1
|
Li MD, Li HR, Ye SH. Multi-tissue transcriptomic characterization of endogenous retrovirus-derived transcripts in Capra hircus. Front Genet 2025; 16:1544330. [PMID: 40176799 PMCID: PMC11962033 DOI: 10.3389/fgene.2025.1544330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/03/2025] [Indexed: 04/04/2025] Open
Abstract
Background Transposable elements (TEs, or transposons) are repetitive genomic sequences, accounting for half of a mammal genome. Most TEs are transcriptionally silenced, whereas some TEs, especially endogenous retroviruses (ERVs, long terminal repeat retrotransposons), are physiologically expressed in certain conditions. However, the expression pattern of TEs in those less studied species, like goat (Capra hircus), remains unclear. To obtain an overview of the genomic and transcriptomic features of TEs and ERVs in goat, an important farm species, we herein analyzed transcriptomes of ten C. hircus tissues and cells under various physiological and pathological conditions. Method Distribution of classes, families, and subfamilies of TEs in the C. hircus genome were systematically annotated. The expression patterns of TE-derived transcripts in multiple tissues were investigated at subfamily and location levels. Differential expression of ERV-derived reads was measured under various physiological and pathological conditions, such as embryo development and virus infection challenges. Co-expression between ERV-reads and their proximal genes was also explored to decipher the expression regulation of ERV-derived transcripts. Results There are around 800 TE subfamilies in the goat genome, accounting for 49.1% of the goat genome sequence. TE-derived reads account for 10% of the transcriptome and their abundance are comparable in various goat tissues, while expression of ERVs are variable among tissues. We further characterized expression pattern of ERV reads in various tissues. Differential expression analysis showed that ERVs are highly active in 16-cell embryos, when the genome of the zygote begins to transcribe its own genes. We also recognized numerous activated ERV reads in response to RNA virus infection in lung, spleen, caecum, and immune cells. CapAeg_1.233:ERVK in chromosome 1 and 17 are dysregulated under endometrium development and infection conditions. They showed strong co-expression with their proximal gene OAS1 and TMPRSS2, indicating the impact of activated proximal gene expression on nearby ERVs. Conclusion We generated ERV transcriptomes across goat tissues, and identified ERVs activated in response to different physiological and pathological conditions.
Collapse
Affiliation(s)
- Ming-Di Li
- Department of Animal Breeding and Reproduction, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hu-Rong Li
- Department of Animal Breeding and Reproduction, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Shao-Hui Ye
- Department of Animal Breeding and Reproduction, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
2
|
Saleh AA, Moawad AS, Yang N, Zheng Y, Chen C, Wang X, Gao B, Song C. Association of a 7.9 kb Endogenous Retrovirus Insertion in Intron 1 of CD36 with Obesity and Fat Measurements in Sheep. Mob DNA 2025; 16:12. [PMID: 40087777 PMCID: PMC11908002 DOI: 10.1186/s13100-025-00349-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Endogenous retroviruses (ERVs) enhance genetic diversity in vertebrates, including sheep. This study investigates the role of Ov-ERV-R13-CD36 within CD36 gene and its association with phenotypic traits in sheep. Analyzing 58 sheep genomes revealed that ERVs constitute approximately 6.02% to 10.05% of the genomic content. We identified 31 retroviral insertion polymorphisms (RIPs) from 28 ERV groups. Among these, Ov-ERV-R13-CD36, which is specifically classified as a beta retrovirus, was selected for further analysis due to its location in CD36 gene, known for its role in fat metabolism, obesity (OB), body weight (BW), and body condition score (BCS). We assessed the association of Ov-ERV-R13-CD36 with OB and BCS across six sheep breeds, utilizing data from 1,355 individuals. RESULTS Genomic analyses confirmed that Ov-ERV-R13-CD36 is located within CD36 gene on Chromosome 4, with polymorphisms across various sheep genomes. In a subset of 43 genomes, 22 contained the Ov-ERV-R13-CD36 insertion, while 21 exhibited wild-type variants. The studied animals showed variability in BCS and fat content associated with the Ov-ERV-R13-CD36 variant. Notably, Rahmani sheep exhibited a significantly higher BCS (4.62), categorized as obese, while Barki sheep displayed the lowest BCS (2.73), classified as thin to average. The association analysis indicated that sheep with the RIP-/- genotype correlated with higher OB and BCS, particularly in Rahmani and Romanov x Rahmani breeds. CONCLUSIONS Findings suggest that Ov-ERV-R13-CD36 within CD36 gene correlates with beneficial economic traits associated with OB and BCS, particularly in Rahmani and Romanov x Rahmani breeds. This indicates that Ov-ERV-R13-CD36 could be a valuable genetic marker for breeding programs aimed at enhancing traits like fat deposition and body condition in sheep.
