1
|
Bayliss CD, Clark JL, van der Woude MW. 100+ years of phase variation: the premier bacterial bet-hedging phenomenon. MICROBIOLOGY (READING, ENGLAND) 2025; 171:001537. [PMID: 40014379 PMCID: PMC11868660 DOI: 10.1099/mic.0.001537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Abstract
Stochastic, reversible switches in the expression of Salmonella flagella variants were first described by Andrewes in 1922. Termed phase variation (PV), subsequent research found that this phenomenon was widespread among bacterial species and controlled expression of major determinants of bacterial-host interactions. Underlying mechanisms were not discovered until the 1970s/1980s but were found to encompass intrinsic aspects of DNA processes (i.e. DNA slippage and recombination) and DNA modifications (i.e. DNA methylation). Despite this long history, discoveries are ongoing with expansions of the phase-variable repertoire into new organisms and novel insights into the functions of known loci and switching mechanisms. Some of these discoveries are somewhat controversial as the term 'PV' is being applied without addressing key aspects of the phenomenon such as whether mutations or epigenetic changes are reversible and generated prior to selection. Another 'missing' aspect of PV research is the impact of these adaptive switches in real-world situations. This review provides a perspective on the historical timeline of the discovery of PV, the current state-of-the-art, controversial aspects of classifying phase-variable loci and possible 'missing' real-world effects of this phenomenon.
Collapse
Affiliation(s)
- Christopher D. Bayliss
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK
| | - Jack L. Clark
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK
| | - Marjan W. van der Woude
- Hull York Medical School and the York Biomedical Research Institute, University of York, York, UK
| |
Collapse
|
2
|
Fraser AJ, McMahon FE, Atack JM. Microbial Primer: Phase variation - survival and adaptability by generation of a diverse population. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001492. [PMID: 39222353 PMCID: PMC11475388 DOI: 10.1099/mic.0.001492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Phase variation is defined as the rapid and reversible switching of gene expression, and typically occurs in genes encoding surface features in small genome bacterial pathogens. Phase variation has evolved to provide an extra survival mechanism in bacteria that lack multiple 'sense-and-respond' gene regulation systems. Many bacterial pathogens also encode DNA methyltransferases that are phase-variable, controlling systems called 'phasevarions' (phase-variable regulons). This primer will summarize the current understanding of phase variation, describing the role of major phase-variable factors, and phasevarions, in bacterial pathobiology.
Collapse
Affiliation(s)
- Ashley J. Fraser
- Institute for Biomedicine & Glycomics, Griffith University, Gold Coast, Queensland 4215, Australia
| | - Finn E. McMahon
- Institute for Biomedicine & Glycomics, Griffith University, Gold Coast, Queensland 4215, Australia
| | - John M. Atack
- Institute for Biomedicine & Glycomics, Griffith University, Gold Coast, Queensland 4215, Australia
- School of Environment and Science, Griffith University, Gold Coast, Queensland 4215, Australia
| |
Collapse
|
3
|
Rodríguez-Pastor R, Knossow N, Shahar N, Hasik AZ, Deatherage DE, Gutiérrez R, Harrus S, Zaman L, Lenski RE, Barrick JE, Hawlena H. Pathogen contingency loci and the evolution of host specificity: Simple sequence repeats mediate Bartonella adaptation to a wild rodent host. PLoS Pathog 2024; 20:e1012591. [PMID: 39348417 PMCID: PMC11466379 DOI: 10.1371/journal.ppat.1012591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/10/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024] Open
Abstract
Parasites, including pathogens, can adapt to better exploit their hosts on many scales, ranging from within an infection of a single individual to series of infections spanning multiple host species. However, little is known about how the genomes of parasites in natural communities evolve when they face diverse hosts. We investigated how Bartonella bacteria that circulate in rodent communities in the dunes of the Negev Desert in Israel adapt to different species of rodent hosts. We propagated 15 Bartonella populations through infections of either a single host species (Gerbillus andersoni or Gerbillus pyramidum) or alternating between the two. After 20 rodent passages, strains with de novo mutations replaced the ancestor in most populations. Mutations in two mononucleotide simple sequence repeats (SSRs) that caused frameshifts in the same adhesin gene dominated the evolutionary dynamics. They appeared exclusively in populations that encountered G. andersoni and altered the dynamics of infections of this host. Similar SSRs in other genes are conserved and exhibit ON/OFF variation in Bartonella isolates from the Negev Desert dunes. Our results suggest that SSR-based contingency loci could be important not only for rapidly and reversibly generating antigenic variation to escape immune responses but that they may also mediate the evolution of host specificity.
