1
|
Miyazaki Y, Garcia EL, King SR, Iyalla K, Loeliger K, Starck P, Syed S, Telesnitsky A, Summers MF. An RNA structural switch regulates diploid genome packaging by Moloney murine leukemia virus. J Mol Biol 2009; 396:141-52. [PMID: 19931283 DOI: 10.1016/j.jmb.2009.11.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/10/2009] [Accepted: 11/11/2009] [Indexed: 11/26/2022]
Abstract
Retroviruses selectively package two copies of their RNA genomes via mechanisms that have yet to be fully deciphered. Recent studies with small fragments of the Moloney murine leukemia virus (MoMuLV) genome suggested that selection may be mediated by an RNA switch mechanism, in which conserved UCUG elements that are sequestered by base-pairing in the monomeric RNA become exposed upon dimerization to allow binding to the cognate nucleocapsid (NC) domains of the viral Gag proteins. Here we show that a large fragment of the MoMuLV 5' untranslated region that contains all residues necessary for efficient RNA packaging (Psi(WT); residues 147-623) also exhibits a dimerization-dependent affinity for NC, with the native dimer ([Psi(WT)](2)) binding 12+/-2 NC molecules with high affinity (K(d)=17+/-7 nM) and with the monomer, stabilized by substitution of dimer-promoting loop residues with hairpin-stabilizing sequences (Psi(M)), binding 1-2 NC molecules. Identical dimer-inhibiting mutations in MoMuLV-based vectors significantly inhibit genome packaging in vivo (approximately 100-fold decrease), whereas a large deletion of nearly 200 nucleotides just upstream of the gag start codon has minimal effects. Our findings support the proposed RNA switch mechanism and further suggest that virus assembly may be initiated by a complex comprising as few as 12 Gag molecules bound to a dimeric packaging signal.
Collapse
Affiliation(s)
- Yasuyuki Miyazaki
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Moore MD, Hu WS. HIV-1 RNA dimerization: It takes two to tango. AIDS Rev 2009; 11:91-102. [PMID: 19529749 PMCID: PMC3056336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Each viral particle of HIV-1, the infectious agent of AIDS, contains two copies of the full-length viral genomic RNA. Encapsidating two copies of genomic RNA is one of the characteristics of the retrovirus family. The two RNA molecules are both positive-sense and often identical; furthermore, each RNA encodes the full complement of genetic information required for viral replication. The two strands of RNA are intricately entwined within the core of the mature infectious virus as a ribonuclear complex with the viral proteins, including nucleocapsid. Multiple steps in the biogenesis of the genomic full-length RNA are involved in achieving this location and dimeric state. The viral sequences and proteins involved in the process of RNA dimerization, both for the initial interstrand contact and subsequent steps that result in the condensed, stable conformation of the genomic RNA, are outlined in this review. In addition, the impact of the dimeric state of HIV-1 viral RNA is discussed with respect to its importance in efficient viral replication and, consequently, the potential development of antiviral strategies designed to disrupt the formation of dimeric RNA.
Collapse
Affiliation(s)
- Michael D Moore
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | | |
Collapse
|
3
|
Casali M, Zambonelli C, Goldwasser J, Vu HN, Yarmush ML. Moloney murine leukemia virus decay mediated by retroviral reverse transcriptase degradation of genomic RNA. Virology 2008; 380:91-8. [PMID: 18706668 DOI: 10.1016/j.virol.2008.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 07/14/2008] [Accepted: 07/15/2008] [Indexed: 11/24/2022]
Abstract
Retroviral vectors are powerful tools for the introduction of transgenes into mammalian cells and for long-term gene expression. However, their application is often limited by a rapid loss of bioactivity: retroviruses spontaneously loose activity at 37 degrees C, with a half-life of 4 to 9 h depending on the retrovirus type. We sought to determine which components of the retrovirus are responsible for this loss in bioactivity and to obtain a quantitative characterization of their stability. To this end, we focused on RNA and viral proteins, two major components that we hypothesized may undergo degradation and negatively influence viral infectivity. Reverse transcription PCR (RT-PCR) targeting RNA encoding portions of the viral genome clearly demonstrated time-dependent degradation of RNA which correlated with the loss in viral bioactivity. Circular dichroism spectroscopy, SDS-PAGE and two-dimensional SDS-PAGE analyses of viral proteins did not show any change in secondary structure or evidence of proteolysis. The mechanism underlying the degradation of viral RNA was investigated by site-directed mutagenesis of proteins encoded by the viral genome. Reverse transcriptase and protease mutants exhibited enhanced RNA stability in comparison to wild type recombinant virus, suggesting that the degradation of RNA, and the corresponding virus loss of activity, is mediated by the reverse transcriptase enzyme.
