1
|
Mehrabipour M, Jasemi NSK, Dvorsky R, Ahmadian MR. A Systematic Compilation of Human SH3 Domains: A Versatile Superfamily in Cellular Signaling. Cells 2023; 12:2054. [PMID: 37626864 PMCID: PMC10453029 DOI: 10.3390/cells12162054] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
SRC homology 3 (SH3) domains are fundamental modules that enable the assembly of protein complexes through physical interactions with a pool of proline-rich/noncanonical motifs from partner proteins. They are widely studied modular building blocks across all five kingdoms of life and viruses, mediating various biological processes. The SH3 domains are also implicated in the development of human diseases, such as cancer, leukemia, osteoporosis, Alzheimer's disease, and various infections. A database search of the human proteome reveals the existence of 298 SH3 domains in 221 SH3 domain-containing proteins (SH3DCPs), ranging from 13 to 720 kilodaltons. A phylogenetic analysis of human SH3DCPs based on their multi-domain architecture seems to be the most practical way to classify them functionally, with regard to various physiological pathways. This review further summarizes the achievements made in the classification of SH3 domain functions, their binding specificity, and their significance for various diseases when exploiting SH3 protein modular interactions as drug targets.
Collapse
Affiliation(s)
- Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Neda S. Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
- Center for Interdisciplinary Biosciences, P. J. Šafárik University, 040 01 Košice, Slovakia
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| |
Collapse
|
2
|
Hu C, Priceputu E, Cool M, Chrobak P, Bouchard N, Forestier C, Lowell CA, Bénichou S, Hanna Z, Royal V, Jolicoeur P. NEF-Induced HIV-Associated Nephropathy Through HCK/LYN Tyrosine Kinases. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:702-724. [PMID: 36868467 PMCID: PMC10284032 DOI: 10.1016/j.ajpath.2023.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023]
Abstract
HIV-1-associated nephropathy (HIVAN) is a severe complication of HIV-1 infection. To gain insight into the pathogenesis of kidney disease in the setting of HIV, a transgenic (Tg) mouse model [CD4C/HIV-negative regulator factor (Nef)] was used in which HIV-1 nef expression is under control of regulatory sequences (CD4C) of the human CD4 gene, thus allowing expression in target cells of the virus. These Tg mice develop a collapsing focal segmental glomerulosclerosis associated with microcystic dilatation, similar to human HIVAN. To identify kidney cells permissive to the CD4C promoter, CD4C reporter Tg lines were used. They showed preferential expression in glomeruli, mainly in mesangial cells. Breeding CD4C/HIV Tg mice on 10 different mouse backgrounds showed that HIVAN was modulated by host genetic factors. Studies of gene-deficient Tg mice revealed that the presence of B and T cells and that of several genes was dispensable for the development of HIVAN: those involved in apoptosis (Trp53, Tnfsf10, Tnf, Tnfrsf1b, and Bax), in immune cell recruitment (Ccl3, Ccl2, Ccr2, Ccr5, and Cx3cr1), in nitric oxide (NO) formation (Nos3 and Nos2), or in cell signaling (Fyn, Lck, and Hck/Fgr). However, deletion of Src partially and that of Hck/Lyn largely abrogated its development. These data suggest that Nef expression in mesangial cells through hematopoietic cell kinase (Hck)/Lck/Yes novel tyrosine kinase (Lyn) represents important cellular and molecular events for the development of HIVAN in these Tg mice.
Collapse
Affiliation(s)
- Chunyan Hu
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Elena Priceputu
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Marc Cool
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Pavel Chrobak
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Nathalie Bouchard
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Clara Forestier
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, California
| | - Serge Bénichou
- Insitut Cochin, Centre National de la Recherche Scientifique UMR8104, Université Paris Descartes and INSERM U1016, Paris, France
| | - Zaher Hanna
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada; Department of Medicine, University of Montreal, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Virginie Royal
- Department of Pathology and Cellular Biology, University of Montreal, Montreal, Quebec, Canada
| | - Paul Jolicoeur
- Department of Microbiology/Immunology, University of Montreal, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Smith KD, Akilesh S. Collapsing glomerulopathy: unraveling varied pathogeneses. Curr Opin Nephrol Hypertens 2023; 32:213-222. [PMID: 36811644 DOI: 10.1097/mnh.0000000000000873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
PURPOSE OF REVIEW Collapsing glomerulopathy presents clinically with nephrotic syndrome and rapid progressive loss of kidney function. Animal models and patient studies have uncovered numerous clinical and genetic conditions associated with collapsing glomerulopathy, as well as putative mechanisms, which will be reviewed here. RECENT FINDINGS Collapsing glomerulopathy is classified pathologically as a variant of focal and segmental glomerulosclerosis (FSGS). As such, most research efforts have focused on the causative role of podocyte injury in driving the disease. However, studies have also shown that injury to the glomerular endothelium or interruption of the podocyte-glomerular endothelial cell signaling axis can also cause collapsing glomerulopathy. Furthermore, emerging technologies are now enabling exploration of diverse molecular pathways that can precipitate collapsing glomerulopathy using biopsies from patients with the disease. SUMMARY Since its original description in the 1980s, collapsing glomerulopathy has been the subject of intense study, and these efforts have uncovered numerous insights into potential disease mechanisms. Newer technologies will enable profiling of the intra-patient and inter-patient variability in collapsing glomerulopathy mechanisms directly in patient biopsies, which will improve the diagnosis and classification of collapsing glomerulopathy.
Collapse
Affiliation(s)
- Kelly D Smith
- Department of Laboratory Medicine and Pathology, University of Washington
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington
- Kidney Research Institute, Seattle, Washington, USA
| |
Collapse
|
4
|
Fortner A, Chera A, Tanca A, Bucur O. Apoptosis regulation by the tyrosine-protein kinase CSK. Front Cell Dev Biol 2022; 10:1078180. [PMID: 36578781 PMCID: PMC9792154 DOI: 10.3389/fcell.2022.1078180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
C-terminal Src kinase (CSK) is a cytosolic tyrosine-protein kinase with an important role in regulating critical cellular decisions, such as cellular apoptosis, survival, proliferation, cytoskeletal organization and many others. Current knowledge on the CSK mechanisms of action, regulation and functions is still at an early stage, most of CSK's known actions and functions being mediated by the negative regulation of the SRC family of tyrosine kinases (SFKs) through phosphorylation. As SFKs play a vital role in apoptosis, cell proliferation and survival regulation, SFK inhibition by CSK has a pro-apoptotic effect, which is mediated by the inhibition of cellular signaling cascades controlled by SFKs, such as the MAPK/ERK, STAT3 and PI3K/AKT signaling pathways. Abnormal functioning of CSK and SFK activation can lead to diseases such as cancer, cardiovascular and neurological manifestations. This review describes apoptosis regulation by CSK, CSK inhibition of the SFKs and further explores the clinical relevance of CSK in important pathologies, such as cancer, autoimmune, autoinflammatory, neurologic diseases, hypertension and HIV/AIDS.
Collapse
Affiliation(s)
- Andra Fortner
- Victor Babes National Institute of Pathology, Bucharest, Romania,Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Alexandra Chera
- Victor Babes National Institute of Pathology, Bucharest, Romania,Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Antoanela Tanca
- Victor Babes National Institute of Pathology, Bucharest, Romania,Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania,*Correspondence: Octavian Bucur, ; Antoanela Tanca,
| | - Octavian Bucur
- Victor Babes National Institute of Pathology, Bucharest, Romania,Viron Molecular Medicine Institute, Boston, MA, United States,*Correspondence: Octavian Bucur, ; Antoanela Tanca,
| |
Collapse
|
5
|
Sperber HS, Togarrati PP, Raymond KA, Bouzidi MS, Gilfanova R, Gutierrez AG, Muench MO, Pillai SK. μ-Lat: A mouse model to evaluate human immunodeficiency virus eradication strategies. FASEB J 2020; 34:14615-14630. [PMID: 32901981 PMCID: PMC8787083 DOI: 10.1096/fj.202001612rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/08/2023]
Abstract
A critical barrier to the development of a human immunodeficiency virus (HIV) cure is the lack of a scalable animal model that enables robust evaluation of eradication approaches prior to testing in humans. We established a humanized mouse model of latent HIV infection by transplanting "J-Lat" cells, Jurkat cells harboring a latent HIV provirus encoding an enhanced green fluorescent protein (GFP) reporter, into irradiated adult NOD.Cg-Prkdcscid Il2rgtm1Wjl /SzJ (NSG) mice. J-Lat cells exhibited successful engraftment in several tissues including spleen, bone barrow, peripheral blood, and lung, in line with the diverse natural tissue tropism of HIV. Administration of tumor necrosis factor (TNF)-α, an established HIV latency reversal agent, significantly induced GFP expression in engrafted cells across tissues, reflecting viral reactivation. These data suggest that our murine latency ("μ-Lat") model enables efficient determination of how effectively viral eradication agents, including latency reversal agents, penetrate, and function in diverse anatomical sites harboring HIV in vivo.
Collapse
Affiliation(s)
- Hannah S. Sperber
- Vitalant Research Institute, San Francisco, California, United States of America
- Free University of Berlin, Institute of Biochemistry, Berlin, Germany
- University of California, San Francisco, California, United States of America
| | | | - Kyle A. Raymond
- Vitalant Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
| | - Mohamed S. Bouzidi
- Vitalant Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
| | - Renata Gilfanova
- Vitalant Research Institute, San Francisco, California, United States of America
| | - Alan G. Gutierrez
- Vitalant Research Institute, San Francisco, California, United States of America
| | - Marcus O. Muench
- Vitalant Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
| | - Satish K. Pillai
- Vitalant Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
| |
Collapse
|
6
|
Staudt RP, Alvarado JJ, Emert-Sedlak LA, Shi H, Shu ST, Wales TE, Engen JR, Smithgall TE. Structure, function, and inhibitor targeting of HIV-1 Nef-effector kinase complexes. J Biol Chem 2020; 295:15158-15171. [PMID: 32862141 DOI: 10.1074/jbc.rev120.012317] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/28/2020] [Indexed: 11/06/2022] Open
Abstract
Antiretroviral therapy has revolutionized the treatment of AIDS, turning a deadly disease into a manageable chronic condition. Life-long treatment is required because existing drugs do not eradicate HIV-infected cells. The emergence of drug-resistant viral strains and uncertain vaccine prospects highlight the pressing need for new therapeutic approaches with the potential to clear the virus. The HIV-1 accessory protein Nef is essential for viral pathogenesis, making it a promising target for antiretroviral drug discovery. Nef enhances viral replication and promotes immune escape of HIV-infected cells but lacks intrinsic enzymatic activity. Instead, Nef works through diverse interactions with host cell proteins primarily related to kinase signaling pathways and endosomal trafficking. This review emphasizes the structure, function, and biological relevance of Nef interactions with host cell protein-tyrosine kinases in the broader context of Nef functions related to enhancement of the viral life cycle and immune escape. Drug discovery targeting Nef-mediated kinase activation has allowed identification of promising inhibitors of multiple Nef functions. Pharmacological inhibitors of Nef-induced MHC-I down-regulation restore the adaptive immune response to HIV-infected cells in vitro and have the potential to enhance immune recognition of latent viral reservoirs as part of a strategy for HIV clearance.
