1
|
Melfi F, Carradori S, Campestre C, Haloci E, Ammazzalorso A, Grande R, D'Agostino I. Emerging compounds and therapeutic strategies to treat infections from Trypanosoma brucei: an overhaul of the last 5-years patents. Expert Opin Ther Pat 2023; 33:247-263. [PMID: 36933190 DOI: 10.1080/13543776.2023.2193328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
INTRODUCTION Human African Trypanosomiasis is a neglected disease caused by infection from parasites belonging to the Trypanosoma brucei species. Only six drugs are currently available and employed depending on the stage of the infection: pentamidine, suramin, melarsoprol, eflornithine, nifurtimox, and fexinidazole. Joint research projects were launched in an attempt to find new therapeutic options for this severe and often lethal disease. AREAS COVERED After a brief description of the recent literature on the parasite and the disease, we searched for patents dealing with the proposal of new anti-trypanosomiasis agents and, following the PRISMA guidelines, we filtered the results to those published from 2018onwards returning suitable entries, which represent the contemporary landscape of compounds/strategies against Trypanosoma brucei. In addition, some relevant publications from the overall scientific literature were also discussed. EXPERT OPINION This review comprehensively covers and analyzes the most recent advances not only in the discovery of new inhibitors and their structure-activity relationships but also in the assessment of innovative biological targets opening new scenarios in the MedChem field. Lastly, also new vaccines and formulations recently patented were described. However, natural and synthetic compounds were analyzed in terms of inhibitory activity and selective toxicity against human cells.
Collapse
Affiliation(s)
- Francesco Melfi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristina Campestre
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Entela Haloci
- Department of Pharmacy, University of Medicine, Tirana, Albania
| | | | - Rossella Grande
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Ilaria D'Agostino
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
2
|
de Sousa NF, da Silva Souza HD, de Menezes RPB, da Silva Alves F, Acevedo CAH, de Lima Nunes TA, Sessions ZL, Scotti L, Muratov EN, Mendonça-Junior FJB, da Franca Rodrigues KA, de Athayde Filho PF, Scotti MT. Selene-Ethylenelacticamides and N-Aryl-Propanamides as Broad-Spectrum Leishmanicidal Agents. Pathogens 2023; 12:136. [PMID: 36678484 PMCID: PMC9860784 DOI: 10.3390/pathogens12010136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/18/2023] Open
Abstract
The World Health Organization classifies Leishmania as one of the 17 “neglected diseases” that burden tropical and sub-tropical climate regions with over half a million diagnosed cases each year. Despite this, currently available anti-leishmania drugs have high toxicity and the potential to be made obsolete by parasite drug resistance. We chose to analyze organoselenides for leishmanicidal potential given the reduced toxicity inherent to selenium and the displayed biological activity of organoselenides against Leishmania. Thus, the biological activities of 77 selenoesters and their N-aryl-propanamide derivatives were predicted using robust in silico models of Leishmania infantum, Leishmania amazonensis, Leishmania major, and Leishmania (Viannia) braziliensis. The models identified 28 compounds with >60% probability of demonstrating leishmanicidal activity against L. infantum, and likewise, 26 for L. amazonesis, 25 for L. braziliensis, and 23 for L. major. The in silico prediction of ADMET properties suggests high rates of oral absorption and good bioavailability for these compounds. In the in silico toxicity evaluation, only seven compounds showed signs of toxicity in up to one or two parameters. The methodology was corroborated with the ensuing experimental validation, which evaluated the inhibition of the Promastigote form of the Leishmania species under study. The activity of the molecules was determined by the IC50 value (µM); IC50 values < 20 µM indicated better inhibition profiles. Sixteen compounds were synthesized and tested for their activity. Eight molecules presented IC50 values < 20 µM for at least one of the Leishmania species under study, with compound NC34 presenting the strongest parasite inhibition profile. Furthermore, the methodology used was effective, as many of the compounds with the highest probability of activity were confirmed by the in vitro tests performed.
