1
|
Oladipo EK, Adeyemo SF, Oshoneye AI, Akintola HB, Elegbede BI, Ayoomoba TU, Atilade DA, Adegboye OO, Ejikeme AE, Balogun CO, Aderibigbe KA, Popoola PO, Alabi VA, Irewolede BA, Ano-Edward GH, Ayeleso AO, Onyeaka H. Harnessing computational immunology to design targeted subunit vaccines for infectious bursal disease in poultry. FRONTIERS IN BIOINFORMATICS 2025; 5:1562997. [PMID: 40255694 PMCID: PMC12006097 DOI: 10.3389/fbinf.2025.1562997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/17/2025] [Indexed: 04/22/2025] Open
Abstract
Introduction Infectious bursal disease (IBD), caused by the infectious bursal disease Q8 virus (IBDV), is a highly contagious disease in young chickens, leading to immunosuppression with great economic importance. IBDV, a non-enveloped virus with a bipartite dsRNA genome, infects the bursa of Fabricius, causing severe gastrointestinal disease. Effective vaccines are urgently needed due to the limitations of current oral vaccines, including gastrointestinal degradation and low immunogenicity. This study designs and evaluates a multiepitope subunit vaccine using immunoinformatics. Methods Sequences of the IBDV structural proteins VP2 and VP3 were obtained from the National Centre for Biotechnology Information) NCBI. These are structural proteins VP2 and VP3 were subjected to the Vaxijen 2.0 webserver to predict the antigenicity, ToxiPred to predict the toxicity and further analyzed to identify immunogenic epitopes of Chicken Leukocyte Antigens (CLAs) using the NetMHCpan 4.1 webserver. Results The final vaccine construct includes 2 HTL, 21 CTL, and 7 LBL epitopes, with gallinacin-3 precursor as an adjuvant. The construct is antigenic (0.5605), non-allergenic, and non-toxic, consisting of 494 amino acids with a molecular weight of 54.88 kDa and a positive charge (pI of 9.23). It is stable, hydrophilic, and soluble. Population coverage analysis revealed a global immune coverage of 89.83%, with the highest in Europe (99.86%) and the lowest in Central America (25.01%). Molecular docking revealed strong interactions with TLR-2_1, TLR-4, and TLR-7, with TLR-7 exhibiting the highest binding affinity (-366.15 kcal/mol). Immune simulations indicated a robust immune response, with high initial IgM levels, sustained IgG, memory cell formation, and activation of T helper (Th) cells 1 and 2, Natural Killer (NK) cells, and dendritic cells, suggesting potential long-lasting immunity against IBDV. Discussion This study presents a promising multi-epitope subunit vaccine candidate capable of effective immunization against IBDV with broad population coverage. However, further in vivo experimental validation is required to confirm its efficacy and safety.
Collapse
Affiliation(s)
- Elijah Kolawole Oladipo
- Division of Vaccine and Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo, Nigeria
- Department of Microbiology, Laboratory of Molecular Biology, Immunology and Bioinformatics, Adeleke University, Ede, Osun, Nigeria
- Department of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Stephen Feranmi Adeyemo
- Division of Vaccine and Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo, Nigeria
| | - Ayomiposi Isaiah Oshoneye
- Division of Vaccine and Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo, Nigeria
| | - Hannah Blessing Akintola
- Division of Vaccine and Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo, Nigeria
| | - Bolatito Islam Elegbede
- Division of Vaccine and Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo, Nigeria
| | - Tobiloba Uren Ayoomoba
- Division of Vaccine and Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo, Nigeria
| | - Dorcas Ayomide Atilade
- Division of Vaccine and Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo, Nigeria
| | - Omolara Omoboye Adegboye
- Division of Vaccine and Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo, Nigeria
| | - Abuoma Elizabeth Ejikeme
- Division of Vaccine and Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo, Nigeria
- Department of Biomedical Laboratory Science, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Chris Olamide Balogun
- Division of Vaccine and Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo, Nigeria
| | - Kehinde Abolade Aderibigbe
- Division of Vaccine and Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo, Nigeria
| | - Possible Okikiola Popoola
- Division of Vaccine and Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo, Nigeria
| | - Victoria Ajike Alabi
- Division of Vaccine and Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo, Nigeria
| | - Boluwatife Ayobami Irewolede
- Division of Vaccine and Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo, Nigeria
| | | | - Ademola Olabode Ayeleso
- Department of Biochemistry, Bowen University, Iwo, Osun, Nigeria
- Department of Life and Consumer Sciences, University of South Africa, Florida Park, Roodeport, South Africa
| | - Helen Onyeaka
- Department of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
2
|
Abbas H, Derkaoui DK, Jeammet L, Adicéam E, Tiollier J, Sicard H, Braun T, Poyet JL. Apoptosis Inhibitor 5: A Multifaceted Regulator of Cell Fate. Biomolecules 2024; 14:136. [PMID: 38275765 PMCID: PMC10813780 DOI: 10.3390/biom14010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Apoptosis, or programmed cell death, is a fundamental process that maintains tissue homeostasis, eliminates damaged or infected cells, and plays a crucial role in various biological phenomena. The deregulation of apoptosis is involved in many human diseases, including cancer. One of the emerging players in the intricate regulatory network of apoptosis is apoptosis inhibitor 5 (API5), also called AAC-11 (anti-apoptosis clone 11) or FIF (fibroblast growth factor-2 interacting factor). While it may not have yet the same level of notoriety as some other cancer-associated proteins, API5 has garnered increasing attention in the cancer field in recent years, as elevated API5 levels are often associated with aggressive tumor behavior, resistance to therapy, and poor patient prognosis. This review aims to shed light on the multifaceted functions and regulatory mechanisms of API5 in cell fate decisions as well as its interest as therapeutic target in cancer.