Collapse
Affiliation(s)
- Ahmed A Saleh
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Animal and Fish Production Department, Faculty of Agriculture (Al-Shatby), Alexandria University, Alexandria City, 11865, Egypt
| | - Ali Shoaib Moawad
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Naisu Yang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yao Zheng
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Cai Chen
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiaoyan Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Bo Gao
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
3
|
Verneret M, Leroux C, Faraut T, Navratil V, Lerat E, Turpin J. A genome-wide study of ruminants uncovers two endogenous retrovirus families recently active in goats. Mob DNA 2025; 16:4. [PMID: 39962507 PMCID: PMC11831830 DOI: 10.1186/s13100-024-00337-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/21/2024] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Endogenous retroviruses (ERV) are traces of ancestral retroviral germline infections that constitute a significant portion of mammalian genomes and are classified as LTR-retrotransposons. The exploration of their dynamics and evolutionary history in ruminants remains limited, highlighting the need for a comprehensive and thorough investigation of the ERV landscape in the genomes of cattle, sheep and goat. RESULTS Through a de novo bioinformatic analysis, we characterized 24 Class I and II ERV families across four reference assemblies of domestic and wild sheep and goats, and one assembly of cattle. Among these families, 13 are represented by consensus sequences identified in the five analyzed species, while eight are exclusive to small ruminants and three to cattle. The similarity-based approach used to search for the presence of these families in other ruminant species revealed multiple endogenization events over the last 40 million years and distinct evolutionary dynamics among species. The ERV annotation resulted in a high-resolution dataset of 100,534 ERV insertions across the five genomes, representing between 0.5 and 1% of their genomes. Solo-LTRs account for 83.2% of the annotated insertions demonstrating that most of the ERVs are relics of past events. Two Class II families showed higher abundance and copy conservation in small ruminants. One of them is closely related to circulating exogenous retroviruses and is represented by 22 copies sharing identical LTRs and 12 with complete coding capacities in the domestic goat. CONCLUSIONS Our results suggest the presence of two ERV families with recent transpositional activity in ruminant genomes, particularly in the domestic goat, illustrating distinct evolutionary dynamics among the analyzed species. This work highlights the ongoing influence of ERVs on genomic landscapes and call for further investigation of their evolutionary trajectories in these genomes.
Collapse
Affiliation(s)
- Marie Verneret
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, PSL Research University, 69007, Lyon, France
- Universite Claude Bernard Lyon 1, LBBE, UMR 5558, CNRS, VAS, 69622, Villeurbanne, France
| | - Caroline Leroux
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, PSL Research University, 69007, Lyon, France
| | - Thomas Faraut
- GenPhySE, Universite de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
| | - Vincent Navratil
- PRABI, Pôle Rhône-Alpes Bioinformatics Center, Universite Claude Bernard Lyon 1, 69622, Villeurbanne, France
| | - Emmanuelle Lerat
- Universite Claude Bernard Lyon 1, LBBE, UMR 5558, CNRS, VAS, 69622, Villeurbanne, France.
| | - Jocelyn Turpin
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, PSL Research University, 69007, Lyon, France.
| |
Collapse
|
4
|
Moawad AS, Wang F, Zheng Y, Chen C, Saleh AA, Hou J, Song C. Evolution of Endogenous Retroviruses in the Subfamily of Caprinae. Viruses 2024; 16:398. [PMID: 38543763 PMCID: PMC10975924 DOI: 10.3390/v16030398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 05/23/2024] Open
Abstract
The interest in endogenous retroviruses (ERVs) has been fueled by their impact on the evolution of the host genome. In this study, we used multiple pipelines to conduct a de novo exploration and annotation of ERVs in 13 species of the Caprinae subfamily. Through analyses of sequence identity, structural organization, and phylogeny, we defined 28 ERV groups within Caprinae, including 19 gamma retrovirus groups and 9 beta retrovirus groups. Notably, we identified four recent and potentially active groups prevalent in the Caprinae genomes. Additionally, our investigation revealed that most long noncoding genes (lncRNA) and protein-coding genes (PC) contain ERV-derived sequences. Specifically, we observed that ERV-derived sequences were present in approximately 75% of protein-coding genes and 81% of lncRNA genes in sheep. Similarly, in goats, ERV-derived sequences were found in approximately 74% of protein-coding genes and 75% of lncRNA genes. Our findings lead to the conclusion that the majority of ERVs in the Caprinae genomes can be categorized as fossils, representing remnants of past retroviral infections that have become permanently integrated into the genomes. Nevertheless, the identification of the Cap_ERV_20, Cap_ERV_21, Cap_ERV_24, and Cap_ERV_25 groups indicates the presence of relatively recent and potentially active ERVs in these genomes. These particular groups may contribute to the ongoing evolution of the Caprinae genome. The identification of putatively active ERVs in the Caprinae genomes raises the possibility of harnessing them for future genetic marker development.
Collapse
Affiliation(s)
- Ali Shoaib Moawad
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (A.S.M.); (Y.Z.); (C.C.); (A.A.S.)