Collapse
Affiliation(s)
- Ruth Rodríguez-Pastor
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Nadav Knossow
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Naama Shahar
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Adam Z. Hasik
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Daniel E. Deatherage
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Ricardo Gutiérrez
- National Reference Center for Bacteriology, Costa Rican Institute for Research and Teaching in Nutrition and Health (Inciensa), Cartago, Costa Rica
- Ross University School of Veterinary Medicine, Basseterre, St. Kitts and Nevis, West Indies
| | - Shimon Harrus
- Koret School of Veterinary Medicine, Faculty of Agricultural, Nutritional and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Luis Zaman
- Department of Ecology and Evolutionary Biology, Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Richard E. Lenski
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, United States of America
| | - Jeffrey E. Barrick
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Hadas Hawlena
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| |
Collapse
|
4
|
Ham H, Park DS. Novel approach toward the understanding of genetic diversity based on the two types of amino acid repeats in Erwinia amylovora. Sci Rep 2023; 13:17876. [PMID: 37857695 PMCID: PMC10587187 DOI: 10.1038/s41598-023-44558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Erwinia amylovora is a notorious plant pathogenic bacterium of global concern that has devastated the apple and pear production industry worldwide. Nevertheless, the approaches available currently to understand the genetic diversity of E. amylovora remain unsatisfactory because of the lack of a trustworthy index and data covering the globally occurring E. amylovora strains; thus, their origin and distribution pattern remains ambiguous. Therefore, there is a growing need for robust approaches for obtaining this information via the comparison of the genomic structure of Amygdaloideae-infecting strains to understand their genetic diversity and distribution. Here, the whole-genome sequences of 245 E. amylovora strains available from the NCBI database were compared to identify intraspecific genes for use as an improved index for the simple classification of E. amylovora strains regarding their distribution. Finally, we discovered two kinds of strain-typing protein-encoding genes, i.e., the SAM-dependent methyltransferase and electron transport complex subunit RsxC. Interestingly, both of these proteins carried an amino acid repeat in these strains: SAM-dependent methyltransferase comprised a single-amino-acid repeat (asparagine), whereas RsxC carried a 40-amino-acid repeat, which was differentially distributed among the strains. These noteworthy findings and approaches may enable the exploration of the genetic diversity of E. amylovora from a global perspective.
Collapse
Affiliation(s)
- Hyeonheui Ham
- Crop Protection Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Dong Suk Park
- Crop Protection Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea.
| |
Collapse
|
5
|
Sandhu SK, Bayliss CD, Morozov AY. How does feedback from phage infections influence the evolution of phase variation in Campylobacter? PLoS Comput Biol 2021; 17:e1009067. [PMID: 34125841 PMCID: PMC8224891 DOI: 10.1371/journal.pcbi.1009067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Campylobacter jejuni (C. jejuni) causes gastroenteritis following the consumption of contaminated poultry meat, resulting in a large health and economic burden worldwide. Phage therapy is a promising technique for eradicating C. jejuni from poultry flocks and chicken carcasses. However, C. jejuni can resist infections by some phages through stochastic, phase-variable ON/OFF switching of the phage receptors mediated by simple sequence repeats (SSR). While selection strength and exposure time influence the evolution of SSR-mediated phase variation (PV), phages offer a more complex evolutionary environment as phage replication depends on having a permissive host organism. Here, we build and explore several continuous culture bacteria-phage computational models, each analysing different phase-variable scenarios calibrated to the experimental SSR rates of C. jejuni loci and replication parameters for the F336 phage. We simulate the evolution of PV rates via the adaptive dynamics framework for varying levels of selective pressures that act on the phage-resistant state. Our results indicate that growth reducing counter-selection on a single PV locus results in the stable maintenance of the phage, while compensatory selection between bacterial states affects the evolutionary stable mutation rates (i.e. very high and very low mutation rates are evolutionarily disadvantageous), whereas, in the absence of either selective pressure the evolution of PV rates results in mutation rates below the basal values. Contrastingly, a biologically-relevant model with two phase-variable loci resulted in phage extinction and locking of the bacteria into a phage-resistant state suggesting that another counter-selective pressure is required, instance, the use of a distinct phage whose receptor is an F336-phage-resistant state. We conclude that a delicate balance between counter-selection and phage-attack can result in both the evolution of phase-variable phage receptors and persistence of PV-receptor-specific phage. Globally rising rates of antibiotic resistance have renewed interest in phage therapy. Bacteriophages (phages) act on bacteria to select for resistance mechanisms such as loss of phage receptors by phase variation (PV). Phase-variable genes mediate rapid adaption by stochastic switching of gene expression. Campylobacter jejuni is a common commensal of birds but also causes serious gastrointestinal infections in humans. Optimisation of phage therapy against C. jejuni requires an in-depth understanding of how PV has evolved and mediates phage resistance. Here, we use a detailed continuous culture model for nutrient-limited bacteria-phage interactions, with PV rates calibrated to match the experimental observations for C.jejuni and phage F336. Evolution within a model accounting for two phase-variable loci closely matches the experimental results when growth reducing counter-selection is imposed on all phage-resistant states, but, not when restricted to the particular states associated with resistance to immune effectors. Our results emphasize that delicate balancing of selective pressures, imposed by single and multiple distinct phages, are necessary for effective use of phage therapy against C. jejuni.
Collapse
Affiliation(s)
- Simran K. Sandhu
- Department of Mathematics, University of Leicester, Leicester, United Kingdom
| | - Christopher D. Bayliss
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Andrew Yu. Morozov
- Department of Mathematics, University of Leicester, Leicester, United Kingdom
- Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
- * E-mail:
| |
Collapse
|
6
|
Grekov I, Thöming JG, Kordes A, Häussler S. Evolution of Pseudomonas aeruginosa toward higher fitness under standard laboratory conditions. THE ISME JOURNAL 2021; 15:1165-1177. [PMID: 33273720 PMCID: PMC8115180 DOI: 10.1038/s41396-020-00841-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 01/29/2023]
Abstract
Identifying genetic factors that contribute to the evolution of adaptive phenotypes in pathogenic bacteria is key to understanding the establishment of infectious diseases. In this study, we performed mutation accumulation experiments to record the frequency of mutations and their effect on fitness in hypermutator strains of the environmental bacterium Pseudomonas aeruginosa in comparison to the host-niche-adapted Salmonella enterica. We demonstrate that P. aeruginosa, but not S. enterica, hypermutators evolve toward higher fitness under planktonic conditions. Adaptation to increased growth performance was accompanied by a reversible perturbing of the local genetic context of membrane and cell wall biosynthesis genes. Furthermore, we observed a fine-tuning of complex regulatory circuits involving multiple di-guanylate modulating enzymes that regulate the transition between fast growing planktonic and sessile biofilm-associated lifestyles. The redundancy and local specificity of the di-guanylate signaling pathways seem to allow a convergent shift toward increased growth performance across niche-adapted clonal P. aeruginosa lineages, which is accompanied by a pronounced heterogeneity of their motility, virulence, and biofilm phenotypes.
