1
|
Jin H, Han X, Zheng C, Xu J, Zhang W, Gu Y, Peng Y, Han J, Xu L, Shen X, Yang Y. Functional investigation of Zur in metal ion homeostasis, motility and multiple stresses resistance in cyanobacteria Synechocystis sp. PCC 6803. STRESS BIOLOGY 2025; 5:32. [PMID: 40332629 PMCID: PMC12058595 DOI: 10.1007/s44154-025-00224-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/24/2025] [Accepted: 02/10/2025] [Indexed: 05/08/2025]
Abstract
Zur (zinc uptake regulator), a member of the Fur (ferric uptake regulator) family of transcriptional regulators, plays multifaceted roles by regulating the gene expressions, such as modulating zinc ion uptake by regulating the znuABC gene cluster and influencing bacterial motility by modulating genes associated with flagella or pili. The photosynthetic autotroph Synechocystis sp. PCC 6803 is frequently used as an indicator organism for water pollution and a cell factory for high-value biochemical production in synthetic biology. During its growth, this organism often encounters various abiotic stresses, including oxidative, salt, and antibiotic stress. In this study, we conducted transcriptomic analysis on both Δzur mutant and wild-type (WT) strains to identify potential Zur-regulated genes in Synechocystis sp. PCC 6803. These genes primarily participate in multiple pathways such as inorganic ion transport, carbohydrate transport, energy production and conversion, and cell motility. Zur not only controls zinc ion homeostasis within the cell but also influences the iron balance by directly regulating the expression of the fur gene. In terms of motility, Zur regulates the expression of bacterial pili gene cluster and other motility-related genes, thereby affecting the twitching motility of Synechocystis sp. PCC 6803. Furthermore, Zur plays a crucial role in promoting biofilm formation and enhancing resistance to salt, oxidative, and antibiotic stresses by modulating relative gene expression. In conclusion, as a global transcriptional regulator, Zur plays pivotal roles in metal ion homeostasis, motility, and resistance to multiple stresses in Synechocystis sp. PCC 6803. This study illustrates the Zur regulons in Synechocystis sp. PCC 6803, and underscores the importance of Zur in enhancing the environmental adaptability of cyanobacteria.
Collapse
Affiliation(s)
- Han Jin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Xiaoru Han
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Chen Zheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Jingling Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Wenjing Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yanchao Gu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Ying Peng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Jiaxin Han
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Lei Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| | - Yantao Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
2
|
García JE, Pagnussat LA, Amenta MB, Casanovas EM, Diaz PR, Labarthe MM, Martino MV, Groppa MD, Creus CM, Maroniche GA. Maize drought protection by Azospirillum argentinense Az19 requires bacterial trehalose accumulation. Appl Microbiol Biotechnol 2024; 108:543. [PMID: 39729258 DOI: 10.1007/s00253-024-13391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Azospirillum argentinense Az19 is an osmotolerant plant growth-promoting bacterium that protects maize plants from drought. In this work, we explored the role of trehalose in the superior performance of Az19 under stress. The trehalase-coding gene treF was constitutively expressed in Az19 through a miniTn7 system. The resulting recombinant strain, Az19F, did not accumulate trehalose, was affected in its capacity to cope with salt-, osmotic-, and UV-stress, and showed higher reactive oxygen species levels. Physiological alterations were also observed under normal conditions, such as increased growth in biofilms, higher motility, and decreased auxin secretion. Even so, the capacity of Az19F to colonize maize roots was not affected, either under normal or drought conditions. When inoculated in maize, both Az19 and Az19F strains promoted plant growth similarly under normal irrigation. However, unlike Az19, the trehalose-deficient strain Az19F could not improve the height, aerial fresh weight, or relative water content of maize plants under drought. Notably, Az19F triggered an exacerbated oxidative response in the plants, resulting in higher levels of antioxidant and phenolic compounds. We conclude that the role of trehalose metabolism in A. argentinense Az19 transcends stress tolerance, being also important for normal bacterial physiology and its plant growth-promoting activity under drought. KEY POINTS: • Trehalose is required by Az19 for full tolerance to salt-, osmotic-, and UV-stress. • A restriction in trehalose accumulation alters Az19 normal cell physiology. • Trehalose contributes to Az19-induced maize growth promotion under drought.