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Fengxu Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (F.W.); (J.H.)
| | - Yao Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (A.S.M.); (Y.Z.); (C.C.); (A.A.S.)
| | - Cai Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (A.S.M.); (Y.Z.); (C.C.); (A.A.S.)
| | - Ahmed A. Saleh
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (A.S.M.); (Y.Z.); (C.C.); (A.A.S.)
- Animal and Fish Production Department, Faculty of Agriculture (Alshatby), Alexandria University, Alexandria City 11865, Egypt
| | - Jian Hou
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (F.W.); (J.H.)
| | - Chengyi Song
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (A.S.M.); (Y.Z.); (C.C.); (A.A.S.)
| |
Collapse
|
5
|
Salamat MKF, Gossner A, Bradford B, Hunter N, Hopkins J, Houston F. Scrapie infection and endogenous retroviral expression in sheep lymphoid tissues. Vet Immunol Immunopathol 2021; 233:110194. [PMID: 33530020 DOI: 10.1016/j.vetimm.2021.110194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 01/09/2023]
Abstract
Transmissible spongiform encephalopathies, or prion diseases, are fatal neurodegenerative diseases affecting humans and animals. Although many host tissues express PrPC (essential for prion replication), relatively few cell types accumulate significant levels of infectivity, including neurons and other cell types in the nervous system, and follicular dendritic cells in secondary lymphoid organs. This suggests that tissue or cell-specific receptors or cofactors could play a role in controlling differential susceptibility to infection. Endogenous retroviruses (ERV), the remnants of ancient retroviral integration into the host germline, may represent one such cofactor. We examined the effect of scrapie infection on expression of three ovine ERV families (enJSRV/β1-OERV, γ1-OERV, γ2-OERV) in secondary lymphoid tissues of sheep at different time points following subcutaneous inoculation, using RT-qPCR. These OERVs were constitutively expressed in the prescapular lymph node and spleen of uninfected sheep. However, we were unable to find convincing evidence of specific differential expression of OERV in the same tissues following scrapie infection, in contrast to previous studies of ERV expression in brains of prion-infected mice and macaques. This study is the first to quantify the expression of potentially functional OERV transcripts in sheep lymphoid tissues, opening up interesting questions about the consequences for host immune function.
Collapse
Affiliation(s)
- M K F Salamat
- Division of Infection and Immunity, The Roslin Institute, R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - A Gossner
- Division of Infection and Immunity, The Roslin Institute, R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - B Bradford
- Division of Infection and Immunity, The Roslin Institute, R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - N Hunter
- Division of Infection and Immunity, The Roslin Institute, R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - J Hopkins
- Division of Infection and Immunity, The Roslin Institute, R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - F Houston
- Division of Infection and Immunity, The Roslin Institute, R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
6
|
Chassalevris T, Chaintoutis SC, Apostolidi ED, Giadinis ND, Vlemmas I, Brellou GD, Dovas CI. A highly sensitive semi-nested real-time PCR utilizing oligospermine-conjugated degenerate primers for the detection of diverse strains of small ruminant lentiviruses. Mol Cell Probes 2020; 51:101528. [PMID: 32004592 DOI: 10.1016/j.mcp.2020.101528] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 11/29/2022]
Abstract
Small ruminant lentiviruses (SRLVs) are highly diverse retroviruses infecting sheep and goats. Although PCR-based testing is being utilized for diagnostics, its application is hampered by various factors. These include, among others, the exceptionally high genetic variability of SRLVs, as well as the low number of infected blood monocytes. For this reason, a highly sensitive and specific semi-nested real-time PCR for proviral DNA detection and quantification was developed. The method is innovative in that a) its design is based on selecting the preferred codon usage in the targeted conserved genomic regions and b) oligospermine-conjugated degenerate primers with increased Tm were utilized. Modifications permitted primer/template duplex formation in the cases of mismatches due to sporadic nucleotide polymorphisms in a number of variant SRLV strains and consequently, the detection of highly diverse SRLV strains. The potential loss of analytical sensitivity and specificity was counterbalanced by including a semi-nested step in combination with LNA probes. An in silico procedure for the evaluation of hybridization efficiency of the designed oligonucleotides to all known targeted variants was also implemented. The method presents a linear range of quantification over a 3-log10 range and a limit of detection of 3.9 proviral dsDNA copies per reaction. Its diagnostic performance was evaluated by testing field samples from seropositive and seronegative animals, followed by phylogenetic analysis of the strains detected. To further increase the diagnostic sensitivity, a DNA extraction protocol for blood leukocytes was developed and evaluated. A minimum of 500 ng input DNA is recommended for PCR-based detection of SRLV proviral DNA, given the low numbers of infected blood monocytes. The developed methodology may serve as a useful tool, which can be adjusted for the quantitative detection of viruses exhibiting high genetic variability.