Collapse
Affiliation(s)
- Ryan P Staudt
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John J Alvarado
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lori A Emert-Sedlak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haibin Shi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sherry T Shu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
7
|
Src family kinases and pulmonary fibrosis: A review. Biomed Pharmacother 2020; 127:110183. [PMID: 32388241 DOI: 10.1016/j.biopha.2020.110183] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/26/2020] [Accepted: 04/17/2020] [Indexed: 01/15/2023] Open
Abstract
Src family kinases (SFKs) is a non-receptor protein tyrosine kinases family. They are crucial in signal transduction and regulation of various cell biological processes, such as proliferation, differentiation and apoptosis. The role and mechanism of SFKs in tumorigenesis have been widely studied. However, more and more studies have also shown that SFKs are involved in the pathogenesis of pulmonary fibrosis (PF). Myofibroblasts activation, epithelial-mesenchymal transition and inflammation response are three pivotal pathomechanisms in the development of pulmonary fibrotic disease. In this article, we summarize the roles of SFKs in these biological processes. SFKs play a crucial role in the pathogenesis of PF, making it a promising molecular target for the treatment of these diseases. We will pay special attention to the role of SFKs in idiopathic pulmonary fibrosis (IPF), and also emphasize the important findings in other pulmonary fibrotic diseases because their pathological mechanisms are similar. We will then describe the translation results obtained with SFKs inhibitors in basic and clinical studies.
Collapse
|
8
|
Bruggeman LA. Common Mechanisms of Viral Injury to the Kidney. Adv Chronic Kidney Dis 2019; 26:164-170. [PMID: 31202388 PMCID: PMC6578596 DOI: 10.1053/j.ackd.2018.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 11/11/2022]
Abstract
Viral infections in an immunocompetent host can cause both acute and chronic kidney diseases, either by direct damage to the infected kidney cells or as a consequence of systemic immune responses that impact the kidneys' function. Viruses have evolved mechanisms to hijack signaling pathways of the infected cell, including the mammalian target of rapamycin pathway to support viral replication, and to evade antiviral immune responses such as those mediated by miR-155 via microRNA mimetics expressed by the virus. At both the cellular and systemic levels, the host has also evolved mechanisms to counter the viral subversion strategies in the evolutionary battle for mutual survival. In the era of genomic medicine, understanding individual genetic variations that lead to differences in susceptibilities to infection and variabilities in immune responses may open new avenues for treatment, such as the recently described functions of apolipoprotein L1 risk alleles in HIV-associated nephropathy. In addition, state-of-the-art high-throughput sequencing methods have discovered new viruses as the cause for chronic diseases not previously attributed to an infection. The potential application of these methods to idiopathic kidney diseases may reveal similar occult infections by unknown viruses. Precision medicine objectives to optimize host-directed and pathogen-directed therapies for kidney diseases associated with infectious causes will only be achieved through detailed understanding of genetic susceptibility associated with immune responses and viral tropism.
Collapse
Affiliation(s)
- Leslie A Bruggeman
- Departments of Inflammation & Immunity and Nephrology, Cleveland Clinic, and Case Western Reserve University School of Medicine, Cleveland, OH.
| |
Collapse
|
9
|
Krishnakumar V, Durairajan SSK, Alagarasu K, Li M, Dash AP. Recent Updates on Mouse Models for Human Immunodeficiency, Influenza, and Dengue Viral Infections. Viruses 2019; 11:252. [PMID: 30871179 PMCID: PMC6466164 DOI: 10.3390/v11030252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/09/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
Well-developed mouse models are important for understanding the pathogenesis and progression of immunological response to viral infections in humans. Moreover, to test vaccines, anti-viral drugs and therapeutic agents, mouse models are fundamental for preclinical investigations. Human viruses, however, seldom infect mice due to differences in the cellular receptors used by the viruses for entry, as well as in the innate immune responses in mice and humans. In other words, a species barrier exists when using mouse models for investigating human viral infections. Developing transgenic (Tg) mice models expressing the human genes coding for viral entry receptors and knock-out (KO) mice models devoid of components involved in the innate immune response have, to some extent, overcome this barrier. Humanized mouse models are a third approach, developed by engrafting functional human cells and tissues into immunodeficient mice. They are becoming indispensable for analyzing human viral diseases since they nearly recapitulate the human disease. These mouse models also serve to test the efficacy of vaccines and antiviral agents. This review provides an update on the Tg, KO, and humanized mouse models that are used in studies investigating the pathogenesis of three important human-specific viruses, namely human immunodeficiency (HIV) virus 1, influenza, and dengue.
Collapse
Affiliation(s)
- Vinodhini Krishnakumar
- Department of Microbiology, School of Life Sciences, Central University of Tamilnadu, Tiruvarur 610 005, India.
| | | | - Kalichamy Alagarasu
- Dengue/Chikungunya Group, ICMR-National Institute of Virology, Pune 411001, India.
| | - Min Li
- Neuroscience Research Laboratory, Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, HKSAR, China.
| | | |
Collapse
|
10
|
Implications of HIV-1 Nef for "Shock and Kill" Strategies to Eliminate Latent Viral Reservoirs. Viruses 2018; 10:v10120677. [PMID: 30513570 PMCID: PMC6316150 DOI: 10.3390/v10120677] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
Finding a cure for HIV is challenging because the virus is able to integrate itself into the host cell genome and establish a silent state, called latency, allowing it to evade antiviral drugs and the immune system. Various “shock and kill” strategies are being explored in attempts to eliminate latent HIV reservoirs. The goal of these approaches is to reactivate latent viruses (“shock”), thereby exposing them to clearance by viral cytopathic effects or immune-mediated responses (“kill”). To date, there has been limited clinical success using these methods. In this review, we highlight various functions of the HIV accessory protein Nef and discuss their double-edged effects that may contribute to the limited effectiveness of current “shock and kill” methods to eradicate latent HIV reservoirs in treated individuals.
Collapse
|
11
|
Bone degradation machinery of osteoclasts: An HIV-1 target that contributes to bone loss. Proc Natl Acad Sci U S A 2018; 115:E2556-E2565. [PMID: 29463701 DOI: 10.1073/pnas.1713370115] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bone deficits are frequent in HIV-1-infected patients. We report here that osteoclasts, the cells specialized in bone resorption, are infected by HIV-1 in vivo in humanized mice and ex vivo in human joint biopsies. In vitro, infection of human osteoclasts occurs at different stages of osteoclastogenesis via cell-free viruses and, more efficiently, by transfer from infected T cells. HIV-1 infection markedly enhances adhesion and osteolytic activity of human osteoclasts by modifying the structure and function of the sealing zone, the osteoclast-specific bone degradation machinery. Indeed, the sealing zone is broader due to F-actin enrichment of its basal units (i.e., the podosomes). The viral protein Nef is involved in all HIV-1-induced effects partly through the activation of Src, a regulator of podosomes and of their assembly as a sealing zone. Supporting these results, Nef-transgenic mice exhibit an increased osteoclast density and bone defects, and osteoclasts derived from these animals display high osteolytic activity. Altogether, our study evidences osteoclasts as host cells for HIV-1 and their pathological contribution to bone disorders induced by this virus, in part via Nef.
Collapse
|
12
|
Ospina Stella A, Turville S. All-Round Manipulation of the Actin Cytoskeleton by HIV. Viruses 2018; 10:v10020063. [PMID: 29401736 PMCID: PMC5850370 DOI: 10.3390/v10020063] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022] Open
Abstract
While significant progress has been made in terms of human immunodeficiency virus (HIV) therapy, treatment does not represent a cure and remains inaccessible to many people living with HIV. Continued mechanistic research into the viral life cycle and its intersection with many aspects of cellular biology are not only fundamental in the continued fight against HIV, but also provide many key observations of the workings of our immune system. Decades of HIV research have testified to the integral role of the actin cytoskeleton in both establishing and spreading the infection. Here, we review how the virus uses different strategies to manipulate cellular actin networks and increase the efficiency of various stages of its life cycle. While some HIV proteins seem able to bind to actin filaments directly, subversion of the cytoskeleton occurs indirectly by exploiting the power of actin regulatory proteins, which are corrupted at multiple levels. Furthermore, this manipulation is not restricted to a discrete class of proteins, but rather extends throughout all layers of the cytoskeleton. We discuss prominent examples of actin regulators that are exploited, neutralized or hijacked by the virus, and address how their coordinated deregulation can lead to changes in cellular behavior that promote viral spreading.
Collapse
Affiliation(s)
- Alberto Ospina Stella
- The Kirby Institute, University of New South Wales (UNSW), Sydney NSW 2052, Australia.
| | - Stuart Turville
- The Kirby Institute, University of New South Wales (UNSW), Sydney NSW 2052, Australia.
| |
Collapse
|
13
|
Bhattacharya R, Ovies C, Williamson D, Mitchell S, Funk PE. SH3 dependent cell death signaling of the avian chB6 alloantigen. Cell Immunol 2017; 322:34-40. [PMID: 28992949 DOI: 10.1016/j.cellimm.2017.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/10/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
Abstract
In chickens, B cells develop in the bursa of Fabricius, a unique organ for B cell development. Most B cells will die within the bursa, mirroring cell losses seen in mammalian bone marrow as central tolerance is enforced at the transition to mature cells. B cell responses are shaped by a complex interplay of signals. Signals in addition to BCR that impact central tolerance have recently been described. We have been interested in chB6, a novel alloantigen on B cells in the chicken. chB6 is found in close proximity to the BCR and can trigger apoptosis after cross-linking by antibody. chB6 has two Ig domains, placing it within the CD2/SLAM family of molecules, but its cytoplasmic domain is unique. We have used a site-specific mutagenesis approach to show that an SH3 binding site in chB6 is required for the induction of apoptosis, suggesting parallels to CD2 signaling.