Collapse
Affiliation(s)
- Julia E García
- Instituto de Microbiología y Zoología Agrícola, Instituto Nacional de Tecnología Agropecuaria (INTA), Nicolás Repetto y de los Reseros S/N, Hurlingham, B1713, Buenos Aires, Argentina
| | - Luciana A Pagnussat
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC), Vieytes 3103, B7602, Mar del Plata, Buenos Aires, Argentina
| | - Melina B Amenta
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina
| | - E Mabel Casanovas
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina
| | - Pablo R Diaz
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 2290 C1425, Godoy Cruz, CABA, Argentina
| | - María M Labarthe
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 2290 C1425, Godoy Cruz, CABA, Argentina
| | - María V Martino
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina
| | - María D Groppa
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), CONICET-Universidad de Buenos Aires (UBA), C1113, Junin 956, Buenos Aires, Argentina
| | - Cecilia M Creus
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina
| | - Guillermo A Maroniche
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 2290 C1425, Godoy Cruz, CABA, Argentina.
| |
Collapse
|
3
|
Patel M, Islam S, Glick BR, Vimal SR, Bhor SA, Bernardi M, Johora FT, Patel A, de Los Santos Villalobos S. Elaborating the multifarious role of PGPB for sustainable food security under changing climate conditions. Microbiol Res 2024; 289:127895. [PMID: 39276501 DOI: 10.1016/j.micres.2024.127895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
Changing climate creates a challenge to agricultural sustainability and food security by changing patterns of parameters like increased UV radiation, rising temperature, altered precipitation patterns, and higher occurrence of extreme weather incidents. Plants are vulnerable to different abiotic stresses such as waterlogging, salinity, heat, cold, and drought in their natural environments. The prevailing agricultural management practices play a major role in the alteration of the Earth's climate by causing biodiversity loss, soil degradation through chemical and physical degradation, and pollution of water bodies. The extreme usage of pesticides and fertilizers leads to climate change by releasing greenhouse gases (GHGs) and depositing toxic substances in the soil. At present, there is an urgent need to address these abiotic stresses to achieve sustainable growth in agricultural production and fulfill the rising global food demand. Several types of bacteria that are linked with plants can increase plant resistance to stress and lessen the negative effects of environmental challenges. This review aims to explore the environmentally friendly capabilities and prospects of multi-trait plant growth-promoting bacteria (PGPB) in the alleviation of detrimental impacts of harsh environmental conditions on plants.
Collapse
Affiliation(s)
- Margi Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat 384265, India.
| | - Shaikhul Islam
- Plant Pathology Division, Bangladesh Wheat and Maize Research Institute, Nashipur, Dinajpur 5200, Bangladesh.
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Shobhit Raj Vimal
- Department of Botany, University of Allahabad, Prayagraj 211002, India.
| | - Sachin Ashok Bhor
- Laboratory of Plant Molecular Biology and Virology, Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan.
| | - Matteo Bernardi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, via Vetoio, Coppito 67100, Italy.
| | - Fatema Tuj Johora
- Lincoln University, Department of Sustainable Agriculture, 1570 Baltimore Pike, PA 19352, USA.
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat 384265, India.