Collapse
Affiliation(s)
- Monica Casali
- Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | |
Collapse
|
4
|
Rulli SJ, Hibbert CS, Mirro J, Pederson T, Biswal S, Rein A. Selective and nonselective packaging of cellular RNAs in retrovirus particles. J Virol 2007; 81:6623-31. [PMID: 17392359 PMCID: PMC1900105 DOI: 10.1128/jvi.02833-06] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Assembly of retrovirus particles normally entails the selective encapsidation of viral genomic RNA. However, in the absence of packageable viral RNA, assembly is still efficient, and the released virus-like particles (termed "Psi-" particles) still contain roughly normal amounts of RNA. We have proposed that cellular mRNAs replace the genome in Psi- particles. We have now analyzed the mRNA content of Psi- and Psi+ murine leukemia virus (MLV) particles using both microarray analysis and real-time reverse transcription-PCR. The majority of mRNA species present in the virus-producing cells were also detected in Psi- particles. Remarkably, nearly all of them were packaged nonselectively; that is, their representation in the particles was simply proportional to their representation in the cells. However, a small number of low-abundance mRNAs were greatly enriched in the particles. In fact, one mRNA species was enriched to the same degree as Psi+ genomic RNA. Similar results were obtained with particles formed from the human immunodeficiency virus type 1 (HIV-1) Gag protein, and the same mRNAs were enriched in MLV and HIV-1 particles. The levels of individual cellular mRNAs were approximately 5- to 10-fold higher in Psi- than in Psi+ MLV particles, in agreement with the idea that they are replacing viral RNA in the former. In contrast, signal recognition particle RNA was present at the same level in Psi- and Psi+ particles; a minor fraction of this RNA was weakly associated with genomic RNA in Psi+ MLV particles.
Collapse
Affiliation(s)
- Samuel J Rulli
- HIV Drug Resistance Program, National Cancer Institute-Frederick, P.O. Box B, Frederick, MD 21702-1201, USA
| | | | | | | | | | | |
Collapse
|
5
|
Gherghe C, Weeks KM. The SL1-SL2 (stem-loop) domain is the primary determinant for stability of the gamma retroviral genomic RNA dimer. J Biol Chem 2006; 281:37952-61. [PMID: 16984912 DOI: 10.1074/jbc.m607380200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retroviral genomes are assembled from two sense-strand RNAs by noncovalent interactions at their 5' ends, forming a dimer. The RNA dimerization domain is a potential target for antiretroviral therapy and represents a compelling RNA folding problem. The fundamental dimerization unit for the Moloney murine sarcoma gamma retrovirus spans a 170-nucleotide minimal dimerization active sequence. In the dimer, two self-complementary sequences, PAL1 and PAL2, form intermolecular duplexes, and an SL1-SL2 (stem-loop) domain forms loop-loop base pairs, mediated by GACG tetraloops, and extensive tertiary interactions. To develop a framework for assembly of the retroviral RNA dimer, we quantified the stability of and established nucleotide resolution secondary structure models for sequence variants in which each motif was compromised. Base pairing and tertiary interactions between SL1-SL2 domains contribute a large free energy increment of -10 kcal/mol. In contrast, even though the PAL1 and PAL2 intermolecular duplexes span 10 and 16 bp in the dimer, respectively, they contribute only -2.5 kcal/mol to stability, roughly equal to a single new base pair. First, these results emphasize that the energetic costs for disrupting interactions in the monomer state nearly balance the PAL1 and PAL2 base pairing interactions that form in the dimer. Second, intermolecular duplex formation plays a biological role distinct from simply stabilizing the structure of the retroviral genomic RNA dimer.