Collapse
Affiliation(s)
- Rohini Bhattacharya
- Department of Biological Sciences, DePaul University, 2325N Clifton, Chicago IL 60614, United States
| | - Cristian Ovies
- Department of Biological Sciences, DePaul University, 2325N Clifton, Chicago IL 60614, United States
| | - Deisi Williamson
- Department of Biological Sciences, DePaul University, 2325N Clifton, Chicago IL 60614, United States
| | - Sarah Mitchell
- Department of Biological Sciences, DePaul University, 2325N Clifton, Chicago IL 60614, United States
| | - Phillip E Funk
- Department of Biological Sciences, DePaul University, 2325N Clifton, Chicago IL 60614, United States.
| |
Collapse
|
14
|
HIV-I Nef inhibitors: a novel class of HIV-specific immune adjuvants in support of a cure. AIDS Res Ther 2017; 14:53. [PMID: 28893294 PMCID: PMC5594582 DOI: 10.1186/s12981-017-0175-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/11/2017] [Indexed: 11/22/2022] Open
Abstract
The success of many current vaccines relies on a formulation that incorporates an immune activating adjuvant. This will hold true for the design of a successful therapeutic HIV vaccine targeted at controlling reactivated virus following cessation of combined antiretroviral therapy (cART). The HIV accessory protein Nef functions by interfering with HIV antigen presentation through the major histocompatibility complex I (MHC-I) pathway thereby suppressing CD8+ cytotoxic T cell (CTL)-mediated killing of HIV infected cells. Thus, this important impediment to HIV vaccine success must be circumvented. This review covers our current knowledge of Nef inhibitors that may serve as immune adjuvants that will specifically restore and enhance CTL-mediated killing of reactivated HIV infected cells as part of an overall vaccine strategy to affect a cure for HIV infection.
Collapse
|
15
|
Wang J, Zhuang S. Src family kinases in chronic kidney disease. Am J Physiol Renal Physiol 2017; 313:F721-F728. [PMID: 28615246 PMCID: PMC5625110 DOI: 10.1152/ajprenal.00141.2017] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/30/2017] [Accepted: 06/08/2017] [Indexed: 01/07/2023] Open
Abstract
Src family kinases (SFKs) belong to nonreceptor protein tyrosine kinases and have been implicated in the regulation of numerous cellular processes, including cell proliferation, differentiation, migration and invasion, and angiogenesis. The role and mechanisms of SFKs in tumorgenesis have been extensively investigated, and some SFK inhibitors are currently under clinical trials for tumor treatment. Recent studies have also demonstrated the importance of SFKs in regulating the development of various fibrosis-related chronic diseases (e.g., idiopathic pulmonary fibrosis, liver fibrosis, renal fibrosis, and systemic sclerosis). In this article, we summarize the roles of SFKs in various chronic kidney diseases, including glomerulonephritis, diabetic nephropathy, human immunodeficiency virus-associated nephropathy, autosomal dominant form of polycystic kidney disease, and obesity-associated kidney disease, and discuss the mechanisms involved.
Collapse
Affiliation(s)
- Jun Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; and
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; and .,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island
| |
Collapse
|
16
|
Shinya E, Shimizu M, Owaki A, Paoletti S, Mori L, De Libero G, Takahashi H. Hemopoietic cell kinase (Hck) and p21-activated kinase 2 (PAK2) are involved in the down-regulation of CD1a lipid antigen presentation by HIV-1 Nef in dendritic cells. Virology 2015; 487:285-95. [PMID: 26584215 DOI: 10.1016/j.virol.2015.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/21/2015] [Accepted: 10/24/2015] [Indexed: 11/28/2022]
Abstract
Dendritic cells (DCs) play a major role in in vivo pathogenesis of HIV-1 infection. Therefore, DCs may provide a promising strategy to control and eventually overcome the fatal infection. Especially, immature DCs express all CD1s, the non-MHC lipid antigen -presenting molecules, and HIV-1 Nef down-regulates CD1 expression besides MHC. Moreover, CD1d-restricted CD4(+) NKT cells are infected by HIV-1, reducing the number of these cells in HIV-1-infected individuals. To understand the exact role of DCs and CD1-mediated immune response during HIV-1 infection, Nef down-regulation of CD1a-restricted lipid/glycolipid Ag presentation in iDCs was analyzed. We demonstrated the involvement of the association of Nef with hemopoietic cell kinase (Hck) and p21-activated kinase 2 (PAK2), and that Hck, which is expressed strongly in iDCs, augmented this mutual interaction. Hck might be another therapeutic target to preserve the function of HIV-1 infected DCs, which are potential reservoirs of HIV-1 even after antiretroviral therapy.
Collapse
Affiliation(s)
- Eiji Shinya
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo city, Tokyo 113-8602, Japan
| | - Masumi Shimizu
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo city, Tokyo 113-8602, Japan
| | - Atsuko Owaki
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo city, Tokyo 113-8602, Japan
| | - Samantha Paoletti
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Hidemi Takahashi
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo city, Tokyo 113-8602, Japan
| |
Collapse
|
17
|
Konadu KA, Anderson JS, Huang MB, Ali SA, Powell MD, Villinger F, Bond VC. Hallmarks of HIV-1 pathogenesis are modulated by Nef's Secretion Modification Region. ACTA ACUST UNITED AC 2015; 6. [PMID: 26523240 DOI: 10.4172/2155-6113.1000476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CD4+ T cell depletion and immune activation are hallmarks of HIV infection. Despite extensive studies, the mechanisms underlying immune modulation remain elusive. HIV-1 Nef protein is secreted in exosomes from infected cells and is abundant in the plasma of HIV+ individuals. Exosomal Nef (exNef) was also shown to induce apoptosis in bystander CD4+ T cells. We hypothesized that exNef contributes to HIV pathogenesis. A HIV-1 NL4-3 virus containing alanine substitutions in the secretion modification region (SMR; amino acids 66 to 70; HIVNefsmr5a) was developed. Nef protein containing this modified SMR was shown to be deficient in exNef secretion in nef-transfected cells. Using both HIV-1 NL4-3 wild type (HIVwt) and HIVNefsmr5a, correlates of pathogenesis were evaluated in cell-lines, human peripheral blood mononuclear cells, and humanized NOD-RAG1-/- IL2r-/- double mutant (NRG) mice. Disruption of the SMR did not affect viral replication or exNef secretion from infected cell cultures as compared with nef-transfected cells. However, T cell apoptosis was reduced in HIVNefsmr5a infected cell cultures and CD4+ T cell depletion was reduced in the spleen and peripheral blood of similarly infected NRG mice. Inflammatory cytokine release was also decreased in the sera of HIVNefsmr5a infected mice relative to HIVwt infected controls. These findings demonstrate the importance of Nef and the SMR motif in HIV pathogenesis and suggest a potential role for exNef in HIV-driven immune modulation.
Collapse
Affiliation(s)
- Kateena Addae Konadu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Joseph S Anderson
- Department of Internal Medicine, University of California-Davis Medical Center, Sacramento, California, USA
| | - Ming-Bo Huang
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Syed A Ali
- Advanced Medical and Dental Institute, University Sain Malaysia, Pulau Pinang, Malaysia
| | - Michael D Powell
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Francois Villinger
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine and Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - Vincent C Bond
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Chagnon-Choquet J, Gauvin J, Roger J, Fontaine J, Poudrier J, Roger M. HIV Nef promotes expression of B-lymphocyte stimulator by blood dendritic cells during HIV infection in humans. J Infect Dis 2014; 211:1229-40. [PMID: 25378636 DOI: 10.1093/infdis/jiu611] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs) modulate B-cell survival and differentiation, mainly through production of growth factors such as B lymphocyte stimulator (BLyS; also known as "B-cell factor belonging to the tumor necrosis factor family" [BAFF]). We have recently shown that, in human immunodeficiency virus (HIV)-infected individuals with rapid and those with classic disease progression, B-cell dysregulations were associated with increased BLyS expression in plasma and by blood myeloid DCs (mDCs), in contrast to aviremic HIV-infected individuals with slow disease progression (also known as "elite controllers"). In previous work with transgenic mice expressing HIV genes, B-cell dysregulations were concomitant with altered mDCs and dependent on HIV negative factor (Nef). We now report that HIV Nef is detected early after infection and despite successful therapy in plasma and BLyS-overexpressing blood mDCs of HIV-infected rapid and classic progressors, whereas it is low to undetectable in aviremic slow progressors. In vitro, HIV Nef drives monocyte-derived DCs toward BLyS overexpression through a process involving STAT1. Importantly, this is counteracted in the presence of all-trans retinoic acid. Nef thus contributes to high BLyS proinflammatory profiles in HIV-infected individuals.
Collapse
Affiliation(s)
- Josiane Chagnon-Choquet
- Laboratoire d'immunogénétique, Centre de Recherche du Centre Hospitalier Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Canada
| | - Julie Gauvin
- Laboratoire d'immunogénétique, Centre de Recherche du Centre Hospitalier Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Canada
| | - Julien Roger
- Laboratoire d'immunogénétique, Centre de Recherche du Centre Hospitalier
| | - Julie Fontaine
- Laboratoire d'immunogénétique, Centre de Recherche du Centre Hospitalier Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Canada
| | - Johanne Poudrier
- Laboratoire d'immunogénétique, Centre de Recherche du Centre Hospitalier Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Canada
| | - Michel Roger
- Laboratoire d'immunogénétique, Centre de Recherche du Centre Hospitalier Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Canada
| | | |
Collapse
|
19
|
Smithgall TE, Thomas G. Small molecule inhibitors of the HIV-1 virulence factor, Nef. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 10:e523-9. [PMID: 24451644 DOI: 10.1016/j.ddtec.2013.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although antiretroviral therapy has revolutionized the clinical management of AIDS, life-long treatment is required because these drugs do not eradicate HIV- infected cells. Chronic antiretroviral therapy may not protect AIDS patients from cognitive impairment, raising important quality of life issues. Because of the rise of HIV strains resistant to current drugs and uncertain vaccine prospects, an urgent need exists for the discovery and development of new therapeutic approaches. This review is focused on one such approach, which involves targeting HIV-1 Nef, a viral accessory protein essential for AIDS pathogenesis.