Collapse
Affiliation(s)
- Igor Grekov
- grid.7490.a0000 0001 2238 295XDepartment of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany ,grid.475435.4Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Janne Gesine Thöming
- grid.452370.70000 0004 0408 1805Institute of Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany ,grid.475435.4Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Adrian Kordes
- grid.452370.70000 0004 0408 1805Institute of Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany ,grid.10423.340000 0000 9529 9877Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Susanne Häussler
- grid.7490.a0000 0001 2238 295XDepartment of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany ,grid.452370.70000 0004 0408 1805Institute of Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany ,grid.475435.4Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark ,grid.10423.340000 0000 9529 9877Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
De Ste Croix M, Holmes J, Wanford JJ, Moxon ER, Oggioni MR, Bayliss CD. Selective and non-selective bottlenecks as drivers of the evolution of hypermutable bacterial loci. Mol Microbiol 2020; 113:672-681. [PMID: 32185830 PMCID: PMC7154626 DOI: 10.1111/mmi.14453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 12/28/2022]
Abstract
Bottlenecks reduce the size of the gene pool within populations of all life forms with implications for their subsequent survival. Here, we examine the effects of bottlenecks on bacterial commensal-pathogens during transmission between, and dissemination within, hosts. By reducing genetic diversity, bottlenecks may alter individual or population-wide adaptive potential. A diverse range of hypermutable mechanisms have evolved in infectious agents that allow for rapid generation of genetic diversity in specific genomic loci as opposed to the variability arising from increased genome-wide mutation rates. These localised hypermutable mechanisms include multi-gene phase variation (PV) of outer membrane components, multi-allele PV of restriction systems and recombination-driven antigenic variation. We review selected experimental and theoretical (mathematical) models pertaining to the hypothesis that localised hypermutation (LH) compensates for fitness losses caused by bottlenecks and discuss whether bottlenecks have driven the evolution of hypermutable loci.
Collapse
Affiliation(s)
- Megan De Ste Croix
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Jonathan Holmes
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Joseph J Wanford
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - E Richard Moxon
- Department of Paediatrics, University of Oxford Medical Sciences Division, John Radcliffe Hospital, Oxford, UK
| | - Marco R Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | |
Collapse
|
8
|
Luo W, Wu Q, Yang L, Chen P, Yang S, Wang T, Wang Y, Du Z. SSREnricher: a computational approach for large-scale identification of polymorphic microsatellites based on comparative transcriptome analysis. PeerJ 2020; 8:e9372. [PMID: 32676221 PMCID: PMC7335497 DOI: 10.7717/peerj.9372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/27/2020] [Indexed: 11/20/2022] Open
Abstract
Microsatellite (SSR) markers are the most popular markers for genetic analyses and molecular selective breeding in plants and animals. However, the currently available methods to develop SSRs are relatively time-consuming and expensive. One of the most factors is low frequency of polymorphic SSRs. In this study, we developed a software, SSREnricher, which composes of six core analysis procedures, including SSR mining, sequence clustering, sequence modification, enrichment containing polymorphic SSR sequences, false-positive removal and results output and multiple sequence alignment. After running of transcriptome sequences on this software, a mass of polymorphic SSRs can be identified. The validation experiments showed almost all markers (>90%) that were identified by the SSREnricher as putative polymorphic markers were indeed polymorphic. The frequency of polymorphic SSRs identified by SSREnricher was significantly higher (P < 0.05) than that of traditional and HTS approaches. The software package is publicly accessible on GitHub (https://github.com/byemaxx/SSREnricher).