Collapse
Affiliation(s)
- Taxiarchis Chassalevris
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 11 Stavrou Voutyra Str., 54627, Thessaloniki, Greece
| | - Serafeim C Chaintoutis
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 11 Stavrou Voutyra Str., 54627, Thessaloniki, Greece
| | - Evangelia D Apostolidi
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Nektarios D Giadinis
- Clinic of Farm Animals, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 11 Stavrou Voutyra Str., 54627, Thessaloniki, Greece
| | - Ioannis Vlemmas
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Georgia D Brellou
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Chrysostomos I Dovas
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 11 Stavrou Voutyra Str., 54627, Thessaloniki, Greece.
| |
Collapse
|
7
|
Torresi C, Casciari C, Giammarioli M, Feliziani F, De Mia GM. Characterization of a novel full-length bovine endogenous retrovirus, BERV-β1. Arch Virol 2015; 160:3105-14. [PMID: 26365795 DOI: 10.1007/s00705-015-2603-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/05/2015] [Indexed: 11/26/2022]
Abstract
Recent studies have suggested that certain classes of endogenous retroviruses (ERVs) may be present in cattle. The aim of this study was increase the scope of knowledge regarding bovine ERVs. The ovine ERV β1 pro/pol sequence was used to design a primer set for polymerase chain reaction (PCR) amplification of a similar sequence in the bovine genome. Through phylogenetic and bioinformatic analysis of the PCR product sequence together with its flanking region, a sequence 8107 bp in length was characterized. This sequence had a typical 5'-LTR-gag-pro-pol-env-LTR-3' organization, and phylogenetic investigation defined it as a bovine ERV β1. Thus, we were able to identify a novel bovine endogenous retrovirus element.
Collapse
Affiliation(s)
- Claudia Torresi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, via Salvemini 1, 06126, Perugia, Italy
| | - Cristina Casciari
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, via Salvemini 1, 06126, Perugia, Italy
| | - Monica Giammarioli
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, via Salvemini 1, 06126, Perugia, Italy
| | - Francesco Feliziani
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, via Salvemini 1, 06126, Perugia, Italy
| | - Gian Mario De Mia
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, via Salvemini 1, 06126, Perugia, Italy.
| |
Collapse
|
8
|
Garcia-Etxebarria K, Sistiaga-Poveda M, Jugo BM. Endogenous retroviruses in domestic animals. Curr Genomics 2014; 15:256-65. [PMID: 25132796 PMCID: PMC4133949 DOI: 10.2174/1389202915666140520003503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 01/15/2023] Open
Abstract
Endogenous retroviruses (ERVs) are genomic elements that are present in a wide range of vertebrates. Although the study of ERVs has been carried out mainly in humans and model organisms, recently, domestic animals have become important, and some species have begun to be analyzed to gain further insight into ERVs. Due to the availability of complete genomes and the development of new computer tools, ERVs can now be analyzed from a genome-wide viewpoint. In addition, more experimental work is being carried out to analyze the distribution, expression and interplay of ERVs within a host genome. Cats, cattle, chicken, dogs, horses, pigs and sheep have been scrutinized in this manner, all of which are interesting species in health and economic terms. Furthermore, several studies have noted differences in the number of endogenous retroviruses and in the variability of these elements among different breeds, as well as their expression in different tissues and the effects of their locations, which, in some cases, are near genes. These findings suggest a complex, intriguing relationship between ERVs and host genomes. In this review, we summarize the most important in silico and experimental findings, discuss their implications and attempt to predict future directions for the study of these genomic elements.
Collapse
Affiliation(s)
- Koldo Garcia-Etxebarria
- Genetika, Antropologia Fisikoa eta Animalien Fisiologia Saila. Zientzia eta Teknologia Fakultatea. Euskal Herriko Unibertsitatea (UPV/EHU). 644 Postakutxa , E-48080 Bilbao, Spain
| | - Maialen Sistiaga-Poveda
- Genetika, Antropologia Fisikoa eta Animalien Fisiologia Saila. Zientzia eta Teknologia Fakultatea. Euskal Herriko Unibertsitatea (UPV/EHU). 644 Postakutxa , E-48080 Bilbao, Spain
| | - Begoña Marina Jugo
- Genetika, Antropologia Fisikoa eta Animalien Fisiologia Saila. Zientzia eta Teknologia Fakultatea. Euskal Herriko Unibertsitatea (UPV/EHU). 644 Postakutxa , E-48080 Bilbao, Spain
| |
Collapse
|
9
|
Song N, Jo H, Choi M, Kim JH, Seo HG, Cha SY, Seo K, Park C. Identification and classification of feline endogenous retroviruses in the cat genome using degenerate PCR and in silico data analysis. J Gen Virol 2013; 94:1587-1596. [PMID: 23515024 DOI: 10.1099/vir.0.051862-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to identify and classify endogenous retroviruses (ERVs) in the cat genome. Pooled DNA from five domestic cats was subjected to degenerate PCR with primers specific to the conserved retroviral pro/pol region. The 59 amplified retroviral sequences were used for in silico analysis of the cat genome (Felis_catus-6.2). We identified 219 ERV γ and β elements from cat genome contigs, which were classified into 42 ERV γ and 4 β families and further analysed. Among them, 99 γ and 5 β ERV elements contained the complete retroviral structure. Furthermore, we identified 757 spuma-like ERV elements based on the sequence homology to murine (Mu)ERV-L and human (H)ERV-L. To the best of our knowledge, this is the first detailed genome-scale analysis examining Felis catus endogenous retroviruses (FcERV) and providing advanced insights into their structural characteristics, localization in the genome, and diversity.