Collapse
|
20
|
Alvarado JJ, Tarafdar S, Yeh JI, Smithgall TE. Interaction with the Src homology (SH3-SH2) region of the Src-family kinase Hck structures the HIV-1 Nef dimer for kinase activation and effector recruitment. J Biol Chem 2014; 289:28539-53. [PMID: 25122770 DOI: 10.1074/jbc.m114.600031] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
HIV-1 Nef supports high titer viral replication in vivo and is essential for AIDS progression. Nef function depends on interactions with multiple host cell effectors, including Hck and other Src-family kinases. Here we describe the x-ray crystal structure of Nef in complex with the Hck SH3-SH2 regulatory region to a resolution of 1.86 Å. The complex crystallized as a dimer of complexes, with the conserved Nef PXXPXR motif engaging the Hck SH3 domain. A new intercomplex contact was found between SH3 Glu-93, and Nef Arg-105. Mutagenesis of Hck SH3 Glu-93 interfered with Nef·Hck complex formation and kinase activation in cells. The Hck SH2 domains impinge on the N-terminal region of Nef to stabilize a dimer conformation that exposes Asp-123, a residue critical for Nef function. Our results suggest that in addition to serving as a kinase effector for Nef, Hck binding may reorganize the Nef dimer for functional interaction with other signaling partners.
Collapse
Affiliation(s)
- John Jeff Alvarado
- From the Departments of Microbiology and Molecular Genetics and Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219 and
| | - Sreya Tarafdar
- From the Departments of Microbiology and Molecular Genetics and Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Joanne I Yeh
- Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219 and
| | | |
Collapse
|
21
|
Hays T, Ma’ayan A, Clark NR, Tan CM, Teixeira A, Teixeira A, Choi JW, Burdis N, Jung SY, Bajaj AO, O’Malley BW, He JC, Hyink DP, Klotman PE. Proteomics analysis of the non-muscle myosin heavy chain IIa-enriched actin-myosin complex reveals multiple functions within the podocyte. PLoS One 2014; 9:e100660. [PMID: 24949636 PMCID: PMC4065073 DOI: 10.1371/journal.pone.0100660] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 05/29/2014] [Indexed: 12/12/2022] Open
Abstract
MYH9 encodes non-muscle myosin heavy chain IIA (NMMHCIIA), the predominant force-generating ATPase in non-muscle cells. Several lines of evidence implicate a role for MYH9 in podocytopathies. However, NMMHCIIA‘s function in podocytes remains unknown. To better understand this function, we performed immuno-precipitation followed by mass-spectrometry proteomics to identify proteins interacting with the NMMHCIIA-enriched actin-myosin complexes. Computational analyses revealed that these proteins belong to functional networks including regulators of cytoskeletal organization, metabolism and networks regulated by the HIV-1 gene nef. We further characterized the subcellular localization of NMMHCIIA within podocytes in vivo, and found it to be present within the podocyte major foot processes. Finally, we tested the effect of loss of MYH9 expression in podocytes in vitro, and found that it was necessary for cytoskeletal organization. Our results provide the first survey of NMMHCIIA-enriched actin-myosin-interacting proteins within the podocyte, demonstrating the important role of NMMHCIIA in organizing the elaborate cytoskeleton structure of podocytes. Our characterization of NMMHCIIA’s functions goes beyond the podocyte, providing important insights into its general molecular role.
Collapse
Affiliation(s)
- Thomas Hays
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of Americ
- * E-mail:
| | - Avi Ma’ayan
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Neil R. Clark
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Christopher M. Tan
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Avelino Teixeira
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of Americ
| | - Angela Teixeira
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of Americ
| | - Jae W. Choi
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nora Burdis
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sung Yun Jung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Amol O. Bajaj
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - John C. He
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of Americ
| | - Deborah P. Hyink
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Paul E. Klotman
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
22
|
Tarafdar S, Poe JA, Smithgall TE. The accessory factor Nef links HIV-1 to Tec/Btk kinases in an Src homology 3 domain-dependent manner. J Biol Chem 2014; 289:15718-28. [PMID: 24722985 DOI: 10.1074/jbc.m114.572099] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The HIV-1 Nef virulence factor interacts with multiple host cell-signaling proteins. Nef binds to the Src homology 3 domains of Src family kinases, resulting in kinase activation important for viral infectivity, replication, and MHC-I down-regulation. Itk and other Tec family kinases are also present in HIV target cells, and Itk has been linked to HIV-1 infectivity and replication. However, the molecular mechanism linking Itk to HIV-1 is unknown. In this study, we explored the interaction of Nef with Tec family kinases using a cell-based bimolecular fluorescence complementation assay. In this approach, interaction of Nef with a partner kinase juxtaposes nonfluorescent YFP fragments fused to the C terminus of each protein, resulting in YFP complementation and a bright fluorescent signal. Using bimolecular fluorescence complementation, we observed that Nef interacts with the Tec family members Bmx, Btk, and Itk but not Tec or Txk. Interaction with Nef occurs through the kinase Src homology 3 domains and localizes to the plasma membrane. Allelic variants of Nef from all major HIV-1 subtypes interacted strongly with Itk in this assay, demonstrating the highly conserved nature of this interaction. A selective small molecule inhibitor of Itk kinase activity (BMS-509744) potently blocked wild-type HIV-1 infectivity and replication, but not that of a Nef-defective mutant. Nef induced constitutive Itk activation in transfected cells that was sensitive to inhibitor treatment. Taken together, these results provide the first evidence that Nef interacts with cytoplasmic tyrosine kinases of the Tec family and suggest that Nef provides a mechanistic link between HIV-1 and Itk signaling in the viral life cycle.
Collapse
Affiliation(s)
- Sreya Tarafdar
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219 and the Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania 15261
| | - Jerrod A Poe
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219 and
| | - Thomas E Smithgall
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219 and
| |
Collapse
|
23
|
Trible RP, Narute P, Emert-Sedlak LA, Alvarado JJ, Atkins K, Thomas L, Kodama T, Yanamala N, Korotchenko V, Day BW, Thomas G, Smithgall TE. Discovery of a diaminoquinoxaline benzenesulfonamide antagonist of HIV-1 Nef function using a yeast-based phenotypic screen. Retrovirology 2013; 10:135. [PMID: 24229420 PMCID: PMC3874621 DOI: 10.1186/1742-4690-10-135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 10/31/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND HIV-1 Nef is a viral accessory protein critical for AIDS progression. Nef lacks intrinsic catalytic activity and binds multiple host cell signaling proteins, including Hck and other Src-family tyrosine kinases. Nef binding induces constitutive Hck activation that may contribute to HIV pathogenesis by promoting viral infectivity, replication and downregulation of cell-surface MHC-I molecules. In this study, we developed a yeast-based phenotypic screen to identify small molecules that inhibit the Nef-Hck complex. RESULTS Nef-Hck interaction was faithfully reconstituted in yeast cells, resulting in kinase activation and growth arrest. Yeast cells expressing the Nef-Hck complex were used to screen a library of small heterocyclic compounds for their ability to rescue growth inhibition. The screen identified a dihydrobenzo-1,4-dioxin-substituted analog of 2-quinoxalinyl-3-aminobenzene-sulfonamide (DQBS) as a potent inhibitor of Nef-dependent HIV-1 replication and MHC-I downregulation in T-cells. Docking studies predicted direct binding of DQBS to Nef which was confirmed in differential scanning fluorimetry assays with recombinant purified Nef protein. DQBS also potently inhibited the replication of HIV-1 NL4-3 chimeras expressing Nef alleles representative of all M-group HIV-1 clades. CONCLUSIONS Our findings demonstrate the utility of a yeast-based growth reversion assay for the identification of small molecule Nef antagonists. Inhibitors of Nef function discovered with this assay, such as DQBS, may complement the activity of current antiretroviral therapies by enabling immune recognition of HIV-infected cells through the rescue of cell surface MHC-I.
Collapse
Affiliation(s)
- Ronald P Trible
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| | - Purushottam Narute
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| | - Lori A Emert-Sedlak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| | - John Jeff Alvarado
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| | - Katelyn Atkins
- School of Medicine, Oregon Health and Science University, 97239, Portland, OR, USA
| | - Laurel Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| | - Toshiaki Kodama
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| | - Naveena Yanamala
- Department of Structural Biology, University of Pittsburgh School of Medicine, 15261, Pittsburgh, PA USA
| | - Vasiliy Korotchenko
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, 15261, Pittsburgh, PA USA
| | - Billy W Day
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, 15261, Pittsburgh, PA USA
| | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| |
Collapse
|
24
|
Watkins RL, Zou W, Denton PW, Krisko JF, Foster JL, Garcia JV. In vivo analysis of highly conserved Nef activities in HIV-1 replication and pathogenesis. Retrovirology 2013; 10:125. [PMID: 24172637 PMCID: PMC3907037 DOI: 10.1186/1742-4690-10-125] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/23/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The HIV-1 accessory protein, Nef, is decisive for progression to AIDS. In vitro characterization of the protein has described many Nef activities of unknown in vivo significance including CD4 downregulation and a number of activities that depend on Nef interacting with host SH3 domain proteins. Here, we use the BLT humanized mouse model of HIV-1 infection to assess their impact on viral replication and pathogenesis and the selection pressure to restore these activities using enforced in vivo evolution. RESULTS We followed the evolution of HIV-1LAI (LAI) with a frame-shifted nef (LAINeffs) during infection of BLT mice. LAINeffs was rapidly replaced in blood by virus with short deletions in nef that restored the open reading frame (LAINeffs∆-1 and LAINeffs∆-13). Subsequently, LAINeffs∆-1 was often replaced by wild type LAI. Unexpectedly, LAINeffs∆-1 and LAINeffs∆-13 Nefs were specifically defective for CD4 downregulation activity. Viruses with these mutant nefs were used to infect BLT mice. LAINeffs∆-1 and LAINeffs∆-13 exhibited three-fold reduced viral replication (compared to LAI) and a 50% reduction of systemic CD4+ T cells (>90% for LAI) demonstrating the importance of CD4 downregulation. These results also demonstrate that functions other than CD4 downregulation enhanced viral replication and pathogenesis of LAINeffs∆-1 and LAINeffs∆-13 compared to LAINeffs. To gain insight into the nature of these activities, we constructed the double mutant P72A/P75A. Multiple Nef activities can be negated by mutating the SH3 domain binding site (P72Q73V74P75L76R77) to P72A/P75A and this mutation does not affect CD4 downregulation. Virus with nef mutated to P72A/P75A closely resembled the wild-type virus in vivo as viral replication and pathogenesis was not significantly altered. Unlike LAINeffs described above, the P72A/P75A mutation had a very weak tendency to revert to wild type sequence. CONCLUSIONS The in vivo phenotype of Nef is significantly dependent on CD4 downregulation but minimally on the numerous Nef activities that require an intact SH3 domain binding motif. These results suggest that CD4 downregulation plus one or more unknown Nef activities contribute to enhanced viral replication and pathogenesis and are suitable targets for anti-HIV therapy. Enforced evolution studies in BLT mice will greatly facilitate identification of these critical activities.