| | | |
Collapse
|
4
|
Klepa MS, diCenzo GC, Hungria M. Comparative genomic analysis of Bradyrhizobium strains with natural variability in the efficiency of nitrogen fixation, competitiveness, and adaptation to stressful edaphoclimatic conditions. Microbiol Spectr 2024; 12:e0026024. [PMID: 38842312 PMCID: PMC11218460 DOI: 10.1128/spectrum.00260-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Bradyrhizobium is known for fixing atmospheric nitrogen in symbiosis with agronomically important crops. This study focused on two groups of strains, each containing eight natural variants of the parental strains, Bradyrhizobium japonicum SEMIA 586 (=CNPSo 17) or Bradyrhizobium diazoefficiens SEMIA 566 (=CNPSo 10). CNPSo 17 and CNPSo 10 were used as commercial inoculants for soybean crops in Brazil at the beginning of the crop expansion in the southern region in the 1960s-1970s. Variants derived from these parental strains were obtained in the late 1980s through a strain selection program aimed at identifying elite strains adapted to a new cropping frontier in the central-western Cerrado region, with a higher capacity of biological nitrogen fixation (BNF) and competitiveness. Here, we aimed to detect genetic variations possibly related to BNF, competitiveness for nodule occupancy, and adaptation to the stressful conditions of the Brazilian Cerrado soils. High-quality genome assemblies were produced for all strains. The core genome phylogeny revealed that strains of each group are closely related, as confirmed by high average nucleotide identity values. However, variants accumulated divergences resulting from horizontal gene transfer, genomic rearrangements, and nucleotide polymorphisms. The B. japonicum group presented a larger pangenome and a higher number of nucleotide polymorphisms than the B. diazoefficiens group, possibly due to its longer adaptation time to the Cerrado soil. Interestingly, five strains of the B. japonicum group carry two plasmids. The genetic variability found in both groups is discussed considering the observed differences in their BNF capacity, competitiveness for nodule occupancy, and environmental adaptation.IMPORTANCEToday, Brazil is a global leader in the study and use of biological nitrogen fixation with soybean crops. As Brazilian soils are naturally void of soybean-compatible bradyrhizobia, strain selection programs were established, starting with foreign isolates. Selection searched for adaptation to the local edaphoclimatic conditions, higher efficiency of nitrogen fixation, and strong competitiveness for nodule occupancy. We analyzed the genomes of two parental strains of Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens and eight variant strains derived from each parental strain. We detected two plasmids in five strains and several genetic differences that might be related to adaptation to the stressful conditions of the soils of the Brazilian Cerrado biome. We also detected genetic variations in specific regions that may impact symbiotic nitrogen fixation. Our analysis contributes to new insights into the evolution of Bradyrhizobium, and some of the identified differences may be applied as genetic markers to assist strain selection programs.
Collapse
Affiliation(s)
- Milena Serenato Klepa
- Soil Biotechnology Laboratory, Embrapa Soja, Londrina, Paraná, Brazil
- CNPq, Brasília, Brazil
| | | | - Mariangela Hungria
- Soil Biotechnology Laboratory, Embrapa Soja, Londrina, Paraná, Brazil
- CNPq, Brasília, Brazil
| |
Collapse
|
5
|
Kuczyńska-Wiśnik D, Stojowska-Swędrzyńska K, Laskowska E. Intracellular Protective Functions and Therapeutical Potential of Trehalose. Molecules 2024; 29:2088. [PMID: 38731579 PMCID: PMC11085779 DOI: 10.3390/molecules29092088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Trehalose is a naturally occurring, non-reducing saccharide widely distributed in nature. Over the years, research on trehalose has revealed that this initially thought simple storage molecule is a multifunctional and multitasking compound protecting cells against various stress factors. This review presents data on the role of trehalose in maintaining cellular homeostasis under stress conditions and in the virulence of bacteria and fungi. Numerous studies have demonstrated that trehalose acts in the cell as an osmoprotectant, chemical chaperone, free radical scavenger, carbon source, virulence factor, and metabolic regulator. The increasingly researched medical and therapeutic applications of trehalose are also discussed.
Collapse
Affiliation(s)
| | | | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (D.K.-W.); (K.S.-S.)