Collapse
Affiliation(s)
- Ning Song
- Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, South Korea
| | - Haiin Jo
- Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, South Korea
| | - Minkyeung Choi
- Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, South Korea
| | - Jin-Hoi Kim
- Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, South Korea
| | - Han Geuk Seo
- Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, South Korea
| | - Se-Yeoun Cha
- College of Veterinary Medicine, Chonbuk National University, Jeonju, South Korea
| | - Kunho Seo
- Colleges of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Chankyu Park
- Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, South Korea
| |
Collapse
|
10
|
Chong AYY, Atkinson SJ, Isberg S, Gongora J. Strong purifying selection in endogenous retroviruses in the saltwater crocodile (Crocodylus porosus) in the Northern Territory of Australia. Mob DNA 2012; 3:20. [PMID: 23217152 PMCID: PMC3531266 DOI: 10.1186/1759-8753-3-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/16/2012] [Indexed: 01/29/2023] Open
Abstract
Background Endogenous retroviruses (ERVs) are remnants of exogenous retroviruses that have integrated into the nuclear DNA of a germ-line cell. Here we present the results of a survey into the ERV complement of Crocodylus porosus, the saltwater crocodile, representing 45 individuals from 17 sampling locations in the Northern Territory of Australia. These retroelements were compared with published ERVs from other species of Crocodylia (Crocodilians; alligators, caimans, gharials and crocodiles) as well as representatives from other vertebrates. This study represents one of the first in-depth studies of ERVs within a single reptilian species shedding light on the diversity of ERVs and proliferation mechanisms in crocodilians. Results Analyses of the retroviral pro-pol gene region have corroborated the presence of two major clades of ERVs in C. porosus and revealed 18 potentially functional fragments out of the 227 recovered that encode intact pro-pol ORFs. Interestingly, we have identified some patterns of diversification among those ERVs as well as a novel sequence that suggests the presence of an additional retroviral genus in C. porosus. In addition, considerable diversity but low genetic divergence within one of the C. porosus ERV lineages was identified. Conclusions We propose that the ERV complement of C. porosus has come about through a combination of recent infections and replication of ancestral ERVs. Strong purifying selection acting on these clades suggests that this activity is recent or still occurring in the genome of this species. The discovery of potentially functional elements is an interesting development that warrants further investigation.
Collapse
Affiliation(s)
- Amanda Yoon-Yee Chong
- RMC Gunn Building, B19, Faculty of Veterinary Science, University of Sydney, Sydney, NSW, 2006, Australia.
| | | | | | | |
Collapse
|
11
|
Brown K, Moreton J, Malla S, Aboobaker AA, Emes RD, Tarlinton RE. Characterisation of retroviruses in the horse genome and their transcriptional activity via transcriptome sequencing. Virology 2012; 433:55-63. [PMID: 22868041 DOI: 10.1016/j.virol.2012.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 06/19/2012] [Accepted: 07/12/2012] [Indexed: 01/13/2023]
Abstract
The recently released draft horse genome is incompletely characterised in terms of its repetitive element profile. This paper presents characterisation of the endogenous retrovirus (ERVs) of the horse genome based on a data-mining strategy using murine leukaemia virus proteins as queries. 978 ERV gene sequences were identified. Sequences were identified from the gamma, epsilon and betaretrovirus genera. At least one full length gammaretroviral locus was identified, though the gammaretroviral sequences are very degenerate. Using these data the RNA expression of these ERVs were derived from RNA transcriptome data from a variety of equine tissues. Unlike the well studied human and murine ERVs there do not appear to be particular phylogenetic groups of equine ERVs that are more transcriptionally active. Using this novel approach provided a more technically feasible method to characterise ERV expression than previous studies.
Collapse
Affiliation(s)
- Katherine Brown
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | | | | | | | | | | |
Collapse
|
12
|
Discovery of retroviral homologs in bats: implications for the origin of mammalian gammaretroviruses. J Virol 2012; 86:4288-93. [PMID: 22318134 DOI: 10.1128/jvi.06624-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gammaretroviruses infect a wide range of vertebrate species where they are associated with leukemias, neurological diseases and immunodeficiencies. However, the origin of these infectious agents is unknown. Through a phylogenetic analysis of viral gene sequences, we show that bats harbor an especially diverse set of gammaretroviruses. In particular, phylogenetic analysis places Rhinolophus ferrumequinum retrovirus (RfRV), a new gammaretrovirus identified by de novo analysis of the Rhinolophus ferrumequinum transcriptome, and six other gammaretroviruses from different bat species, as basal to other mammalian gammaretroviruses. An analysis of the similarity in the phylogenetic history between the gammaretroviruses and their bat hosts provided evidence for both host-virus codivergence and cross-species transmission. Taken together, these data provide new insights into the origin of the mammalian gammaretroviruses.