Collapse
Affiliation(s)
- Richard L Watkins
- Division of Infectious Diseases, Center for AIDS Research, 2042 Genetic Medicine, University of North Carolina, Campus Box 7042, Chapel Hill, NC 27599-7042, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Watkins RL, Zou W, Denton PW, Krisko JF, Foster JL, Garcia JV. In vivo analysis of highly conserved Nef activities in HIV-1 replication and pathogenesis. Retrovirology 2013. [PMID: 24172637 DOI: 10.1186/742-4690-10-125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND The HIV-1 accessory protein, Nef, is decisive for progression to AIDS. In vitro characterization of the protein has described many Nef activities of unknown in vivo significance including CD4 downregulation and a number of activities that depend on Nef interacting with host SH3 domain proteins. Here, we use the BLT humanized mouse model of HIV-1 infection to assess their impact on viral replication and pathogenesis and the selection pressure to restore these activities using enforced in vivo evolution. RESULTS We followed the evolution of HIV-1LAI (LAI) with a frame-shifted nef (LAINeffs) during infection of BLT mice. LAINeffs was rapidly replaced in blood by virus with short deletions in nef that restored the open reading frame (LAINeffs∆-1 and LAINeffs∆-13). Subsequently, LAINeffs∆-1 was often replaced by wild type LAI. Unexpectedly, LAINeffs∆-1 and LAINeffs∆-13 Nefs were specifically defective for CD4 downregulation activity. Viruses with these mutant nefs were used to infect BLT mice. LAINeffs∆-1 and LAINeffs∆-13 exhibited three-fold reduced viral replication (compared to LAI) and a 50% reduction of systemic CD4+ T cells (>90% for LAI) demonstrating the importance of CD4 downregulation. These results also demonstrate that functions other than CD4 downregulation enhanced viral replication and pathogenesis of LAINeffs∆-1 and LAINeffs∆-13 compared to LAINeffs. To gain insight into the nature of these activities, we constructed the double mutant P72A/P75A. Multiple Nef activities can be negated by mutating the SH3 domain binding site (P72Q73V74P75L76R77) to P72A/P75A and this mutation does not affect CD4 downregulation. Virus with nef mutated to P72A/P75A closely resembled the wild-type virus in vivo as viral replication and pathogenesis was not significantly altered. Unlike LAINeffs described above, the P72A/P75A mutation had a very weak tendency to revert to wild type sequence. CONCLUSIONS The in vivo phenotype of Nef is significantly dependent on CD4 downregulation but minimally on the numerous Nef activities that require an intact SH3 domain binding motif. These results suggest that CD4 downregulation plus one or more unknown Nef activities contribute to enhanced viral replication and pathogenesis and are suitable targets for anti-HIV therapy. Enforced evolution studies in BLT mice will greatly facilitate identification of these critical activities.
Collapse
Affiliation(s)
- Richard L Watkins
- Division of Infectious Diseases, Center for AIDS Research, 2042 Genetic Medicine, University of North Carolina, Campus Box 7042, Chapel Hill, NC 27599-7042, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Witkowski W, Verhasselt B. Contributions of HIV-1 Nef to immune dysregulation in HIV-infected patients: a therapeutic target? Expert Opin Ther Targets 2013; 17:1345-56. [PMID: 23967871 DOI: 10.1517/14728222.2013.830712] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION HIV accessory protein Nef is a factor responsible for many of the viral pathogenic effects. Progression to AIDS is dramatically delayed and in some well-documented cases completely abolished on infection with naturally occurring HIV strains lacking intact nef sequences in their genomes. The topic of this review is the contribution of Nef to the immune pathology as a possible target in HIV-infected patients. AREAS COVERED An overview of known Nef functions accounting for its role in pathogenesis is presented, emphasizing interactions with dendritic cells and macrophages, and Nef-induced exosome secretion, all involved in immune dysregulation during the course of HIV infection. Current approaches to Nef inhibition by different classes of compounds are reviewed. EXPERT OPINION Blocking Nef for therapeutic purposes is a challenging endeavor mainly due to intrinsic properties of this HIV accessory protein. Nef has multiple interfaces to interact with host proteins and lacks a catalytic domain. Potential benefits arising from the development of successful inhibitors could however prove beneficial for reducing gradual deterioration of immune system in chronically infected patients in absence of functional cure.
Collapse
Affiliation(s)
- Wojciech Witkowski
- Department of Clinical Chemistry, Microbiology and Immunology of Ghent University , Gent , Belgium +32 93323658 ; +32 93323659 ;
| | | |
Collapse
|
27
|
Polyproline-II Helix in Proteins: Structure and Function. J Mol Biol 2013; 425:2100-32. [DOI: 10.1016/j.jmb.2013.03.018] [Citation(s) in RCA: 363] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/28/2013] [Accepted: 03/11/2013] [Indexed: 12/31/2022]
|
28
|
Pene-Dumitrescu T, Shu ST, Wales TE, Alvarado JJ, Shi H, Narute P, Moroco JA, Yeh JI, Engen JR, Smithgall TE. HIV-1 Nef interaction influences the ATP-binding site of the Src-family kinase, Hck. BMC CHEMICAL BIOLOGY 2012; 12:1. [PMID: 22420777 PMCID: PMC3328272 DOI: 10.1186/1472-6769-12-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 03/15/2012] [Indexed: 12/13/2022]
Abstract
Background Nef is an HIV-1 accessory protein essential for viral replication and AIDS progression. Nef interacts with a multitude of host cell signaling partners, including members of the Src kinase family. Nef preferentially activates Hck, a Src-family kinase (SFK) strongly expressed in macrophages and other HIV target cells, by binding to its regulatory SH3 domain. Recently, we identified a series of kinase inhibitors that preferentially inhibit Hck in the presence of Nef. These compounds also block Nef-dependent HIV replication, validating the Nef-SFK signaling pathway as an antiretroviral drug target. Our findings also suggested that by binding to the Hck SH3 domain, Nef indirectly affects the conformation of the kinase active site to favor inhibitor association. Results To test this hypothesis, we engineered a "gatekeeper" mutant of Hck with enhanced sensitivity to the pyrazolopyrimidine tyrosine kinase inhibitor, NaPP1. We also modified the RT loop of the Hck SH3 domain to enhance interaction of the kinase with Nef. This modification stabilized Nef:Hck interaction in solution-based kinase assays, as a way to mimic the more stable association that likely occurs at cellular membranes. Introduction of the modified RT loop rendered Hck remarkably more sensitive to activation by Nef, and led to a significant decrease in the Km for ATP as well as enhanced inhibitor potency. Conclusions These observations suggest that stable interaction with Nef may induce Src-family kinase active site conformations amenable to selective inhibitor targeting.
Collapse
Affiliation(s)
- Teodora Pene-Dumitrescu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hiyoshi M, Takahashi-Makise N, Yoshidomi Y, Chutiwitoonchai N, Chihara T, Okada M, Nakamura N, Okada S, Suzu S. HIV-1 Nef perturbs the function, structure, and signaling of the Golgi through the Src kinase Hck. J Cell Physiol 2012; 227:1090-1097. [PMID: 21567396 DOI: 10.1002/jcp.22825] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The interaction between HIV-1 Nef and the Src kinase Hck in macrophages has been shown to accelerate the progression to AIDS. We previously showed that Nef disturbed the N-glycosylation/trafficking of Fms, a cytokine receptor essential for maintaining macrophages in an anti-inflammatory state, in an Hck-dependent manner. Here, we show the underlying molecular mechanism of this effect. Using various Hck isoforms and their mutants and Golgi-targeting Hck mutants, we confirmed that Hck activation at the Golgi causes the Nef-induced Fms N-glycosylation defect. Importantly, we found that both the co-expression of Nef and Hck and the expression of a Golgi-targeted active Hck mutant caused alterations in the distribution of GM130, a Golgi protein that was shown to be required for efficient protein glycosylation. Moreover, the activation of Hck at the Golgi caused strong serine phosphorylation of the GM130-interacting Golgi structural protein GRASP65, which is known to induce Golgi cisternal unstacking. Using pharmacological inhibitors, we also found that the activation of Hck at the Golgi followed by the activation of the MAP kinase ERK-GRASP65 cascade is involved in the Fms N-glycosylation defect. These results suggest that Nef perturbs the structure and signaling of the Golgi by activating Hck at the Golgi, and thereby, induces the N-glycosylation/trafficking defect of Fms, which is in line with the idea that Src family kinases are crucial Golgi regulators.