| |
Collapse
|
6
|
Wang G, Li Z, Yang B, Yang H, Zhang Y, Zeng Q, Yan C, He Y, Peng Y, Wang W, Chen B, Du G. The effect of white grub (Maladera Verticalis) larvae feeding on rhizosphere microbial characterization of aerobic rice (Oryza sativa L.) in Puer City, Yunnan Province, China. BMC Microbiol 2024; 24:123. [PMID: 38622504 PMCID: PMC11017655 DOI: 10.1186/s12866-024-03265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/17/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Rhizosphere microorganisms are vital in plants' growth and development and these beneficial microbes are recruited to the root-zone soil when experiencing various environmental stresses. However, the effect of white grub (Maladera verticalis) larvae feeding on the structure and function of rhizosphere microbial communities of aerobic rice (Oryza sativa L.) is unclear. RESULTS In this study, we compared physicochemical properties, enzyme activities, and microbial communities using 18 samples under healthy and M. verticalis larvae-feeding aerobic rice rhizosphere soils at the Yunnan of China. 16 S rRNA and ITS amplicons were sequenced using Illumina high throughput sequencing. M. verticalis larvae feeding on aerobic rice can influence rhizosphere soil physicochemical properties and enzyme activities, which also change rhizosphere microbial communities. The healthy and M. verticalis larvae-feeding aerobic rice rhizosphere soil microorganisms had distinct genus signatures, such as possible_genus_04 and Knoellia genera in healthy aerobic rice rhizosphere soils and norank_f__SC - I-84 and norank_f__Roseiflexaceae genera in M. verticalis larvae-feeding aerobic rice rhizosphere soils. The pathway of the metabolism of terpenoids and polyketides and carbohydrate metabolism in rhizosphere bacteria were significantly decreased after M. verticalis larvae feeding. Fungal parasite-wood saprotroph and fungal parasites were significantly decreased after M. verticalis larvae feeding, and plant pathogen-wood saprotroph and animal pathogen-undefined saprotroph were increased after larvae feeding. Additionally, the relative abundance of Bradyrhizobium and Talaromyces genera gradually increased with the elevation of the larvae density. Bacterial and fungal communities significantly correlated with soil physicochemical properties and enzyme activities, respectively. CONCLUSIONS Based on the results we provide new insight for understanding the adaptation of aerobic rice to M. verticalis larvae feeding via regulating the rhizosphere environment, which would allow us to facilitate translation to more effective measures.
Collapse
Affiliation(s)
- Guang Wang
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhengfei Li
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Baoyun Yang
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Huquan Yang
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Yujie Zhang
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Qingping Zeng
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Chaojianping Yan
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Yanyan He
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Yuejin Peng
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Wenqian Wang
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Bin Chen
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Guangzu Du
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
7
|
Lee J, Jeong B, Bae HR, Jang HA, Kim JK. Trehalose Biosynthesis Gene otsA Protects against Stress in the Initial Infection Stage of Burkholderia-Bean Bug Symbiosis. Microbiol Spectr 2023; 11:e0351022. [PMID: 36976011 PMCID: PMC10100943 DOI: 10.1128/spectrum.03510-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Trehalose, a nonreducing disaccharide, functions as a stress protectant in many organisms, including bacteria. In symbioses involving bacteria, the bacteria have to overcome various stressors to associate with their hosts; thus, trehalose biosynthesis may be important for symbiotic bacteria. Here, we investigated the role of trehalose biosynthesis in the Burkholderia-bean bug symbiosis. Expression levels of two trehalose biosynthesis genes, otsA and treS, were elevated in symbiotic Burkholderia insecticola cells, and hence mutant ΔotsA and ΔtreS strains were generated to examine the functions of these genes in symbiosis. An in vivo competition assay with the wild-type strain revealed that fewer ΔotsA cells, but not ΔtreS cells, colonized the host symbiotic organ, the M4 midgut, than wild-type cells. The ΔotsA strain was susceptible to osmotic pressure generated by high salt or high sucrose concentrations, suggesting that the reduced symbiotic competitiveness of the ΔotsA strain was due to the loss of stress resistance. We further demonstrated that fewer ΔotsA cells infected the M4 midgut initially but that fifth-instar nymphs exhibited similar symbiont population size as the wild-type strain. Together, these results demonstrated that the stress resistance role of otsA is important for B. insecticola to overcome the stresses it encounters during passage through the midgut regions to M4 in the initial infection stage but plays no role in resistance to stresses inside the M4 midgut in the persistent stage. IMPORTANCE Symbiotic bacteria have to overcome stressful conditions present in association with the host. In the Burkholderia-bean bug symbiosis, we speculated that a stress-resistant function of Burkholderia is important and that trehalose, known as a stress protectant, plays a role in the symbiotic association. Using otsA, the trehalose biosynthesis gene, and a mutant strain, we demonstrated that otsA confers Burkholderia with competitiveness when establishing a symbiotic association with bean bugs, especially playing a role in initial infection stage. In vitro assays revealed that otsA provides the resistance against osmotic stresses. Hemipteran insects, including bean bugs, feed on plant phloem sap, which may lead to high osmotic pressures in the midguts of hemipterans. Our results indicated that the stress-resistant role of otsA is important for Burkholderia to overcome the osmotic stresses present during the passage through midgut regions to reach the symbiotic organ.