Collapse
Affiliation(s)
- Hafsia Abbas
- Université Oran 1, Ahmed Ben Bella, Oran 31000, Algeria; (H.A.); (D.K.D.)
| | | | - Louise Jeammet
- Jalon Therapeutics, 75010 Paris, France; (L.J.); (J.T.); (H.S.)
| | - Emilie Adicéam
- Jalon Therapeutics, 75010 Paris, France; (L.J.); (J.T.); (H.S.)
| | - Jérôme Tiollier
- Jalon Therapeutics, 75010 Paris, France; (L.J.); (J.T.); (H.S.)
| | - Hélène Sicard
- Jalon Therapeutics, 75010 Paris, France; (L.J.); (J.T.); (H.S.)
| | - Thorsten Braun
- Laboratoire de Transfert des Leucémies, EA3518, Institut de Recherche Saint Louis, Hôpital Saint Louis, Université de Paris, 75010 Paris, France;
- AP-HP, Service d’Hématologie Clinique, Hôpital Avicenne, Université Paris XIII, 93000 Bobigny, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, 75010 Paris, France
| | - Jean-Luc Poyet
- INSERM UMRS976, Institut de Recherche Saint Louis, Hôpital Saint Louis, 75010 Paris, France
- Université Paris Cité, 75015 Paris, France
| |
Collapse
|
3
|
Brodrick AJ, Broadbent AJ. The Formation and Function of Birnaviridae Virus Factories. Int J Mol Sci 2023; 24:ijms24108471. [PMID: 37239817 DOI: 10.3390/ijms24108471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
The use of infectious bursal disease virus (IBDV) reverse genetics to engineer tagged reporter viruses has revealed that the virus factories (VFs) of the Birnaviridae family are biomolecular condensates that show properties consistent with liquid-liquid phase separation (LLPS). Although the VFs are not bound by membranes, it is currently thought that viral protein 3 (VP3) initially nucleates the formation of the VF on the cytoplasmic leaflet of early endosomal membranes, and likely drives LLPS. In addition to VP3, IBDV VFs contain VP1 (the viral polymerase) and the dsRNA genome, and they are the sites of de novo viral RNA synthesis. Cellular proteins are also recruited to the VFs, which are likely to provide an optimal environment for viral replication; the VFs grow due to the synthesis of the viral components, the recruitment of other proteins, and the coalescence of multiple VFs in the cytoplasm. Here, we review what is currently known about the formation, properties, composition, and processes of these structures. Many open questions remain regarding the biophysical nature of the VFs, as well as the roles they play in replication, translation, virion assembly, viral genome partitioning, and in modulating cellular processes.