Collapse
|
13
|
Jo H, Choi H, Choi MK, Song N, Kim JH, Oh JW, Seo K, Seo HG, Chun T, Kim TH, Park C. Identification and classification of endogenous retroviruses in the canine genome using degenerative PCR and in-silico data analysis. Virology 2012; 422:195-204. [DOI: 10.1016/j.virol.2011.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/15/2011] [Accepted: 10/11/2011] [Indexed: 10/15/2022]
|
14
|
Polymorphic integrations of an endogenous gammaretrovirus in the mule deer genome. J Virol 2011; 86:2787-96. [PMID: 22190723 DOI: 10.1128/jvi.06859-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endogenous retroviruses constitute a significant genomic fraction in all mammalian species. Typically they are evolutionarily old and fixed in the host species population. Here we report on a novel endogenous gammaretrovirus (CrERVγ; for cervid endogenous gammaretrovirus) in the mule deer (Odocoileus hemionus) that is insertionally polymorphic among individuals from the same geographical location, suggesting that it has a more recent evolutionary origin. Using PCR-based methods, we identified seven CrERVγ proviruses and demonstrated that they show various levels of insertional polymorphism in mule deer individuals. One CrERVγ provirus was detected in all mule deer sampled but was absent from white-tailed deer, indicating that this virus originally integrated after the split of the two species, which occurred approximately one million years ago. There are, on average, 100 CrERVγ copies in the mule deer genome based on quantitative PCR analysis. A CrERVγ provirus was sequenced and contained intact open reading frames (ORFs) for three virus genes. Transcripts were identified covering the entire provirus. CrERVγ forms a distinct branch of the gammaretrovirus phylogeny, with the closest relatives of CrERVγ being endogenous gammaretroviruses from sheep and pig. We demonstrated that white-tailed deer (Odocoileus virginianus) and elk (Cervus canadensis) DNA contain proviruses that are closely related to mule deer CrERVγ in a conserved region of pol; more distantly related sequences can be identified in the genome of another member of the Cervidae, the muntjac (Muntiacus muntjak). The discovery of a novel transcriptionally active and insertionally polymorphic retrovirus in mammals could provide a useful model system to study the dynamic interaction between the host genome and an invading retrovirus.
Collapse
|
15
|
Genome-wide detection and characterization of endogenous retroviruses in Bos taurus. J Virol 2010; 84:10852-62. [PMID: 20686017 DOI: 10.1128/jvi.00106-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endogenous retroviruses (ERVs) are the proviral phase of exogenous retroviruses that become integrated into a host germ line. They can play an important role in the host genome. Bioinformatic tools have been used to detect ERVs in several vertebrates, primarily primates and rodents. Less information is available regarding ERVs in other mammalian groups, and the source of this information is basically experimental. We analyzed the genome of the cow (Bos taurus) using three different methods. A BLAST-based method detected 928 possible ERVs, LTR_STRUC detected 4,487 elements flanked by long terminal repeats (LTRs), and Retrotector detected 9,698 ERVs. The ERVs were not homogeneously distributed across chromosomes; the number of ERVs was positively correlated with chromosomal size and negatively correlated with chromosomal GC content. The bovine ERVs (BoERVs) were classified into 24 putative families, with 20 of them not previously described. One of these new families, BoERV1, was the most abundant family and appeared to be specific to ruminants. An analysis of representatives of ERV families from rodents, primates, and ruminants showed a phylogenetic relationship following their hosts' relationships. This study demonstrates the importance of using multiple methods when trying to identify new ERVs and shows that the number of bovine ERV families is not as limited as previously thought.
Collapse
|
16
|
Munday JS, Keenan JI, Beaugie CR, Sugiarto H. Ovine small intestinal adenocarcinomas are not associated with infection by herpesviruses, Helicobacter species or Mycobacterium avium subspecies paratuberculosis. J Comp Pathol 2009; 140:177-81. [PMID: 19159897 DOI: 10.1016/j.jcpa.2008.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 11/03/2008] [Accepted: 11/19/2008] [Indexed: 02/04/2023]
Abstract
Sheep in New Zealand more frequently develop small intestinal adenocarcinoma (SIA) than sheep in other countries. The reasons for this high rate of intestinal neoplasia are not known. In man, differences between countries in the incidence of neoplasia are often due to differences in the rate of infection by carcinogenic viruses or bacteria. Therefore, it was hypothesized that New Zealand sheep more frequently develop SIA as they are more frequently exposed to an infectious agent. This study compared rates of detection of herpesviruses, Helicobacter species, and Mycobacterium avium subspecies paratuberculosis (MAP) in ovine SIA to rates of detection in samples of intestine with non-neoplastic disease. These infectious agents were chosen as all three have been associated with human intestinal cancer. Microscopical examination did not reveal helical bacteria within sections of SIA or non-neoplastic jejunum. Polymerase chain reaction amplified herpesviral DNA more frequently from samples of non-neoplastic jejunum than samples of SIA. MAP DNA was not amplified from either neoplastic or non-neoplastic jejunum. These results suggest that the high rates of SIA in New Zealand sheep are not due to frequent infection by herpesviruses, Helicobacter species or MAP.