Collapse
Affiliation(s)
- Junbeom Lee
- Metabolomics Research Center for Functional Materials, Kyungsung University, Busan, South Korea
| | - Bohyun Jeong
- Department of Microbiology, Kosin University College of Medicine, Busan, South Korea
| | - Ha Ram Bae
- Department of Microbiology, Kosin University College of Medicine, Busan, South Korea
| | - Ho Am Jang
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, South Korea
| | - Jiyeun Kate Kim
- Department of Microbiology, Kosin University College of Medicine, Busan, South Korea
| |
Collapse
|
8
|
Mechanisms and Applications of Bacterial Inoculants in Plant Drought Stress Tolerance. Microorganisms 2023; 11:microorganisms11020502. [PMID: 36838467 PMCID: PMC9958599 DOI: 10.3390/microorganisms11020502] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Agricultural systems are highly affected by climatic factors such as temperature, rain, humidity, wind, and solar radiation, so the climate and its changes are major risk factors for agricultural activities. A small portion of the agricultural areas of Brazil is irrigated, while the vast majority directly depends on the natural variations of the rains. The increase in temperatures due to climate change will lead to increased water consumption by farmers and a reduction in water availability, putting production capacity at risk. Drought is a limiting environmental factor for plant growth and one of the natural phenomena that most affects agricultural productivity. The response of plants to water stress is complex and involves coordination between gene expression and its integration with hormones. Studies suggest that bacteria have mechanisms to mitigate the effects of water stress and promote more significant growth in these plant species. The underlined mechanism involves root-to-shoot phenotypic changes in growth rate, architecture, hydraulic conductivity, water conservation, plant cell protection, and damage restoration through integrating phytohormones modulation, stress-induced enzymatic apparatus, and metabolites. Thus, this review aims to demonstrate how plant growth-promoting bacteria could mitigate negative responses in plants exposed to water stress and provide examples of technological conversion applied to agroecosystems.
Collapse
|
9
|
Wülser J, Ernst C, Vetsch D, Emmenegger B, Michel A, Lutz S, Ahrens CH, Vorholt JA, Ledermann R, Fischer HM. Salt- and Osmo-Responsive Sensor Histidine Kinases Activate the Bradyrhizobium diazoefficiens General Stress Response to Initiate Functional Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:604-615. [PMID: 35322688 DOI: 10.1094/mpmi-02-22-0051-fi] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The general stress response (GSR) enables bacteria to sense and overcome a variety of environmental stresses. In alphaproteobacteria, stress-perceiving histidine kinases of the HWE and HisKA_2 families trigger a signaling cascade that leads to phosphorylation of the response regulator PhyR and, consequently, to activation of the GSR σ factor σEcfG. In the nitrogen-fixing bacterium Bradyrhizobium diazoefficiens, PhyR and σEcfG are crucial for tolerance against a variety of stresses under free-living conditions and also for efficient infection of its symbiotic host soybean. However, the molecular players involved in stress perception and activation of the GSR remained largely unknown. In this work, we first showed that a mutant variant of PhyR where the conserved phosphorylatable aspartate residue D194 was replaced by alanine (PhyRD194A) failed to complement the ΔphyR mutant in symbiosis, confirming that PhyR acts as a response regulator. To identify the PhyR-activating kinases in the nitrogen-fixing symbiont, we constructed in-frame deletion mutants lacking single, distinct combinations, or all of the 11 predicted HWE and HisKA_2 kinases, which we named HRXXN histidine kinases HhkA through HhkK. Phenotypic analysis of the mutants and complemented derivatives identified two functionally redundant kinases, HhkA and HhkE, that are required for nodulation competitiveness and during initiation of symbiosis. Using σEcfG-activity reporter strains, we further showed that both HhkA and HhkE activate the GSR in free-living cells exposed to salt and hyperosmotic stress. In conclusion, our data suggest that HhkA and HhkE trigger GSR activation in response to osmotically stressful conditions which B. diazoefficiens encounters during soybean host infection.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Janine Wülser