Collapse
Affiliation(s)
- Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qing Wu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lan Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Pengyu Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Siqi Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tianzhu Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Wanford JJ, Holmes JC, Bayliss CD, Green LR. Meningococcal core and accessory phasomes vary by clonal complex. Microb Genom 2020; 6:e000367. [PMID: 32375989 PMCID: PMC7371114 DOI: 10.1099/mgen.0.000367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/27/2020] [Indexed: 11/21/2022] Open
Abstract
Neisseria meningitidis is a Gram-negative human commensal pathogen, with extensive phenotypic plasticity afforded by phase-variable (PV) gene expression. Phase variation is a stochastic switch in gene expression from an ON to an OFF state, mediated by localized hypermutation of simple sequence repeats (SSRs). Circulating N. meningitidis clones vary in propensity to cause disease, with some clonal complexes (ccs) classified as hypervirulent and others as carriage-associated. We examined the PV gene repertoires, or phasome, of these lineages in order to determine whether phase variation contributes to disease propensity. We analysed 3328 genomes representative of nine circulating meningococcal ccs with PhasomeIt, a tool that identifies PV genes by the presence of SSRs and homologous gene clusters. The presence, absence and functions of all identified PV gene clusters were confirmed by annotation or blast searches within the Neisseria PubMLST database. While no significant differences were detected in the number of PV genes or the core, conserved phasome content between hypervirulent and carriage lineages, individual ccs exhibited major variations in PV gene numbers. Phylogenetic clusters produced by phasome or core genome analyses were similar, indicating co-evolution of PV genes with the core genome. While conservation of PV clusters is high, with 76 % present in all meningococcal isolates, maintenance of an SSR is variable, ranging from conserved in all isolates to present only in a single cc, indicating differing evolutionary trajectories for each lineage. Diverse functional groups of PV genes were present across the meningococcal lineages; however, the majority directly or indirectly influence bacterial surface antigens and could impact on future vaccine development. Finally, we observe that meningococci have open pan phasomes, indicating ongoing evolution of PV gene content and a significant potential for adaptive changes in this clinically relevant genus.
Collapse
Affiliation(s)
- Joseph J. Wanford
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Jonathan C. Holmes
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | | - Luke R. Green
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
10
|
Green LR, Dave N, Adewoye AB, Lucidarme J, Clark SA, Oldfield NJ, Turner DPJ, Borrow R, Bayliss CD. Potentiation of Phase Variation in Multiple Outer-Membrane Proteins During Spread of the Hyperinvasive Neisseria meningitidis Serogroup W ST-11 Lineage. J Infect Dis 2019; 220:1109-1117. [PMID: 31119276 PMCID: PMC6735796 DOI: 10.1093/infdis/jiz275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/21/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Since 2009, increases in the incidence of invasive meningococcal disease have occurred in the United Kingdom due to a sublineage of the Neisseria meningitidis serogroup W ST-11 clonal complex (hereafter, the "original UK strain"). In 2013, a descendent substrain (hereafter, the "2013 strain") became the dominant disease-causing variant. Multiple outer-membrane proteins of meningococci are subject to phase-variable switches in expression due to hypermutable simple-sequence repeats. We investigated whether alterations in phase-variable genes may have influenced the relative prevalence of the original UK and 2013 substrains, using multiple disease and carriage isolates. METHODS Repeat numbers were determined by either bioinformatics analysis of whole-genome sequencing data or polymerase chain reaction amplification and sizing of fragments from genomic DNA extracts. Immunoblotting and sequence-translation analysis was performed to identify expression states. RESULTS Significant increases in repeat numbers were detected between the original UK and 2013 strains in genes encoding PorA, NadA, and 2 Opa variants. Invasive and carriage isolates exhibited similar repeat numbers, but the absence of pilC gene expression was frequently associated with disease. CONCLUSIONS Elevated repeat numbers in outer-membrane protein genes of the 2013 strain are indicative of higher phase-variation rates, suggesting that rapid expansion of this strain was due to a heightened ability to evade host immune responses during transmission and asymptomatic carriage.
Collapse
Affiliation(s)
- Luke R Green
- Department of Genetics and Genome Biology, University of Leicester, Leicester
| | - Neelam Dave
- Department of Genetics and Genome Biology, University of Leicester, Leicester
| | - Adeolu B Adewoye
- Department of Genetics and Genome Biology, University of Leicester, Leicester
| | - Jay Lucidarme
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester
| | - Stephen A Clark
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester
| | - Neil J Oldfield
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - David P J Turner
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester
| | | |
Collapse
|
11
|
Atack JM, Yang Y, Seib KL, Zhou Y, Jennings MP. A survey of Type III restriction-modification systems reveals numerous, novel epigenetic regulators controlling phase-variable regulons; phasevarions. Nucleic Acids Res 2019; 46:3532-3542. [PMID: 29554328 PMCID: PMC5909438 DOI: 10.1093/nar/gky192] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/10/2018] [Indexed: 12/21/2022] Open
Abstract
Many bacteria utilize simple DNA sequence repeats as a mechanism to randomly switch genes on and off. This process is called phase variation. Several phase-variable N6-adenine DNA-methyltransferases from Type III restriction-modification systems have been reported in bacterial pathogens. Random switching of DNA methyltransferases changes the global DNA methylation pattern, leading to changes in gene expression. These epigenetic regulatory systems are called phasevarions — phase-variable regulons. The extent of these phase-variable genes in the bacterial kingdom is unknown. Here, we interrogated a database of restriction-modification systems, REBASE, by searching for all simple DNA sequence repeats in mod genes that encode Type III N6-adenine DNA-methyltransferases. We report that 17.4% of Type III mod genes (662/3805) contain simple sequence repeats. Of these, only one-fifth have been previously identified. The newly discovered examples are widely distributed and include many examples in opportunistic pathogens as well as in environmental species. In many cases, multiple phasevarions exist in one genome, with examples of up to 4 independent phasevarions in some species. We found several new types of phase-variable mod genes, including the first example of a phase-variable methyltransferase in pathogenic Escherichia coli. Phasevarions are a common epigenetic regulation contingency strategy used by both pathogenic and non-pathogenic bacteria.