Collapse
Affiliation(s)
- Andrew J Brodrick
- Department of Animal and Avian Sciences, University of Maryland, 8127 Regents Drive, College Park, MD 20742, USA
| | - Andrew J Broadbent
- Department of Animal and Avian Sciences, University of Maryland, 8127 Regents Drive, College Park, MD 20742, USA
| |
Collapse
|
4
|
Deng T, Hu B, Wang X, Ding S, Lin L, Yan Y, Peng X, Zheng X, Liao M, Jin Y, Dong W, Gu J, Zhou J. TRAF6 autophagic degradation by avibirnavirus VP3 inhibits antiviral innate immunity via blocking NFKB/NF-κB activation. Autophagy 2022; 18:2781-2798. [PMID: 35266845 PMCID: PMC9673932 DOI: 10.1080/15548627.2022.2047384] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ubiquitination is an important reversible post-translational modification. Many viruses hijack the host ubiquitin system to enhance self-replication. In the present study, we found that Avibirnavirus VP3 protein was ubiquitinated during infection and supported virus replication by ubiquitination. Mass spectrometry and mutation analysis showed that VP3 was ubiquitinated at residues K73, K135, K158, K193, and K219. Virus rescue showed that ubiquitination at sites K73, K193, and K219 on VP3 could enhance the replication abilities of infectious bursal disease virus (IBDV), and that K135 was essential for virus survival. Binding of the zinc finger domain of TRAF6 (TNF receptor associated factor 6) to VP3 mediated K11- and K33-linked ubiquitination of VP3, which promoted its nuclear accumulation to facilitate virus replication. Additionally, VP3 could inhibit TRAF6-mediated NFKB/NF-κB (nuclear factor kappa B) activation and IFNB/IFN-β (interferon beta) production to evade host innate immunity by inducing TRAF6 autophagic degradation in an SQSTM1/p62 (sequestosome 1)-dependent manner. Our findings demonstrated a macroautophagic/autophagic mechanism by which Avibirnavirus protein VP3 blocked NFKB-mediated IFNB production by targeting TRAF6 during virus infection, and provided a potential drug target for virus infection control.Abbreviations: ATG: autophagy related; BafA1: bafilomycin A1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; Cas9: CRISPR-associated protein 9; CHX: cycloheximide; Co-IP: co-immunoprecipitation; CRISPR: clustered regularly interspaced short palindromic repeats; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GST: glutathione S-transferase; IBDV: infectious bursal disease virus; IF: indirect immunofluorescence; IFNB/IFN-β: interferon beta; mAb: monoclonal antibody; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; MS: mass spectrometry; NFKB/NF-κB: nuclear factor kappa B; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; pAb: polyclonal antibody; PRRs: pattern recognition receptors; RNF125: ring finger protein 125; RNF135/Riplet: ring finger protein 135; SQSTM1/p62: sequestosome 1; TAX1BP1: tax1 binding protein1; TCID50: 50% tissue culture infective dose; TRAF3: TNF receptor associated factor 3; TRAF6: TNF receptor associated factor 6; TRIM25: tripartite motif containing 25; Ub: ubiquitin; Wort: wortmannin; WT: wild type.
Collapse
Affiliation(s)
- Tingjuan Deng
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Boli Hu
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xingbo Wang
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | | | - Lulu Lin
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yan Yan
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiran Peng
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiaojuan Zheng
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Min Liao
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yulan Jin
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Weiren Dong
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jinyan Gu
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China,Collaborative innovation center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China,CONTACT Jiyong Zhou MOA Key Laboratory of Animal Virology, Zhejiang University, 866 Yuhangtang Road, Hangzhou310058, Zhejiang Province, P. R. China
| |
Collapse
|
5
|
Diaz-Beneitez E, Cubas-Gaona LL, Candelas-Rivera O, Benito-Zafra A, Sánchez-Aparicio MT, Miorin L, Rodríguez JF, García-Sastre A, Rodríguez D. Interaction between chicken TRIM25 and MDA5 and their role in mediated antiviral activity against IBDV infection. Front Microbiol 2022; 13:1068328. [PMID: 36519174 PMCID: PMC9742432 DOI: 10.3389/fmicb.2022.1068328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2023] Open
Abstract
Infectious Bursal Disease Virus (IBDV) is the causative agent of an immunosuppressive disease that affects domestic chickens (Gallus gallus) severely affecting poultry industry worldwide. IBDV infection is characterized by a rapid depletion of the bursal B cell population by apoptosis and the atrophy of this chief lymphoid organ. Previous results from our laboratory have shown that exposure of infected cells to type I IFN leads to an exacerbated apoptosis, indicating an important role of IFN in IBDV pathogenesis. It has been described that recognition of the dsRNA IBDV genome by MDA5, the only known cytoplasmic pattern recognition receptor for viral RNA in chickens, leads to type I IFN production. Here, we confirm that TRIM25, an E3 ubiquitin ligase that leads to RIG-I activation in mammalian cells, significantly