Collapse
Affiliation(s)
- Cristina Gherghe
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | | |
Collapse
|
6
|
Flynn JA, Telesnitsky A. Two distinct Moloney murine leukemia virus RNAs produced from a single locus dimerize at random. Virology 2006; 344:391-400. [PMID: 16216294 PMCID: PMC1351320 DOI: 10.1016/j.virol.2005.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 07/16/2005] [Accepted: 09/01/2005] [Indexed: 11/22/2022]
Abstract
Two genetically distinct retroviral RNAs can be co-packaged if the RNAs are co-expressed in virion producing cells. For Moloney murine leukemia virus (MLV), co-packaged RNAs are not randomly selected from among all packaging-competent RNAs, but instead primarily associate as homodimers. Here, we tested the hypothesis that the distance between proviral templates might hinder RNA heterodimerization, thus generating the observed preferential homodimerization of co-expressed MLV RNAs. To do this, two genetically distinct RNAs were co-expressed from a single locus and the proportions of hetero- and homodimeric virion RNAs were determined. Unlike RNAs transcribed from two different templates, RNAs transcribed from a single locus dimerized at random. Additionally, in vitro transcription experiments suggested that MLV RNA dimerization can occur more efficiently for longer RNAs during transcription than post-synthesis. Together, these findings show that MLV RNA dimer-partner selection likely occurs either co-transcriptionally or within a pool of transcripts near the proviral template.
Collapse
Affiliation(s)
- Jessica A. Flynn
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA
| | - Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA
| |
Collapse
|
7
|
Kasprzak W, Bindewald E, Shapiro BA. Structural polymorphism of the HIV-1 leader region explored by computational methods. Nucleic Acids Res 2005; 33:7151-63. [PMID: 16371347 PMCID: PMC1322270 DOI: 10.1093/nar/gki1015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Experimental studies revealed that the elements of the human immunodeficiency virus type 1 (HIV-1) 5′-untranslated leader region (5′-UTR) can fold in vitro into two alternative conformations, branched (BMH) and ‘linearized’ (LDI) and switch between them to achieve different functionality. In this study we computationally explored in detail, with our massively parallel genetic algorithm (MPGAfold), the propensity of 13 HIV-1 5′-UTRs to fold into the BMH and the LDI conformation types. Besides the BMH conformations these results predict the existence of two functionally equivalent types of LDI conformations. One is similar to what has been shown in vitro to exist in HIV-1 LAI, the other is a novel conformation exemplified by HIV-1 MAL long-distance interactions. These novel MPGAfold results are further corroborated by a consensus probability matrix algorithm applied to a set of 155 HIV-1 sequences. We also have determined in detail the impact of various strain mutations, domain sizes and folds of elongating sequences simulating folding during transcription on HIV-1 RNA secondary structure folding dynamics.
Collapse
Affiliation(s)
| | | | - Bruce A. Shapiro
- Center for Cancer Research Nanobiology Program, National Cancer InstituteBuilding 469, Room 150, NCI-Frederick, Frederick, MD 21702, USA
- To whom correspondence should be addressed. Tel: +1 301 846 5536; Fax: +1 301 846 5598;
| |
Collapse
|
8
|
Dulude D, Berchiche YA, Gendron K, Brakier-Gingras L, Heveker N. Decreasing the frameshift efficiency translates into an equivalent reduction of the replication of the human immunodeficiency virus type 1. Virology 2005; 345:127-36. [PMID: 16256163 DOI: 10.1016/j.virol.2005.08.048] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 08/23/2005] [Accepted: 08/31/2005] [Indexed: 10/25/2022]
Abstract
The Gag-Pol polyprotein of the human immunodeficiency virus type 1 (HIV-1) is the precursor of the virus enzymatic activities and is produced via a programmed -1 translational frameshift. In this study, we altered the frameshift efficiency by introducing mutations within the slippery sequence and the frameshift stimulatory signal, the two elements that control the frameshift. These mutations decreased the frameshift efficiency to different degrees, ranging from approximately 0.3% to 70% of the wild-type efficiency. These values were mirrored by a reduced incorporation of Gag-Pol into virus-like particles, as assessed by a decrease in the reverse transcriptase activity associated to these particles. Analysis of Gag processing in infectious mutant virions revealed processing defects to various extents, with no clear correlation with frameshift decrease. Nevertheless, the observed frameshift reductions translated into equivalently reduced viral infectivity and replication kinetics. Our results show that even moderate variations in frameshift efficiency, as obtained with mutations in the frameshift stimulatory signal, reduce viral replication. Therapeutic targeting of this structure may therefore result in the attenuation of virus replication and in clinical benefit.
Collapse
Affiliation(s)
- Dominic Dulude
- Département de Biochimie, Université de Montréal, 2900 Boul. Edouard-Montpetit, Montréal, Québec, Canada H3T1J4
| | | | | | | | | |
Collapse
|