Collapse
Affiliation(s)
- J S Munday
- Department of Pathobiology, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Private Bag 11 222, Tennent Drive, Palmerston North, New Zealand.
| | | | | | | |
Collapse
|
17
|
Tanaka Y, Nakamura S, Shibata H, Kishi Y, Ikeda T, Masuda S, Sasaki K, Abe T, Hayashi S, Kitano Y, Nagao Y, Hanazono Y. Sustained Macroscopic Engraftment of Cynomolgus Embryonic Stem Cells In Xenogeneic Large Animals After In Utero Transplantation. Stem Cells Dev 2008; 17:367-81. [DOI: 10.1089/scd.2007.0119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Yujiro Tanaka
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
- Department of Pediatric Surgery, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Shinichiro Nakamura
- Corporation for Production and Research of Laboratory Primates, Ibaraki 305-0843, Japan
| | - Hiroaki Shibata
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
- Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Ibaraki 305-0843, Japan
| | - Yukiko Kishi
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Tamako Ikeda
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Shigeo Masuda
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Kyoko Sasaki
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Tomoyuki Abe
- Department of Agriculture, Utsunomiya University, Tochigi 321-4415, Japan
| | - Satoshi Hayashi
- Department of Obstetrics and Gynecology, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Yoshihiro Kitano
- Department of Surgery, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Yoshikazu Nagao
- Department of Agriculture, Utsunomiya University, Tochigi 321-4415, Japan
| | - Yutaka Hanazono
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| |
Collapse
|
18
|
Xiao R, Park K, Lee H, Kim J, Park C. Identification and classification of endogenous retroviruses in cattle. J Virol 2008; 82:582-7. [PMID: 17959664 PMCID: PMC2224374 DOI: 10.1128/jvi.01451-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 10/15/2007] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to identify the endogenous retrovirus (ERV) sequences in a bovine genome. We subjected bovine genomic DNA to PCR with degenerate or ovine ERV (OERV) family-specific primers that aimed to amplify the retroviral pro/pol region. Sequence analysis of 113 clones obtained by PCR revealed that 69 were of retroviral origin. On the basis of the OERV classification system, these clones from degenerate PCR could be divided into the beta3, gamma4, and gamma9 families. PCR with OERV family-specific primers revealed an additional ERV that was classified into the bovine endogenous retrovirus (BERV) gamma7 family. In conclusion, here we report the results of a genome scale study of the BERV. Our study shows that the ERV family expansion in cattle may be somewhat limited, while more diverse family members of ERVs have been reported from other artiodactyls, such as pigs and sheep.
Collapse
Affiliation(s)
- Rui Xiao
- Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 143-701, South Korea.
| | | | | | | | | |
Collapse
|
19
|
Popp SK, Mann DA, Milburn PJ, Gibbs AJ, McCullagh PJ, Wilson JD, Tönjes RR, Simeonovic CJ. Transient transmission of porcine endogenous retrovirus to fetal lambs after pig islet tissue xenotransplantation. Immunol Cell Biol 2007; 85:238-48. [PMID: 17228325 DOI: 10.1038/sj.icb.7100028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Evidence for the in vivo transmission of porcine endogenous retrovirus (PERV) from porcine xenografts to various recipient animals has been inconsistent. To characterize the contribution of the host immune system to the potential for PERV transmission from pig islet tissue xenografts to host tissues, we examined two immunoincompetent animal models, thymectomizsed fetal lambs and NODscid mice. Pig proislets were grafted into fetal lambs or adult NODscid mice. Conventional, nested and real-time PCR/RT-PCR tests were used to search for PERV and pig cell-specific sequences (porcine mitochondrial cytochrome oxidase II (COII) or mitochondrial ribosomal 12S) in pig proislets, host liver and spleen at 5-84 days (lambs) or 96 days (mice) after transplantation. Xenografts were harvested at the same time points. The copy number of PERV sequences and host cell-specific nuclear (palmitoylcarnitine transferase) sequences was assessed by real-time PCR to estimate the proportion of PERV-infected host cells. Pig proislets were shown to be PERV+ve by PCR and immunohistochemistry (PERV B env protein p15E). PERV transmission (PERV A, B or C DNA in the absence of porcine COII or 12S sequences) was detected by nested PCR and real-time PCR in 4/12 fetal lamb liver samples 5-23 days after transplantation; the maximum copy number of PERV B env sequences was found at day 5 (700 copies/1 x 10(6) lamb cells). A total of 4/12 fetal lambs demonstrated both PERV and 12S porcine sequences in liver samples (days 5-84) by real-time PCR, suggesting that pig cells had migrated to those tissues and established microchimerism; nested PCR showed evidence for microchimerism (porcine COII sequences alone) in 2/12 lambs (day 5). The incidence of PERV transmission and frequency of microchimerism was similar in host spleen analysed by real-time PCR. Histological examination showed complete xenograft rejection by 23 days after transplantation to fetal lambs. In contrast, pig proislet xenografts survived long term (> or =day 96) in NODscid mice but no PERV transmission was found. Both nested and real-time PCR assays revealed that 2/3 mice had become microchimeric. Long-term expression of PERV A, B and C as well as porcine 12S or COII RNAs was found at the graft site (day 96) only, indicating that PERV transcription and possibly replication, continued in the donor pig islet tissue after transplantation. Overall, detection of PERV transmission and microchimerism was limited by the sensitivity of the PCR assay and the primers chosen. The absence of stable PERV transmission and microchimerism in fetal lambs and the rejection of pig proislet xenografts correlated in time with the establishment of host immunocompetence. We therefore suggest that the frequent failure to identify PERV transmission late after transplantation could be due to the immunological destruction of PERV-infected host cells. Recipient NODscid mice demonstrated long-term microchimerism and intragraft PERV expression, which was consistent with their stable immunoincompetence.
