1
|
Stephens K, Zakaria FR, VanArsdale E, Payne GF, Bentley WE. Electronic signals are electrogenetically relayed to control cell growth and co-culture composition. Metab Eng Commun 2021; 13:e00176. [PMID: 34194997 PMCID: PMC8233222 DOI: 10.1016/j.mec.2021.e00176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 01/17/2023] Open
Abstract
There is much to be gained by enabling electronic interrogation and control of biological function. While the benefits of bioelectronics that rely on potential-driven ionic flows are well known (electrocardiograms, defibrillators, neural prostheses, etc) there are relatively few advances targeting nonionic molecular networks, including genetic circuits. Redox activities combine connectivity to electronics with the potential for specific genetic control in cells. Here, electrode-generated hydrogen peroxide is used to actuate an electrogenetic "relay" cell population, which interprets the redox cue and synthesizes a bacterial signaling molecule (quorum sensing autoinducer AI-1) that, in turn, signals increased growth rate in a second population. The dramatically increased growth rate of the second population is enabled by expression of a phosphotransferase system protein, HPr, which is important for glucose transport. The potential to electronically modulate cell growth via direct genetic control will enable new opportunities in the treatment of disease and manufacture of biological therapeutics and other molecules.
Collapse
Affiliation(s)
- Kristina Stephens
- Fischell Department of Bioengineering, University of Maryland, College Park, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, USA
| | - Fauziah Rahma Zakaria
- Fischell Department of Bioengineering, University of Maryland, College Park, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, USA
| | - Eric VanArsdale
- Fischell Department of Bioengineering, University of Maryland, College Park, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, USA
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, USA
| |
Collapse
|
2
|
Hauk P, Stephens K, Virgile C, VanArsdale E, Pottash AE, Schardt JS, Jay SM, Sintim HO, Bentley WE. Homologous Quorum Sensing Regulatory Circuit: A Dual-Input Genetic Controller for Modulating Quorum Sensing-Mediated Protein Expression in E. coli. ACS Synth Biol 2020; 9:2692-2702. [PMID: 32822530 DOI: 10.1021/acssynbio.0c00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We developed a hybrid synthetic circuit that co-opts the genetic regulation of the native bacterial quorum sensing autoinducer-2 and imposes an extra external controller for maintaining tightly controlled gene expression. This dual-input genetic controller was mathematically modeled and, by design, can be operated in three modes: a constitutive mode that enables consistent and high levels of expression; a tightly repressed mode in which there is very little background expression; and an inducible mode in which concentrations of two signals (arabinose and autoinducer-2) determine the net amplification of the gene(s)-of-interest. We demonstrate the utility of the circuit for the controlled expression of human granulocyte macrophage colony stimulating factor in an engineered probiotic E. coli. This dual-input genetic controller is the first homologous AI-2 quorum sensing circuit that has the ability to be operated in three different modes. We believe it has the potential for wide-ranging biotechnological applications due its versatile features.
Collapse
Affiliation(s)
- Pricila Hauk
- Institute for Bioscience and Biotechnology Research, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Kristina Stephens
- Institute for Bioscience and Biotechnology Research, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Chelsea Virgile
- Institute for Bioscience and Biotechnology Research, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Eric VanArsdale
- Institute for Bioscience and Biotechnology Research, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Alex Eli Pottash
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - John S. Schardt
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Steven M. Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Herman O. Sintim
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - William E. Bentley
- Institute for Bioscience and Biotechnology Research, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|