Collapse
Affiliation(s)
- Masateru Hiyoshi
- Center for AIDS Research, Kumamoto University, Kumamoto-city, Kumamoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Narute PS, Smithgall TE. Nef alleles from all major HIV-1 clades activate Src-family kinases and enhance HIV-1 replication in an inhibitor-sensitive manner. PLoS One 2012; 7:e32561. [PMID: 22393415 PMCID: PMC3290594 DOI: 10.1371/journal.pone.0032561] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 02/01/2012] [Indexed: 01/04/2023] Open
Abstract
The HIV-1 accessory factor Nef is essential for high-titer viral replication and AIDS progression. Nef function requires interaction with many host cell proteins, including specific members of the Src kinase family. Here we explored whether Src-family kinase activation is a conserved property of Nef alleles from a wide range of primary HIV-1 isolates and their sensitivity to selective pharmacological inhibitors. Representative Nef proteins from the major HIV-1 subtypes A1, A2, B, C, F1, F2, G, H, J and K strongly activated Hck and Lyn as well as c-Src to a lesser extent, demonstrating for the first time that Src-family kinase activation is a highly conserved property of primary M-group HIV-1 Nef isolates. Recently, we identified 4-amino substituted diphenylfuropyrimidines (DFPs) that selectively inhibit Nef-dependent activation of Src-family kinases as well as HIV replication. To determine whether DFP compounds exhibit broad-spectrum Nef-dependent antiretroviral activity against HIV-1, we first constructed chimeric forms of the HIV-1 strain NL4-3 expressing each of the primary Nef alleles. The infectivity and replication of these Nef chimeras was indistinguishable from that of wild-type virus in two distinct cell lines (U87MG astroglial cells and CEM-T4 lymphoblasts). Importantly, the 4-aminopropanol and 4-aminobutanol derivatives of DFP potently inhibited the replication of all chimeric forms of HIV-1 in both U87MG and CEM-T4 cells in a Nef-dependent manner. The antiretroviral effects of these compounds correlated with inhibition of Nef-dependent activation of endogenous Src-family kinases in the HIV-infected cells. Our results demonstrate that the activation of Hck, Lyn and c-Src by Nef is highly conserved among all major clades of HIV-1 and that selective targeting of this pathway uniformly inhibits HIV-1 replication.
Collapse
Affiliation(s)
- Purushottam S. Narute
- Department of Infectious Disease and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
31
|
Secretion modification region-derived peptide disrupts HIV-1 Nef's interaction with mortalin and blocks virus and Nef exosome release. J Virol 2011; 86:406-19. [PMID: 22013042 DOI: 10.1128/jvi.05720-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nef is secreted from infected cells in exosomes and is found in abundance in the sera of HIV-infected individuals. Secreted exosomal Nef (exNef) induces apoptosis in uninfected CD4⁺ T cells and may be a key component of HIV pathogenesis. The exosomal pathway has been implicated in HIV-1 virus release, suggesting a possible link between these two viral processes. However, the underlying mechanisms and cellular components of exNef secretion have not been elucidated. We have previously described a Nef motif, the secretion modification region (SMR; amino acids 66 to 70), that is required for exNef secretion. In silico modeling data suggest that this motif can form a putative binding pocket. We hypothesized that the Nef SMR binds a cellular protein involved in protein trafficking and that inhibition of this interaction would abrogate exNef secretion. By using tandem mass spectrometry and coimmunoprecipitation with a novel SMR-based peptide (SMRwt) that blocks exNef secretion and HIV-1 virus release, we identified mortalin as an SMR-specific cellular protein. A second set of coimmunoprecipitation experiments with full-length Nef confirmed that mortalin interacts with Nef via Nef's SMR motif and that this interaction is disrupted by the SMRwt peptide. Overexpression and microRNA knockdown of mortalin revealed a positive correlation between exNef secretion levels and mortalin protein expression. Using antibody inhibition we demonstrated that the Nef/mortalin interaction is necessary for exNef secretion. Taken together, this work constitutes a significant step in understanding the underlying mechanism of exNef secretion, identifies a novel host-pathogen interaction, and introduces an HIV-derived peptide with antiviral properties.
Collapse
|
32
|
Foster JL, Denial SJ, Temple BRS, Garcia JV. Mechanisms of HIV-1 Nef function and intracellular signaling. J Neuroimmune Pharmacol 2011; 6:230-46. [PMID: 21336563 DOI: 10.1007/s11481-011-9262-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 02/01/2011] [Indexed: 11/29/2022]
Abstract
Advances in the last several years have enhanced mechanistic understanding of Nef-induced CD4 and MHCI downregulation and have suggested a new paradigm for analyzing Nef function. In both of these cases, Nef acts by forming ternary complexes with significant contributions to stability imparted by non-canonical interactions. The mutational analyses and binding assays that have led to these conclusions are discussed. The recent progress has been dependent on conservative mutations and multi-protein binding assays. The poorly understood Nef functions of p21 activated protein kinase (PAK2) activation, enhancement of virion infectivity, and inhibition of immunoglobulin class switching are also likely to involve ternary complexes and non-canonical interactions. Hence, investigation of these latter Nef functions should benefit from a similar approach. Six historically used alanine substitutions for determining structure-function relationships of Nef are discussed. These are M20A, E62A/E63A/E64A/E65A (AAAA), P72A/P75A (AXXA), R106A, L164A/L165A, and D174A/D175A. Investigations of less-disruptive mutations in place of AAAA and AXXA have led to different interpretations of mechanism. Two recent examples of this alternate approach, F191I for studying PAK2 activation and D123E for the critical residue D123 are discussed. The implications of the new findings and the resulting new paradigm for Nef structure-function are discussed with respect to creating a map of Nef functions on the protein surface. We report the results of a PPI-Pred analysis for protein-protein interfaces. There are three predicted patches produced by the analysis which describe regions consistent with the currently known mutational analyses of Nef function.
Collapse
Affiliation(s)
- John L Foster
- Division of Infectious Diseases, Center for AIDS Research, Chapel Hill, NC 27599-7042, USA.
| | | | | | | |
Collapse
|
33
|
Wessler S, Backert S. Abl family of tyrosine kinases and microbial pathogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:271-300. [PMID: 21199784 DOI: 10.1016/b978-0-12-385859-7.00006-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abl nonreceptor tyrosine kinases are activated by multiple stimuli and regulate cytoskeletal reorganization, cell proliferation, survival, and stress responses. Several downstream pathways have direct impact on physiological processes, including development and maintenance of the nervous and immune systems and epithelial morphogenesis. Recent studies also indicated that numerous viral and bacterial pathogens highjack Abl signaling for different purposes. Abl kinases are activated to reorganize the host actin cytoskeleton and promote the direct tyrosine phosphorylation of viral surface proteins and injected bacterial type-III and type-IV effector molecules. However, Abl kinases also play other roles in infectious processes of bacteria, viruses, and prions. These activities have crucial impact on microbial invasion and release from host cells, actin-based motility, pedestal formation, as well as cell-cell dissociation involved in epithelial barrier disruption and other responses. Thus, Abl kinases exhibit important functions in pathological signaling during microbial infections. Here, we discuss the different signaling pathways activated by pathogens and highlight possible therapeutic intervention strategies.
Collapse
Affiliation(s)
- Silja Wessler
- Department of Molecular Biology, Division of Microbiology, Paris-Lodron University of Salzburg, Billrothstrasse, Salzburg, Austria
| | | |
Collapse
|
34
|
Fan Y, Liu C, Qin X, Wang Y, Han Y, Zhou Y. The role of ERK1/2 signaling pathway in Nef protein upregulation of the expression of the intercellular adhesion molecule 1 in endothelial cells. Angiology 2010; 61:669-78. [PMID: 20566577 DOI: 10.1177/0003319710364215] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Human immunodeficiency virus (HIV)-infected patients have increased rates of atherosclerotic cardiovascular diseases because the highly active antiretroviral therapy (HAART) decreased the morbidity and mortality of the disease. Endothelial dysfunction is possibly the most plausible link between HIV infection and related expression of cell adhesion molecules such as intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) on the endothelial cells. HIV-1 accessory protein negative regulate factor (Nef) has been shown to be very important for high virus replication and disease progression. Nef could upregulate the expression of ICAM-1 in the pathogenesis of HIV infection. Here, we provide evidence that the HIV-1 Nef can transcriptionally induce the expression of ICAM-1 in stable expressed Nef vascular endothelial cells. Nef-induced ICAM-1 upregulation requires the activation of the downstream kinase extracellular signal-regulated kinase (ERK). Flow cytometry (FCM) results showed that the percentage of ICAM-1 positive cells in Nef-expressed cells and control cells was (35.3% +/- 2.2%) and (12.5% +/- 0.8%), respectively (P < .01). Furthermore, inhibition of Nef activity by ERK mitogen-activated protein kinase (MAPK) inhibitor effectively blocked ICAM-1 upregulation, suggesting that ERK MAPK activation is an important initiating event in Nef-mediated ICAM-1 expression in Nef-expressed cells. These data demonstrate an important signaling event of Nef in HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Yang Fan
- Institute of Molecular Biology of Three Gorges University, Yichang, Hubei Province, China
| | | | | | | | | | | |
Collapse
|
35
|
Vérollet C, Zhang YM, Le Cabec V, Mazzolini J, Charrière G, Labrousse A, Bouchet J, Medina I, Biessen E, Niedergang F, Bénichou S, Maridonneau-Parini I. HIV-1 Nef Triggers Macrophage Fusion in a p61Hck- and Protease-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2010; 184:7030-9. [DOI: 10.4049/jimmunol.0903345] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
Ali SA, Huang MB, Campbell PE, Roth WW, Campbell T, Khan M, Newman G, Villinger F, Powell MD, Bond VC. Genetic characterization of HIV type 1 Nef-induced vesicle secretion. AIDS Res Hum Retroviruses 2010; 26:173-92. [PMID: 20156100 DOI: 10.1089/aid.2009.0068] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The HIV-1 Nef protein is known to be secreted, and our group has shown that Nef is secreted from nef-transfected and HIV-1-infected cells in small exosome-like vesicles (d. 40-100 nm). The role of secreted Nef remains to be fully characterized. Thus, it is important to characterize the nature of and the mechanisms regulating Nef secretion. We hypothesized that specific structural domains on the Nef protein interact with components of the endosomal trafficking machinery, sorting Nef into multivesicular bodies (MVB) and packaging it in exosome-like vesicles. To identify those domains, a series of mutants spanning the entire nef sequence were made and cloned into the expression vector pQB1, which expresses the mutants as Nef-GFP fusion proteins. These constructs were used in transient transfection assays to identify sequences necessary for secretion of the Nef-GFP fusion protein. N-terminal domains were identified as critical for Nef-induced vesicle secretion: (1) a basic cluster of four arginine residues (aa 17, 19, 21, 22), (2) the phosphofurin acidic cluster sequence (PACS; Glu62-65), and (3) a previously uncharacterized domain spanning amino acid residues 66-70 (VGFPV), which we named the secretion modification region (SMR). Additional amino acids P25, 29GVG31, and T44 were identified in HIV-1 Nef as regulating its secretion. These residues have not been associated with other reported Nef functions. The myristoylation domain, ubiquitination lysine residues, and the C-terminal portion of Nef (aa 71-206) had no effect on secretion. A minimal HIV-1 Nef sequence, comprising the identified motifs, was sufficient for Nef-induced vesicle secretion.