- Institute of Microbiology, ETH Zurich, CH-8093 Zürich, Switzerland
| | - Chantal Ernst
- Institute of Microbiology, ETH Zurich, CH-8093 Zürich, Switzerland
| | - Dominik Vetsch
- Institute of Microbiology, ETH Zurich, CH-8093 Zürich, Switzerland
| | | | - Anja Michel
- Institute of Microbiology, ETH Zurich, CH-8093 Zürich, Switzerland
| | - Stefanie Lutz
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics and Swiss Institute of Bioinformatics, CH-8820 Wädenswil, Switzerland
| | - Christian H Ahrens
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics and Swiss Institute of Bioinformatics, CH-8820 Wädenswil, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, ETH Zurich, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
10
|
Hopanoids Confer Robustness to Physicochemical Variability in the Niche of the Plant Symbiont Bradyrhizobium diazoefficiens. J Bacteriol 2022; 204:e0044221. [PMID: 35657706 DOI: 10.1128/jb.00442-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobia are a group of bacteria that increase soil nitrogen content through symbiosis with legume plants. The soil and symbiotic host are potentially stressful environments, and the soil will likely become even more stressful as the climate changes. Many rhizobia within the Bradyrhizobium clade, like Bradyrhizobium diazoefficiens, possess the genetic capacity to synthesize hopanoids, steroid-like lipids similar in structure and function to cholesterol. Hopanoids are known to protect against stresses relevant to the niche of B. diazoefficiens. Paradoxically, mutants unable to synthesize the extended class of hopanoids participate in symbioses with success similar to that of the wild type, despite being delayed in root nodule initiation. Here, we show that in B. diazoefficiens, the growth defects of extended-hopanoid-deficient mutants can be at least partially compensated for by the physicochemical environment, specifically, by optimal osmotic and divalent cation concentrations. Through biophysical measurements of lipid packing and membrane permeability, we show that extended hopanoids confer robustness to environmental variability. These results help explain the discrepancy between previous in-culture and in planta results and indicate that hopanoids may provide a greater fitness advantage to rhizobia in the variable soil environment than the more controlled environments within root nodules. To improve the legume-rhizobium symbiosis through either bioengineering or strain selection, it will be important to consider the full life cycle of rhizobia, from soil to symbiosis. IMPORTANCE Rhizobia, such as B. diazoefficiens, play an important role in the nitrogen cycle by making nitrogen gas bioavailable through symbiosis with legume plants. As climate change threatens soil health, this symbiosis has received increased attention as a more sustainable source of soil nitrogen than the energy-intensive Haber-Bosch process. Efforts to use rhizobia as biofertilizers have been effective; however, long-term integration of rhizobia into the soil community has been less successful. This work represents a small step toward improving the legume-rhizobium symbiosis by identifying a cellular component-hopanoid lipids-that confers robustness to environmental stresses rhizobia are likely to encounter in soil microenvironments as sporadic desiccation and flooding events become more common.
Collapse
|
11
|
Abstract
This article comments on: Tian L, Liu L, Xu S, Deng R, Wu P, Jiang H, Wu G, Chen Y. 2022. A d-pinitol transporter, LjPLT11, regulates plant growth and nodule development in Lotus japonicus. Journal of Experimental Botany 73, 351–365.
Collapse
Affiliation(s)
- Philip S Poole
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Raphael Ledermann
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|