Collapse
Affiliation(s)
- Natália Ferreira de Sousa
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| | | | | | - Francinara da Silva Alves
- Post-Graduate Program in Chemistry, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| | - Chonny Alexander Herrera Acevedo
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| | - Thaís Amanda de Lima Nunes
- Infectious Diseases Laboratory, Federal University of Delta of Parnaíba, Av. São Sebastião, nº 2819-Nossa Sra. de Fátima, Parnaíba 64202-020, PI, Brazil
| | - Zoe L. Sessions
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| | - Eugene N. Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Klinger Antônio da Franca Rodrigues
- Infectious Diseases Laboratory, Federal University of Delta of Parnaíba, Av. São Sebastião, nº 2819-Nossa Sra. de Fátima, Parnaíba 64202-020, PI, Brazil
| | | | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| |
Collapse
|
3
|
Michels PAM, Gualdrón-López M. Biogenesis and metabolic homeostasis of trypanosomatid glycosomes: new insights and new questions. J Eukaryot Microbiol 2022; 69:e12897. [PMID: 35175680 DOI: 10.1111/jeu.12897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
Kinetoplastea and Diplonemea possess peroxisome-related organelles that, uniquely, contain most of the enzymes of the glycolytic pathway and are hence called glycosomes. Enzymes of several other core metabolic pathways have also been located in glycosomes, in addition to some characteristic peroxisomal systems such as pathways of lipid metabolism. A considerable amount of research has been performed on glycosomes of trypanosomes since their discovery four decades ago. Not only the role of the glycosomal enzyme systems in the overall cell metabolism appeared to be unique, but the organelles display also remarkable features regarding their biogenesis and structural properties. These features are similar to those of the well-studied peroxisomes of mammalian and plant cells and yeasts yet exhibit also differences reflecting the large evolutionary distance between these protists and the representatives of other major eukaryotic lineages. Despite all research performed, many questions remain about various properties and the biological roles of glycosomes and peroxisomes. Here we review the current knowledge about glycosomes, often comparing it with information about peroxisomes. Furthermore, we highlight particularly many questions that remain about the biogenesis, and the heterogeneity in structure and content of these enigmatic organelles, and the properties of their boundary membrane.
Collapse
Affiliation(s)
- Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Melisa Gualdrón-López
- Instituto Salud Global, Hospital Clinic-Universitat de Barcelona, and Institute for Health Sciences Trias i Pujol, Barcelona, Spain
| |
Collapse
|
4
|
Allmann S, Wargnies M, Plazolles N, Cahoreau E, Biran M, Morand P, Pineda E, Kulyk H, Asencio C, Villafraz O, Rivière L, Tetaud E, Rotureau B, Mourier A, Portais JC, Bringaud F. Glycerol suppresses glucose consumption in trypanosomes through metabolic contest. PLoS Biol 2021; 19:e3001359. [PMID: 34388147 PMCID: PMC8386887 DOI: 10.1371/journal.pbio.3001359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/25/2021] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
Microorganisms must make the right choice for nutrient consumption to adapt to their changing environment. As a consequence, bacteria and yeasts have developed regulatory mechanisms involving nutrient sensing and signaling, known as "catabolite repression," allowing redirection of cell metabolism to maximize the consumption of an energy-efficient carbon source. Here, we report a new mechanism named "metabolic contest" for regulating the use of carbon sources without nutrient sensing and signaling. Trypanosoma brucei is a unicellular eukaryote transmitted by tsetse flies and causing human African trypanosomiasis, or sleeping sickness. We showed that, in contrast to most microorganisms, the insect stages of this parasite developed a preference for glycerol over glucose, with glucose consumption beginning after the depletion of glycerol present in the medium. This "metabolic contest" depends on the combination of 3 conditions: (i) the sequestration of both metabolic pathways in the same subcellular compartment, here in the peroxisomal-related organelles named glycosomes; (ii) the competition for the same substrate, here ATP, with the first enzymatic step of the glycerol and glucose metabolic pathways both being ATP-dependent (glycerol kinase and hexokinase, respectively); and (iii) an unbalanced activity between the competing enzymes, here the glycerol kinase activity being approximately 80-fold higher than the hexokinase activity. As predicted by our model, an approximately 50-fold down-regulation of the GK expression abolished the preference for glycerol over glucose, with glucose and glycerol being metabolized concomitantly. In theory, a metabolic contest could be found in any organism provided that the 3 conditions listed above are met.
Collapse
Affiliation(s)
- Stefan Allmann
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux University, CNRS, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Bordeaux University, CNRS, Bordeaux, France
| | - Marion Wargnies
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux University, CNRS, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Bordeaux University, CNRS, Bordeaux, France
| | - Nicolas Plazolles
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux University, CNRS, Bordeaux, France
| | - Edern Cahoreau
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- MetaToul–MetaboHUB, Toulouse, France
| | - Marc Biran
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Bordeaux University, CNRS, Bordeaux, France
| | - Pauline Morand
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Bordeaux University, CNRS, Bordeaux, France
| | - Erika Pineda
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux University, CNRS, Bordeaux, France
| | - Hanna Kulyk
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- MetaToul–MetaboHUB, Toulouse, France
| | - Corinne Asencio
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux University, CNRS, Bordeaux, France
| | - Oriana Villafraz
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux University, CNRS, Bordeaux, France
| | - Loïc Rivière
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux University, CNRS, Bordeaux, France
| | - Emmanuel Tetaud
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux University, CNRS, Bordeaux, France
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
| | - Arnaud Mourier
- Institute of Biochemistry and Genetics of the Cell (IBGC), CNRS, Bordeaux University, Bordeaux, France
| | - Jean-Charles Portais
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- MetaToul–MetaboHUB, Toulouse, France
- STROMALab, Université de Toulouse, INSERM U1031, EFS, INP-ENVT, UPS, Toulouse, France
| | - Frédéric Bringaud
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux University, CNRS, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Bordeaux University, CNRS, Bordeaux, France
- * E-mail:
| |
Collapse
|