Collapse
Affiliation(s)
- Syed A. Ali
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Ming-Bo Huang
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Patrick E. Campbell
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - William W. Roth
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Tamika Campbell
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Mahfuz Khan
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Gale Newman
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Francois Villinger
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Michael D. Powell
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Vincent C. Bond
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310
| |
Collapse
|
37
|
Emert-Sedlak L, Kodama T, Lerner EC, Dai W, Foster C, Day BW, Lazo JS, Smithgall TE. Chemical library screens targeting an HIV-1 accessory factor/host cell kinase complex identify novel antiretroviral compounds. ACS Chem Biol 2009; 4:939-47. [PMID: 19807124 DOI: 10.1021/cb900195c] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nef is an HIV-1 accessory protein essential for AIDS progression and an attractive target for drug discovery. Lack of a catalytic function makes Nef difficult to assay in chemical library screens. We developed a high-throughput screening assay for inhibitors of Nef function by coupling it to one of its host cell binding partners, the Src-family kinase Hck. Hck activation is dependent upon Nef in this assay, providing a direct readout of Nef activity in vitro. Using this screen, a unique diphenylfuropyrimidine was identified as a strong inhibitor of Nef-dependent Hck activation. This compound also exhibited remarkable antiretroviral effects, blocking Nef-dependent HIV replication in cell culture. Structurally related analogs were synthesized and shown to exhibit similar Nef-dependent antiviral activity, identifying the diphenylfuropyrimidine substructure as a new lead for antiretroviral drug development. This study demonstrates that coupling noncatalytic HIV accessory factors with host cell target proteins addressable by high-throughput assays may afford new avenues for the discovery of anti-HIV agents.
Collapse
Affiliation(s)
- Lori Emert-Sedlak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Toshiaki Kodama
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Edwina C. Lerner
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Weixiang Dai
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Caleb Foster
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
- Drug Discovery Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Billy W. Day
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Drug Discovery Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - John S. Lazo
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
- Drug Discovery Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
- Drug Discovery Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
38
|
Hassan R, Suzu S, Hiyoshi M, Takahashi-Makise N, Ueno T, Agatsuma T, Akari H, Komano J, Takebe Y, Motoyoshi K, Okada S. Dys-regulated activation of a Src tyroine kinase Hck at the Golgi disturbs N-glycosylation of a cytokine receptor Fms. J Cell Physiol 2009; 221:458-468. [PMID: 19585521 DOI: 10.1002/jcp.21878] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
HIV-1 Nef accelerates the progression to AIDS by binding with and activating a Src kinase Hck, but underlying molecular basis is not understood. We revealed that Nef disturbed N-glycosylation/trafficking of a cytokine receptor Fms in an Hck-dependent manner, a possible trigger to worsen uncontrolled immune system. Here, we provide direct evidence that dys-regulated activation of Hck pre-localized to the Golgi apparatus causes this Fms maturation arrest. A striking change in Hck induced by Nef other than activation was its skewed localization to the Golgi due to predominant Golgi-localization of Nef. Studies with different Nef alleles and their mutants showed a clear correlation among higher Nef-Hck affinity, stronger Hck activation, severe Golgi-localization of Hck and severe Fms maturation arrest. Studies with a newly discovered Nef-Hck binding blocker 2c more clearly showed that skewed Golgi-localization of active Hck was indeed the cause of Fms maturation arrest. 2c blocked Nef-induced skewed Golgi-localization of an active form of Hck (Hck-P2A) and Fms maturation arrest by Nef/Hck-P2A, but showed no inhibition on Hck-P2A kinase activity. Our finding establishes an intriguing link between the pathogenesis of Nef and a newly emerging concept that the Golgi-localized Src kinases regulate the Golgi function.
Collapse
Affiliation(s)
- Ranya Hassan
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cheng HC, Johnson TM, Mills RD, Chong YP, Chan KC, Culvenor JG. Allosteric networks governing regulation and catalysis of Src-family protein tyrosine kinases: implications for disease-associated kinases. Clin Exp Pharmacol Physiol 2009; 37:93-101. [PMID: 19566834 DOI: 10.1111/j.1440-1681.2009.05237.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
1. The Src-family protein tyrosine kinases (SFKs) are multidomain oncogenic protein tyrosine kinases. Their overactivation contributes to cancer formation and progression. Thus, synthetic inhibitors of SFKs are being developed as therapeutics for cancer treatment. Understanding the regulatory and catalytic mechanisms of SFKs is necessary for the development of therapeutic SFK inhibitors. 2. Although many upstream regulators and protein substrates of SFKs have been identified, both the mechanisms of activation and catalysis of SFKs are not fully understood. In particular, it is still unclear how the inactive SFKs undergo conformational transition during activation. The mechanism governing the binding of substrates and the release of products during catalysis is another area that requires investigation. 3. Several recent publications indicate the presence of a 'hydrophobic spine' formed by four conserved interacting hydrophobic residues in the kinase domain of SFKs. In the present review, we discuss how the assembly and disassembly of the hydrophobic spine residues may govern conformational transition of SFKs during activation. In addition to regulation of kinase activity, the hydrophobic spine is implicated to be involved in catalysis. It has been postulated recently that perturbation of the hydrophobic spine residues is a key step in catalysis. 4. Further investigations to decipher the roles of the hydrophobic spine residues in regulation and catalysis of SFKs will benefit the development of therapeutic SFK inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Heung-Chin Cheng
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
40
|
Olivetta E, Mallozzi C, Ruggieri V, Pietraforte D, Federico M, Sanchez M. HIV-1 Nef induces p47(phox) phosphorylation leading to a rapid superoxide anion release from the U937 human monoblastic cell line. J Cell Biochem 2009; 106:812-22. [PMID: 19130504 DOI: 10.1002/jcb.22041] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Nef protein of the human immunodeficiency virus type 1 (HIV-1) plays a crucial role in AIDS pathogenesis by modifying host cell signaling pathways. We investigated the effects of Nef on the NADPH oxidase complex, a key enzyme involved in the generation of reactive oxygen species during the respiratory burst in human monocyte/macrophages. We have recently shown that the inducible expression of HIV-1 Nef in human macrophages cell line modulates in bi-phasic mode the superoxide anion release by NADPH oxidase, inducing a fast increase of the superoxide production, followed by a delayed strong inhibition mediated by Nef-induced soluble factor(s). Our study is focused on the molecular mechanisms involved in Nef-mediated activation of NADPH oxidase and superoxide anion release. Using U937 cells stably transfected with different Nef alleles, we found that both Nef membrane localization and intact SH3-binding domain are needed to induce superoxide release. The lack of effect during treatment with a specific MAPK pathway inhibitor, PD98059, demonstrated that Nef-induced superoxide release is independent of Erk1/2 phosphorylation. Furthermore, Nef induced the phosphorylation and then the translocation of the cytosolic subunit of NADPH oxidase complex p47(phox) to the plasma membrane. Adding the inhibitor PP2 prevented this process, evidencing the involvement of the Src family kinases on Nef-mediated NADPH oxidase activation. In addition, LY294002, a specific inhibitor of phosphoinositide 3-kinase (PI3K) inhibited both the Nef-induced p47(phox) phosphorylation and the superoxide anion release. These data indicate that Nef regulates the NADPH oxidase activity through the activation of the Src kinases and PI3K.
Collapse
Affiliation(s)
- Eleonora Olivetta
- National AIDS Centre, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Rosenstiel P, Gharavi A, D'Agati V, Klotman P. Transgenic and infectious animal models of HIV-associated nephropathy. J Am Soc Nephrol 2009; 20:2296-304. [PMID: 19497967 DOI: 10.1681/asn.2008121230] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
HIV-associated nephropathy (HIVAN) is a major cause of HIV-related morbidity and mortality. Transgenic and infectious models of HIVAN faithfully recapitulate the human disease and are important tools in advancing our understanding of disease pathogenesis, genetic susceptibility, and therapeutic intervention beyond the inhibition of viral replication. This review discusses the available transgenic murine models and infectious models of HIVAN in mice, rats, nonhuman primates, and felines. Particular emphasis is given to cell type-specific HIV expression as well as partial HIV genome expression used to map HIV-1 Nef and Vpr as pathologic determinants.
Collapse
Affiliation(s)
- Paul Rosenstiel
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
42
|
Abstract
Human immunodeficiency virus-associated nephropathy (HIVAN) is a leading cause of end-stage renal disease in the HIV-1-seropositive population. HIVAN, which is characterized by heavy proteinuria and a rapid decline in renal function, is caused by infection and subsequent expression of viral genes in renal epithelial cells, although the exact mechanism of viral entry into these cells is unknown. The infected renal epithelium is a distinct compartment that supports the evolution of viral strains that may diverge from those found in the patient's blood. Research using animal models and in vitro studies has shown that vpr and nef are the HIV-1 genes most responsible for inducing the characteristic clinical and histopathologic syndrome of HIVAN. Dysregulation of several host factors, including mediators of inflammation, apoptosis, proliferation, transcription, and cell-cell interactions, are also critical factors in determining whether infection of the renal epithelium will lead to HIVAN. Additional research is required to delineate the mechanisms of HIVAN pathogenesis further so that more effective interventions can be implemented to prevent and treat this disease.