contributes to positively regulate MDA5-mediated activation of the IFN-inducing pathway in chicken DF-1 cells. Ectopic expression of chTRIM25 together with chMDA5 or a deletion mutant version exclusively harboring the CARD domains (chMDA5 2CARD) enhances IFN-β and NF-ĸB promoter activation. Using co-immunoprecipitation assays, we show that chMDA5 interacts with chTRIM25 through the CARD domains. Moreover, chTRIM25 co-localizes with both chMDA5 and chMDA5 2CARD, but not with chMDA5 mutant proteins partially or totally lacking these domains. On the other hand, ablation of endogenous chTRIM25 expression reduces chMDA5-induced IFN-β and NF-ĸB promoter activation. Interestingly, ectopic expression of either wild-type chTRIM25, or a mutant version (chTRIM25 C59S/C62S) lacking the E3 ubiquitin ligase activity, restores the co-stimulatory effect of chMDA5 in chTRIM25 knockout cells, suggesting that the E3-ubiquitin ligase activity of chTRIM25 is not required for its downstream IFN-β and NF-ĸB activating function. Also, IBDV-induced expression of IFN-β, Mx and OAS genes was reduced in chTRIM25 knockout as compared to wild-type cells, hence contributing to the enhancement of IBDV replication. Enhanced permissiveness to replication of other viruses, such as avian reovirus, Newcastle disease virus and vesicular stomatitis virus was also observed in chTRIM25 knockout cells. Additionally, chTRIM25 knockout also results in reduced MAVS-induced IFN-β promoter stimulation. Nonetheless, similarly to its mammalian counterpart, chTRIM25 overexpression in wild-type DF-1 cells causes the degradation of ectopically expressed chMAVS.
Collapse
Affiliation(s)
- Elisabet Diaz-Beneitez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | | - Oscar Candelas-Rivera
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Ana Benito-Zafra
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Maria Teresa Sánchez-Aparicio
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - José F. Rodríguez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine, New York, NY, United States
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell-Based MedicineI at Mount Sinai, Icahn School of Medicine, New York, NY, United States
| | - Dolores Rodríguez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| |
Collapse
|
6
|
Zhang S, Zheng S. Host Combats IBDV Infection at Both Protein and RNA Levels. Viruses 2022; 14:v14102309. [PMID: 36298864 PMCID: PMC9607458 DOI: 10.3390/v14102309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by infectious bursal disease virus (IBDV). In recent years, with the emergence of IBDV variants and recombinant strains, IBDV still threatens the poultry industry worldwide. It seems that the battle between host and IBDV will never end. Thus, it is urgent to develop a more comprehensive and effective strategy for the control of this disease. A better understanding of the mechanisms underlying virus-host interactions would be of help in the development of novel vaccines. Recently, much progress has been made in the understanding of the host response against IBDV infection. If the battle between host and IBDV at the protein level is considered the front line, at the RNA level, it can be taken as a hidden line. The host combats IBDV infection at both the front and hidden lines. Therefore, this review focuses on our current understanding of the host response to IBDV infection at both the protein and RNA levels.
Collapse
Affiliation(s)
- Shujun Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-(10)-6273-4681
| |
Collapse
|
7
|
Trapp J, Rautenschlein S. Infectious bursal disease virus' interferences with host immune cells: What do we know? Avian Pathol 2022; 51:303-316. [PMID: 35616498 DOI: 10.1080/03079457.2022.2080641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractInfectious bursal disease virus (IBDV) induces one of the most important immunosuppressive diseases in chickens leading to high economic losses due increased mortality and condemnation rates, secondary infections and the need for antibiotic treatment. Over 400 publications have been listed in PubMed.gov in the last five years pointing out the research interest in this disease and the development of improved preventive measures. While B cells are the main target cells of the virus, also other immune and non-immune cell populations are affected leading a multifaceted impact on the normally well orchestrated immune system in IBDV-infected birds. Recent studies clearly revealed the contribution of innate immune cells as well as T cells to a cytokine storm and subsequent death of affected birds in the acute phase of the disease. Transcriptomics identified differential regulation of immune related genes between different chicken genotypes as well as virus strains, which may be associated with a variable disease outcome. The recent availability of primary B cell culture systems allowed a closer look into virus-host interactions during IBDV-infection. The new emerging field of research with transgenic chickens will open up new opportunities to understand the impact of IBDV on the host also under in vivo conditions, which will help to understand the complex virus-host interactions further.
Collapse
Affiliation(s)
- Johanna Trapp
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| |
Collapse
|