Collapse
Affiliation(s)
- John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Yuedong Yang
- School of Data and Computer Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Yaoqi Zhou
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
12
|
Turkington CJR, Morozov A, Clokie MRJ, Bayliss CD. Phage-Resistant Phase-Variant Sub-populations Mediate Herd Immunity Against Bacteriophage Invasion of Bacterial Meta-Populations. Front Microbiol 2019; 10:1473. [PMID: 31333609 PMCID: PMC6625227 DOI: 10.3389/fmicb.2019.01473] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/13/2019] [Indexed: 01/06/2023] Open
Abstract
Hypermutable loci are widespread in bacteria as mechanisms for rapid generation of phenotypic diversity within a population that enables survival of fluctuating, often antagonistic, selection pressures. Localized hypermutation can mediate phase variation and enable survival of bacteriophage predation due to high frequency, reversible alterations in the expression of phage receptors. As phase variation can also generate population-to-population heterogeneity, we hypothesized that this phenomenon may facilitate survival of spatially-separated bacterial populations from phage invasion in a manner analogous to herd immunity to infectious diseases in human populations. The lic2A gene of Haemophilus influenzae is subject to “ON” and “OFF” switches in expression mediated by mutations in a 5′CAAT repeat tract present within the reading frame. The enzyme encoded by lic2A mediates addition of a galactose moiety of the lipopolysaccharide. This moiety is required for attachment of the HP1C1 phage such that the ON state of the lic2A gene is associated with HP1c1 susceptibility while the OFF state is resistant to infection. We developed an “oscillating prey assay” to examine phage spread through a series of sub-populations of Haemophilus influenzae whose phage receptor is in an ON or OFF state. Phage extinction was frequently observed when the proportion of phage-resistant sub-populations exceeded 34%. In silico modeling indicated that phage extinction was interdependent on phage loss during transfer between sub-populations and the frequency of resistant sub-populations. In a fixed-area oscillating prey assay, heterogeneity in phage resistance was observed to generate vast differences in phage densities across a meta-population of multiple bacterial sub-populations resulting in protective quarantining of some sub-populations from phage attack. We conclude that phase-variable hypermutable loci produce bacterial “herd immunity” with resistant intermediary-populations acting as a barricade to reduce the viral load faced by phage-susceptible sub-populations. This paradigm of meta-population protection is applicable to evolution of hypermutable loci in multiple bacteria-phage and host-pathogen interactions.
Collapse
Affiliation(s)
| | - Andrew Morozov
- Department of Mathematics, University of Leicester, Leicester, United Kingdom
| | - Martha R J Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Christopher D Bayliss
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
13
|
Bayliss CD, Fallaize C, Howitt R, Tretyakov MV. Mutation and Selection in Bacteria: Modelling and Calibration. Bull Math Biol 2018; 81:639-675. [PMID: 30430330 PMCID: PMC6373360 DOI: 10.1007/s11538-018-0529-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/26/2018] [Indexed: 11/28/2022]
Abstract
Temporal evolution of a clonal bacterial population is modelled taking into account reversible mutation and selection mechanisms. For the mutation model, an efficient algorithm is proposed to verify whether experimental data can be explained by this model. The selection–mutation model has unobservable fitness parameters, and, to estimate them, we use an Approximate Bayesian Computation algorithm. The algorithms are illustrated using in vitro data for phase variable genes of Campylobacter jejuni.
Collapse
Affiliation(s)
- C D Bayliss
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| | - C Fallaize
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - R Howitt
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - M V Tretyakov
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
14
|
Moxon R, Kussell E. The impact of bottlenecks on microbial survival, adaptation, and phenotypic switching in host-pathogen interactions. Evolution 2017; 71:2803-2816. [PMID: 28983912 DOI: 10.1111/evo.13370] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 09/01/2017] [Indexed: 12/18/2022]
Abstract
Microbial pathogens and viruses can often maintain sufficient population diversity to evade a wide range of host immune responses. However, when populations experience bottlenecks, as occurs frequently during initiation of new infections, pathogens require specialized mechanisms to regenerate diversity. We address the evolution of such mechanisms, known as stochastic phenotype switches, which are prevalent in pathogenic bacteria. We analyze a model of pathogen diversification in a changing host environment that accounts for selective bottlenecks, wherein different phenotypes have distinct transmission probabilities between hosts. We show that under stringent bottlenecks, such that only one phenotype can initiate new infections, there exists a threshold stochastic switching rate below which all pathogen lineages go extinct, and above which survival is a near certainty. We determine how quickly stochastic switching rates can evolve by computing a fitness landscape for the evolutionary dynamics of switching rates, and analyzing its dependence on both the stringency of bottlenecks and the duration of within-host growth periods. We show that increasing the stringency of bottlenecks or decreasing the period of growth results in faster adaptation of switching rates. Our model provides strong theoretical evidence that bottlenecks play a critical role in accelerating the evolutionary dynamics of pathogens.