Collapse
Affiliation(s)
- Jeremy S Leventhal
- Division of Nephrology, The Mount Sinai School of Medicine, 1 Gustave L. Levy Place, Box 1243, New York, NY 10029, USA.
| | | |
Collapse
|
43
|
Guiet R, Poincloux R, Castandet J, Marois L, Labrousse A, Le Cabec V, Maridonneau-Parini I. Hematopoietic cell kinase (Hck) isoforms and phagocyte duties – From signaling and actin reorganization to migration and phagocytosis. Eur J Cell Biol 2008; 87:527-42. [DOI: 10.1016/j.ejcb.2008.03.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 03/06/2008] [Accepted: 03/11/2008] [Indexed: 01/21/2023] Open
|
44
|
HIV-1 Nef protein expression in human CD34+ progenitors impairs the differentiation of an early T/NK cell precursor. Virology 2008; 377:207-15. [PMID: 18555888 DOI: 10.1016/j.virol.2008.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 03/25/2008] [Accepted: 04/14/2008] [Indexed: 12/30/2022]
Abstract
HIV-1 impairs the production of T cells, through mechanisms that are still unknown. Here, we investigated the effect of the expression of HIV-1 Nef on the T-cell potential of human hematopoietic CD34(+) precursors. Those progenitors were transduced by using lentiviral vectors expressing Nef and cultured on OP9-DL1 cells allowing the differentiation of T cell from human hematopoietic precursors. We demonstrate that Nef impairs the generation of a CD3epsilon(+)CD5(+) CD1a(+) precursor stage that has initiated a D-J rearrangement of the TCRbeta locus. Onward stages of T-cell development were also affected with a quantitative reduction of CD4(+) intraCD3epsilon(+) Immature single positive cells (ISP), Double Positive (DP) CD4(+)CD8(+) TCRalphabeta T cells and CD56(+) NK cells. But B cell production was not affected. Limiting dilution analyses demonstrated a significant reduction in the frequency of T/NK progenitors among Nef-expressing CD34(+) cells. Altogether, these data demonstrate that Nef interferes with the differentiation of a primitive lymphoid human precursor with a T/NK potential.
Collapse
|
45
|
Prost S, Le Dantec M, Augé S, Le Grand R, Derdouch S, Auregan G, Déglon N, Relouzat F, Aubertin AM, Maillere B, Dusanter-Fourt I, Kirszenbaum M. Human and simian immunodeficiency viruses deregulate early hematopoiesis through a Nef/PPARgamma/STAT5 signaling pathway in macaques. J Clin Invest 2008; 118:1765-75. [PMID: 18431514 DOI: 10.1172/jci33037] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 02/06/2008] [Indexed: 02/05/2023] Open
Abstract
Infection of primates by HIV-1 and SIV induces multiple hematological abnormalities of central hematopoietic origin. Although these defects greatly contribute to the pathophysiology of HIV-1 infection, the molecular basis for altered BM function remains unknown. Here we show that when cynomolgus macaques were infected with SIV, the multipotent potential of their hematopoietic progenitor cells was lost, and this correlated with downregulation of STAT5A and STAT5B expression. However, forced expression of STAT5B entirely rescued the multipotent potential of the hematopoietic progenitor cells. In addition, an accessory viral protein required for efficient SIV and HIV replication and pathogenicity, "Negative factor" (Nef), was essential for SIV-mediated impairment of the multipotent potential of hematopoietic progenitors ex vivo and in vivo. This newly uncovered property of Nef was both conserved between HIV-1 and SIV strains and entirely dependent upon the presence of PPARgamma in targeted cells. Further, PPARgamma agonists mimicked Nef activity by inhibiting STAT5A and STAT5B expression and hampering the functionality of hematopoietic progenitors both ex vivo and in vivo. These findings have extended the role of Nef in the pathogenicity of HIV-1 and SIV and reveal a pivotal role for the PPARgamma/STAT5 pathway in the regulation of early hematopoiesis. This study may provide a basis for investigating the potential therapeutic benefits of PPARgamma antagonists in both patients with AIDS and individuals with hematopoietic disorders.
Collapse
Affiliation(s)
- Stéphane Prost
- Immunovirology Division and Innovative Therapy Division, Institute of Emerging Diseases and Innovative Therapies, CEA, Fontenay-aux-Roses, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abram CL, Lowell CA. The diverse functions of Src family kinases in macrophages. FRONT BIOSCI-LANDMRK 2008; 13:4426-50. [PMID: 18508521 DOI: 10.2741/3015] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages are key components of the innate immune response. These cells possess a diverse repertoire of receptors that allow them to respond to a host of external stimuli including cytokines, chemokines, and pathogen-associated molecules. Signals resulting from these stimuli activate a number of macrophage functional responses such as adhesion, migration, phagocytosis, proliferation, survival, cytokine release and production of reactive oxygen and nitrogen species. The cytoplasmic tyrosine kinase Src and its family members (SFKs) have been implicated in many intracellular signaling pathways in macrophages, initiated by a diverse set of receptors ranging from integrins to Toll-like receptors. However, it has been difficult to implicate any given member of the family in any specific pathway. SFKs appear to have overlapping and complementary functions in many pathways. Perhaps the function of these enzymes is to modulate the overall intracellular signaling network in macrophages, rather than operating as exclusive signaling switches for defined pathways. In general, SFKs may function more like rheostats, influencing the amplitude of many pathways.
Collapse
Affiliation(s)
- Clare L Abram
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
47
|
Shelton H, Harris M. Hepatitis C virus NS5A protein binds the SH3 domain of the Fyn tyrosine kinase with high affinity: mutagenic analysis of residues within the SH3 domain that contribute to the interaction. Virol J 2008; 5:24. [PMID: 18267011 PMCID: PMC2259325 DOI: 10.1186/1743-422x-5-24] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 02/11/2008] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The hepatitis C virus (HCV) non-structural 5A protein (NS5A) contains a highly conserved C-terminal polyproline motif with the consensus sequence Pro-X-X-Pro-X-Arg that is able to interact with the Src-homology 3 (SH3) domains of a variety of cellular proteins. RESULTS To understand this interaction in more detail we have expressed two N-terminally truncated forms of NS5A in E. coli and examined their interactions with the SH3 domain of the Src-family tyrosine kinase, Fyn. Surface plasmon resonance analysis revealed that NS5A binds to the Fyn SH3 domain with what can be considered a high affinity SH3 domain-ligand interaction (629 nM), and this binding did not require the presence of domain I of NS5A (amino acid residues 32-250). Mutagenic analysis of the Fyn SH3 domain demonstrated the requirement for an acidic cluster at the C-terminus of the RT-Src loop of the SH3 domain, as well as several highly conserved residues previously shown to participate in SH3 domain peptide binding. CONCLUSION We conclude that the NS5A:Fyn SH3 domain interaction occurs via a canonical SH3 domain binding site and the high affinity of the interaction suggests that NS5A would be able to compete with cognate Fyn ligands within the infected cell.
Collapse
Affiliation(s)
- Holly Shelton
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | | |
Collapse
|
48
|
Nonprimate models of HIV-1 infection and pathogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2008; 56:399-422. [PMID: 18086419 DOI: 10.1016/s1054-3589(07)56013-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
49
|
Hiyoshi M, Suzu S, Yoshidomi Y, Hassan R, Harada H, Sakashita N, Akari H, Motoyoshi K, Okada S. Interaction between Hck and HIV-1 Nef negatively regulates cell surface expression of M-CSF receptor. Blood 2008; 111:243-250. [PMID: 17893228 DOI: 10.1182/blood-2007-04-086017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nef is a multifunctional pathogenetic protein of HIV-1, the interaction of which with Hck, a Src tyrosine kinase highly expressed in macrophages, has been shown to be responsible for the development of AIDS. However, how the Nef-Hck interaction leads to the functional aberration of macrophages is poorly understood. We recently showed that Nef markedly inhibited the activity of macrophage colony-stimulating factor (M-CSF), a primary cytokine for macrophages. Here, we show that the inhibitory effect of Nef is due to the Hck-dependent down-regulation of the cell surface expression of M-CSF receptor Fms. In the presence of Hck, Nef induced the accumulation of an immature under-N-glycosylated Fms at the Golgi, thereby down-regulating Fms. The activation of Hck by the direct interaction with Nef was indispensable for the down-regulation. Unexpectedly, the accumulation of the active Hck at the Golgi where Nef prelocalized was likely to be another critical determinant of the function of Nef, because the expression of the constitutive-active forms of Hck alone did not fully down-regulate Fms. These results suggest that Nef perturbs the intracellular maturation and the trafficking of nascent Fms, through a unique mechanism that required both the activation of Hck and the aberrant spatial regulation of the active Hck.
Collapse
MESH Headings
- Adult
- Cell Line, Tumor
- Down-Regulation/immunology
- Golgi Apparatus/metabolism
- HIV Infections/immunology
- HIV-1/immunology
- Humans
- Kidney/cytology
- Leukemia, Myeloid
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/virology
- Protein Transport/immunology
- Proto-Oncogene Proteins c-hck/genetics
- Proto-Oncogene Proteins c-hck/metabolism
- Receptor, Macrophage Colony-Stimulating Factor/genetics
- Receptor, Macrophage Colony-Stimulating Factor/immunology
- Receptor, Macrophage Colony-Stimulating Factor/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Transfection
- nef Gene Products, Human Immunodeficiency Virus/genetics
- nef Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Masateru Hiyoshi
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Honjo 2-2-1, Kumamoto-city, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hung CH, Thomas L, Ruby CE, Atkins KM, Morris NP, Knight ZA, Scholz I, Barklis E, Weinberg AD, Shokat KM, Thomas G. HIV-1 Nef assembles a Src family kinase-ZAP-70/Syk-PI3K cascade to downregulate cell-surface MHC-I. Cell Host Microbe 2007; 1:121-33. [PMID: 18005690 DOI: 10.1016/j.chom.2007.03.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 01/25/2007] [Accepted: 03/20/2007] [Indexed: 11/24/2022]
Abstract
HIV-1 Nef, which is required for the efficient onset of AIDS, enhances viral replication and infectivity by exerting multiple effects on infected cells. Nef downregulates cell-surface MHC-I molecules by an uncharacterized PI3K pathway requiring the actions of two Nef motifs-EEEE(65) and PXXP(75). We report that the Nef EEEE(65) targeting motif enables Nef PXXP(75) to bind and activate a trans-Golgi network-localized Src family tyrosine kinase (SFK). The Nef/SFK complex then recruits and phosphorylates the tyrosine kinase ZAP-70, which binds class I PI3K to trigger MHC-I downregulation in primary CD4+ T cells. In promonocytic cells, Nef/SFK recruits the ZAP-70 homolog Syk to downregulate MHC-I, implicating this PI3K pathway in multiple HIV-1 reservoirs. Isoform-specific PI3K inhibitors repress MHC-I downregulation, identifying them as potential therapeutic agents to combat HIV-1. The discovery of this Nef-SFK-ZAP-70/Syk-PI3K signaling pathway explains the hierarchal role of the Nef motifs in effecting immunoevasion.
Collapse
Affiliation(s)
- Chien-Hui Hung
- Vollum Institute, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|