Collapse
Affiliation(s)
- Sarah K Popp
- Division of Immunology and Genetics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Retroviruses have played profound roles in our understanding of the genetic and molecular basis of cancer. Jaagsiekte sheep retrovirus (JSRV) is a simple retrovirus that causes contagious lung tumors in sheep, known as ovine pulmonary adenocarcinoma (OPA). Intriguingly, OPA resembles pulmonary adenocarcinoma in humans, and may provide a model for this frequent human cancer. Distinct from the classical mechanisms of retroviral oncogenesis by insertional activation of or virus capture of host oncogenes, the native envelope (Env) structural protein of JSRV is itself the active oncogene. A major pathway for Env transformation involves interaction of the Env cytoplasmic tail with as yet unidentified cellular adaptor(s), leading to the activation of PI3K/Akt and MAPK signaling cascades. Another potential mechanism involves the cell-entry receptor for JSRV, Hyaluronidase 2 (Hyal2), and the RON receptor tyrosine kinase, but the exact roles of these proteins in JSRV Env transformation remain to be better understood. Recently, a mouse model of lung cancer induced by JSRV Env has been developed, and the tumors in mice resemble those seen in sheep infected with JSRV and in humans. In this review, we summarize recent progress in our understanding the molecular mechanisms of oncogenic transformation by JSRV Env protein, and discuss the relevance to human lung cancer.
Collapse
Affiliation(s)
- S-L Liu
- Department of Microbiology and Immunology, McGill University, Montreal, Canada.
| | | |
Collapse
|
21
|
Klymiuk N, Müller M, Brem G, Aigner B. Phylogeny, recombination and expression of porcine endogenous retrovirus gamma2 nucleotide sequences. J Gen Virol 2006; 87:977-986. [PMID: 16528048 DOI: 10.1099/vir.0.81552-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Endogenous retroviral sequences in the pig genome represent a potential infectious risk in xenotransplantation. Porcine endogenous retrovirus (PERV) gamma sequences described to date have been classified into several families. The known infectious, human-tropic PERVs have been assigned to the PERV gamma1 subfamilies A, B and C. High copy numbers and full-length clones have also been observed for an additional family, designated PERV gamma2. The aim of this study was to examine the PERV gamma2 family by analysis of retroviral pro/pol gene sequences. The proviral load was observed to be similar among various pig breeds. Although clones harbouring an open reading frame in the examined region were found, analysis of published large PERV gamma2 clones revealed multiple deleterious mutations in each of the retroviral genes. Various recombination events between gamma2 genomes were revealed. In contrast to PERV gamma1, phylogenetic analyses did not distinguish defined subfamilies, but indicated the independent evolution of the proviruses after a single event of retroviral amplification. Expression analysis showed large PERV gamma2 transcripts and variable transcription in several tissues. Analysis of the two published gamma2 env gene sequences observed the partial lack of the receptor-binding domain. Overall, this study indicated the low infectious potential for PERV gamma2.
Collapse
Affiliation(s)
- Nikolai Klymiuk
- ApoGene Biotechnologie, D-86567 Hilgertshausen, Germany
- Institut für Tierzucht und Genetik, Veterinärmedizinische Universität Wien, A-1210 Wien, Austria
| | - Mathias Müller
- Institut für Tierzucht und Genetik, Veterinärmedizinische Universität Wien, A-1210 Wien, Austria
| | | | - Bernhard Aigner
- Lehrstuhl für Molekulare Tierzucht und Biotechnologie, Ludwig-Maximilians-Universität München, D-85764 Oberschleißheim, Germany
| |
Collapse
|