Collapse
Affiliation(s)
- Richard Moxon
- University of Oxford Medical Sciences Division, John Radcliffe Hospital, Oxford, United Kingdom
| | - Edo Kussell
- Department of Biology and Center for Genomics and Systems Biology, 12 Waverly Place, New York University, New York, 10003.,Department of Physics, New York University, 726 Broadway, New York, 10003
| |
Collapse
|
15
|
Nonselective Bottlenecks Control the Divergence and Diversification of Phase-Variable Bacterial Populations. mBio 2017; 8:mBio.02311-16. [PMID: 28377533 PMCID: PMC5380846 DOI: 10.1128/mbio.02311-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Phase variation occurs in many pathogenic and commensal bacteria and is a major generator of genetic variability. A putative advantage of phase variation is to counter reductions in variability imposed by nonselective bottlenecks during transmission. Genomes of Campylobacter jejuni, a widespread food-borne pathogen, contain multiple phase-variable loci whose rapid, stochastic variation is generated by hypermutable simple sequence repeat tracts. These loci can occupy a vast number of combinatorial expression states (phasotypes) enabling populations to rapidly access phenotypic diversity. The imposition of nonselective bottlenecks can perturb the relative frequencies of phasotypes, changing both within-population diversity and divergence from the initial population. Using both in vitro testing of C. jejuni populations and a simple stochastic simulation of phasotype change, we observed that single-cell bottlenecks produce output populations of low diversity but with bimodal patterns of either high or low divergence. Conversely, large bottlenecks allow divergence only by accumulation of diversity, while interpolation between these extremes is observed in intermediary bottlenecks. These patterns are sensitive to the genetic diversity of initial populations but stable over a range of mutation rates and number of loci. The qualitative similarities of experimental and in silico modeling indicate that the observed patterns are robust and applicable to other systems where localized hypermutation is a defining feature. We conclude that while phase variation will maintain bacterial population diversity in the face of intermediate bottlenecks, narrow transmission-associated bottlenecks could produce host-to-host variation in bacterial phenotypes and hence stochastic variation in colonization and disease outcomes. Transmission and within-host spread of pathogenic organisms are associated with selective and nonselective bottlenecks that significantly reduced population diversity. In several bacterial pathogens, hypermutable mechanisms have evolved that mediate high-frequency reversible switching of specific phenotypes, such as surface structures, and hence counteract bottleneck-associated reductions in population diversity. Here, we investigated how combinations of hypermutable simple sequence repeats interact with nonselective bottlenecks by using a stochastic computer model and experimental data for Campylobacter jejuni, a food-borne pathogen. We find that bottleneck size qualitatively alters the output populations, with large bottlenecks maintaining population diversity while small bottlenecks produce dramatic shifts in the prevalence of particular variants. We conclude that narrow bottlenecks are capable of producing host-to-host variation in repeat-controlled bacterial phenotypes, leading to a potential for stochastic person-to-person variations in disease outcome for C. jejuni and other organisms with similar hypermutable mechanisms.
Collapse
|
16
|
Klughammer J, Dittrich M, Blom J, Mitesser V, Vogel U, Frosch M, Goesmann A, Müller T, Schoen C. Comparative Genome Sequencing Reveals Within-Host Genetic Changes in Neisseria meningitidis during Invasive Disease. PLoS One 2017; 12:e0169892. [PMID: 28081260 PMCID: PMC5231331 DOI: 10.1371/journal.pone.0169892] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/22/2016] [Indexed: 11/29/2022] Open
Abstract
Some members of the physiological human microbiome occasionally cause life-threatening disease even in immunocompetent individuals. A prime example of such a commensal pathogen is Neisseria meningitidis, which normally resides in the human nasopharynx but is also a leading cause of sepsis and epidemic meningitis. Using N. meningitidis as model organism, we tested the hypothesis that virulence of commensal pathogens is a consequence of within host evolution and selection of invasive variants due to mutations at contingency genes, a mechanism called phase variation. In line with the hypothesis that phase variation evolved as an adaptation to colonize diverse hosts, computational comparisons of all 27 to date completely sequenced and annotated meningococcal genomes retrieved from public databases showed that contingency genes are indeed enriched for genes involved in host interactions. To assess within-host genetic changes in meningococci, we further used ultra-deep whole-genome sequencing of throat-blood strain pairs isolated from four patients suffering from invasive meningococcal disease. We detected up to three mutations per strain pair, affecting predominantly contingency genes involved in type IV pilus biogenesis. However, there was not a single (set) of mutation(s) that could invariably be found in all four pairs of strains. Phenotypic assays further showed that these genetic changes were generally not associated with increased serum resistance, higher fitness in human blood ex vivo or differences in the interaction with human epithelial and endothelial cells in vitro. In conclusion, we hypothesize that virulence of meningococci results from accidental emergence of invasive variants during carriage and without within host evolution of invasive phenotypes during disease progression in vivo.
Collapse
Affiliation(s)
- Johanna Klughammer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Marcus Dittrich
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
- Institute of Human Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jochen Blom
- Institute for Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Vera Mitesser
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Ulrich Vogel
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
- German Reference Laboratory for Meningococci and Haemophilus influenzae, Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Matthias Frosch
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
- German Reference Laboratory for Meningococci and Haemophilus influenzae, Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Alexander Goesmann
- Institute for Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Tobias Müller
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Christoph Schoen
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
17
|
Venturelli OS, Egbert RG, Arkin AP. Towards Engineering Biological Systems in a Broader Context. J Mol Biol 2016; 428:928-44. [DOI: 10.1016/j.jmb.2015.10.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/24/2015] [Accepted: 10/28/2015] [Indexed: 01/18/2023]
|
18
|
Abstract
Microbes transiently differentiate into distinct, specialized cell types to generate functional diversity and cope with changing environmental conditions. Though alternate programs often entail radically different physiological and morphological states, recent single-cell studies have revealed that these crucial decisions are often left to chance. In these cases, the underlying genetic circuits leverage the intrinsic stochasticity of intracellular chemistry to drive transition between states. Understanding how these circuits transform transient gene expression fluctuations into lasting phenotypic programs will require a combination of quantitative modeling and extensive, time-resolved observation of switching events in single cells. In this article, we survey microbial cell fate decisions demonstrated to involve a random element, describe theoretical frameworks for understanding stochastic switching between states, and highlight recent advances in microfluidics that will enable characterization of key dynamic features of these circuits.
