpA or StpB, mediates cell transformation by H. saimiri strains of group A or B, respectively. Strains of group C, which exhibit the highest oncogenic potential, have two proteins involved in transformation-StpC and Tip. Both proteins have been shown to dramatically affect signal transduction pathways leading to the activation of crucial transcription factors. This review is focused on the biological effects and molecular mechanisms of action of proteins involved in H. saimiri-dependent transformation.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Gene Expression Regulation, Viral/genetics
- HIV-1/genetics
- HIV-1/metabolism
- Herpesviridae Infections/genetics
- Herpesviridae Infections/metabolism
- Herpesvirus 2, Saimiriine/genetics
- Herpesvirus 2, Saimiriine/metabolism
- Humans
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/metabolism
- Models, Biological
- Oncogene Proteins, Viral/biosynthesis
- Oncogene Proteins, Viral/genetics
- Tumor Virus Infections/genetics
- Tumor Virus Infections/metabolism
Collapse
Affiliation(s)
- Alexander Y Tsygankov
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 N. Broad Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Ensser A, Thurau M, Wittmann S, Fickenscher H. The genome of herpesvirus saimiri C488 which is capable of transforming human T cells. Virology 2003; 314:471-87. [PMID: 14554077 DOI: 10.1016/s0042-6822(03)00449-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herpesvirus saimiri (HVS), the rhadinovirus prototype, is apathogenic in the persistently infected natural host, the squirrel monkey, but causes acute T cell leukemia in other New World primate species. In contrast to subgroups A and B, only strains of HVS subgroup C such as C488 are capable of transforming primary human T cells to stable antigen-independent growth in culture. Here, we report the complete 155-kb genome sequence of the transformation-competent HVS strain C488. The A+T-rich unique L-DNA of 113,027 bp encodes at least 77 open reading frames and 5 URNAs. In addition to the viral oncogenes stp and tip, only a few genes including the transactivator orf50 and the glycoprotein orf51 are highly divergent. In a series of new primary HVS isolates, the subgroup-specific divergence of the orf50/orf51 alleles was studied. In these new isolates, the orf50/orf51 alleles of the respective subgroup segregate with the stp and/or tip oncogene alleles, which are essential for transformation.
Collapse
Affiliation(s)
- Armin Ensser
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Schlossgarten 4, D-91054 Erlangen, Germany
| | | | | | | |
Collapse
|