Collapse
Affiliation(s)
- Thomas M Norman
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115; , ,
| | - Nathan D Lord
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115; , ,
| | - Johan Paulsson
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115; , ,
| | - Richard Losick
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138;
| |
Collapse
|
19
|
Simulation study of the mechanisms underlying outbreaks of clinical disease caused by Actinobacillus pleuropneumoniae in finishing pigs. Vet J 2014; 202:99-105. [DOI: 10.1016/j.tvjl.2014.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 01/17/2023]
|
20
|
Alfsnes K, Raynaud X, Tønjum T, Ambur OH. Mathematical and live meningococcal models for simple sequence repeat dynamics - coherent predictions and observations. PLoS One 2014; 9:e101637. [PMID: 24999629 PMCID: PMC4085013 DOI: 10.1371/journal.pone.0101637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/10/2014] [Indexed: 11/18/2022] Open
Abstract
Evolvability by means of simple sequence repeat (SSR) instability is a feature under the constant influence of opposing selective pressures to expand and compress the repeat tract and is mechanistically influenced by factors that affect genetic instability. In addition to direct selection for protein expression and structural integrity, other factors that influence tract length evolution were studied. The genetic instability of SSRs that switch the expression of antibiotic resistance ON and OFF was modelled mathematically and monitored in a panel of live meningococcal strains. The mathematical model showed that the SSR length of a theoretical locus in an evolving population may be shaped by direct selection of expression status (ON or OFF), tract length dependent (α) and tract length independent factors (β). According to the model an increase in α drives the evolution towards shorter tracts. An increase in β drives the evolution towards a normal distribution of tract lengths given that an upper and a lower limit are set. Insertion and deletion biases were shown to skew allelic distributions in both directions. The meningococcal SSR model was tested in vivo by monitoring the frequency of spectinomycin resistance OFF→ON switching in a designed locus. The instability of a comprehensive panel of the homopolymeric SSRs, constituted of a range of 5-13 guanine nucleotides, was monitored in wildtype and mismatch repair deficient backgrounds. Both the repeat length itself and mismatch repair deficiency were shown to influence the genetic instability of the homopolymeric tracts. A possible insertion bias was observed in tracts ≤G10. Finally, an inverse correlation between the number of tract-encoded amino acids and growth in the presence of ON-selection illustrated a limitation to SSR expansion in an essential gene associated with the designed model locus and the protein function mediating antibiotic resistance.
Collapse
Affiliation(s)
- Kristian Alfsnes
- Department of Microbiology, University of Oslo, Oslo, Norway
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Xavier Raynaud
- Department of Mathematics, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, University of Oslo, Oslo, Norway
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Ole Herman Ambur
- Department of Microbiology, University of Oslo, Oslo, Norway
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway
- * E-mail:
| |
Collapse
|
21
|
A repetitive DNA element regulates expression of the Helicobacter pylori sialic acid binding adhesin by a rheostat-like mechanism. PLoS Pathog 2014; 10:e1004234. [PMID: 24991812 PMCID: PMC4081817 DOI: 10.1371/journal.ppat.1004234] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/21/2014] [Indexed: 12/12/2022] Open
Abstract
During persistent infection, optimal expression of bacterial factors is required to match the ever-changing host environment. The gastric pathogen Helicobacter pylori has a large set of simple sequence repeats (SSR), which constitute contingency loci. Through a slipped strand mispairing mechanism, the SSRs generate heterogeneous populations that facilitate adaptation. Here, we present a model that explains, in molecular terms, how an intergenically located T-tract, via slipped strand mispairing, operates with a rheostat-like function, to fine-tune activity of the promoter that drives expression of the sialic acid binding adhesin, SabA. Using T-tract variants, in an isogenic strain background, we show that the length of the T-tract generates multiphasic output from the sabA promoter. Consequently, this alters the H. pylori binding to sialyl-Lewis x receptors on gastric mucosa. Fragment length analysis of post-infection isolated clones shows that the T-tract length is a highly variable feature in H. pylori. This mirrors the host-pathogen interplay, where the bacterium generates a set of clones from which the best-fit phenotypes are selected in the host. In silico and functional in vitro analyzes revealed that the length of the T-tract affects the local DNA structure and thereby binding of the RNA polymerase, through shifting of the axial alignment between the core promoter and UP-like elements. We identified additional genes in H. pylori, with T- or A-tracts positioned similar to that of sabA, and show that variations in the tract length likewise acted as rheostats to modulate cognate promoter output. Thus, we propose that this generally applicable mechanism, mediated by promoter-proximal SSRs, provides an alternative mechanism for transcriptional regulation in bacteria, such as H. pylori, which possesses a limited repertoire of classical trans-acting regulatory factors.
Collapse
|
22
|
Davis GS, Marino S, Marrs CF, Gilsdorf JR, Dawid S, Kirschner DE. Phase variation and host immunity against high molecular weight (HMW) adhesins shape population dynamics of nontypeable Haemophilus influenzae within human hosts. J Theor Biol 2014; 355:208-18. [PMID: 24747580 DOI: 10.1016/j.jtbi.2014.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 03/21/2014] [Accepted: 04/04/2014] [Indexed: 12/16/2022]
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a bacterium that resides within the human pharynx. Because NTHi is human-restricted, its long-term survival is dependent upon its ability to successfully colonize new hosts. Adherence to host epithelium, mediated by bacterial adhesins, is one of the first steps in NTHi colonization. NTHi express several adhesins, including the high molecular weight (HMW) adhesins that mediate attachment to the respiratory epithelium where they interact with the host immune system to elicit a strong humoral response. hmwA, which encodes the HMW adhesin, undergoes phase variation mediated by 7-base pair tandem repeats located within its promoter region. Repeat number affects both hmwA transcription and HMW-adhesin production such that as the number of repeats increases, adhesin production decreases. Cells expressing large amounts of HMW adhesins may be critical for the establishment and maintenance of NTHi colonization, but they might also incur greater fitness costs when faced with an adhesin-specific antibody-mediated immune response. We hypothesized that the occurrence of large deletion events within the hmwA repeat region allows NTHi cells to maintain adherence in the presence of antibody-mediated immunity. To study this, we developed a mathematical model, incorporating hmwA phase variation and antibody-mediated immunity, to explore the trade-off between bacterial adherence and immune evasion. The model predicts that antibody levels and avidity, catastrophic loss rates, and population carrying capacity all significantly affected numbers of adherent NTHi cells within a host. These results suggest that the occurrence of large, yet rare, deletion events allows for stable maintenance of a small population of adherent cells in spite of HMW adhesin specific antibody-mediated immunity. These adherent subpopulations may be important for sustaining colonization and/or maintaining transmission.
Collapse
Affiliation(s)
- Gregg S Davis
- Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| | - Simeone Marino
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, 5641 Med Sci II SPC 5620, Ann Arbor, MI 48109, USA.
| | - Carl F Marrs
- Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| | - Janet R Gilsdorf
- Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA; Department of Pediatrics, University of Michigan Medical School, L2225 Women׳s Hospital, Ann Arbor, MI 48109, USA.
| | - Suzanne Dawid
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, 5641 Med Sci II SPC 5620, Ann Arbor, MI 48109, USA; UMHS Pediatric Infectious Diseases, University of Michigan Health System, D5101 MPB, Ann Arbor, MI 48109, USA.
| | - Denise E Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, 5641 Med Sci II SPC 5620, Ann Arbor, MI 48109, USA.
| |
Collapse
|
23
|
Zhou K, Aertsen A, Michiels CW. The role of variable DNA tandem repeats in bacterial adaptation. FEMS Microbiol Rev 2013; 38:119-41. [PMID: 23927439 DOI: 10.1111/1574-6976.12036] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/13/2013] [Accepted: 07/26/2013] [Indexed: 01/05/2023] Open
Abstract
DNA tandem repeats (TRs), also designated as satellite DNA, are inter- or intragenic nucleotide sequences that are repeated two or more times in a head-to-tail manner. Because TR tracts are prone to strand-slippage replication and recombination events that cause the TR copy number to increase or decrease, loci containing TRs are hypermutable. An increasing number of examples illustrate that bacteria can exploit this instability of TRs to reversibly shut down or modulate the function of specific genes, allowing them to adapt to changing environments on short evolutionary time scales without an increased overall mutation rate. In this review, we discuss the prevalence and distribution of inter- and intragenic TRs in bacteria and the mechanisms of their instability. In addition, we review evidence demonstrating a role of TR variations in bacterial adaptation strategies, ranging from immune evasion and tissue tropism to the modulation of environmental stress tolerance. Nevertheless, while bioinformatic analysis reveals that most bacterial genomes contain a few up to several dozens of intra- and intergenic TRs, only a small fraction of these have been functionally studied to date.
Collapse
Affiliation(s)
- Kai Zhou
- Department of Microbial and Molecular Systems (M²S), Faculty of Bioscience Engineering, Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
24
|
Walker SI, Callahan BJ, Arya G, Barry JD, Bhattacharya T, Grigoryev S, Pellegrini M, Rippe K, Rosenberg SM. Evolutionary dynamics and information hierarchies in biological systems. Ann N Y Acad Sci 2013; 1305:1-17. [DOI: 10.1111/nyas.12140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sara Imari Walker
- BEYOND: Center for Fundamental Concepts in Science Arizona State University Tempe Arizona
- Blue Marble Space Institute of Science Seattle Washington
| | | | - Gaurav Arya
- Department of NanoEngineering University of California, San Diego La Jolla California
| | - J. David Barry
- Wellcome Trust Centre for Molecular Parasitology Institute of Infection Immunity and Inflammation University of Glasgow Glasgow United Kingdom
| | - Tanmoy Bhattacharya
- Sante Fe Institute Sante Fe New Mexico
- Grp T‐2, MSB285, Los Alamos National Laboratory Los Alamos New Mexico
| | - Sergei Grigoryev
- Penn State University College of Medicine Department Biochemistry and Molecular Biology Pennsylvania State University Hershey Pennsylvania
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology University of California Los Angeles Los Angeles California
| | - Karsten Rippe
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant Research Group Genome Organization & Function Heidelberg Germany
| | - Susan M. Rosenberg
- Departments of Molecular and Human Genetics Biochemistry and Molecular Biology Molecular Virology and Microbiology, and Dan L. Duncan Cancer Center Baylor College of Medicine Houston Texas
| |
Collapse
|