1
|
Hviid L, Jensen AR, Deitsch KW. PfEMP1 and var genes - Still of key importance in Plasmodium falciparum malaria pathogenesis and immunity. ADVANCES IN PARASITOLOGY 2024; 125:53-103. [PMID: 39095112 DOI: 10.1016/bs.apar.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The most severe form of malaria, caused by infection with Plasmodium falciparum parasites, continues to be an important cause of human suffering and poverty. The P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of clonally variant antigens, which mediates the adhesion of infected erythrocytes to the vascular endothelium in various tissues and organs, is a central component of the pathogenesis of the disease and a key target of the acquired immune response to malaria. Much new knowledge has accumulated since we published a systematic overview of the PfEMP1 family almost ten years ago. In this chapter, we therefore aim to summarize research progress since 2015 on the structure, function, regulation etc. of this key protein family of arguably the most important human parasite. Recent insights regarding PfEMP1-specific immune responses and PfEMP1-specific vaccination against malaria, as well as an outlook for the coming years are also covered.
Collapse
Affiliation(s)
- Lars Hviid
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Anja R Jensen
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
2
|
Andradi-Brown C, Wichers-Misterek JS, von Thien H, Höppner YD, Scholz JAM, Hansson H, Filtenborg Hocke E, Gilberger TW, Duffy MF, Lavstsen T, Baum J, Otto TD, Cunnington AJ, Bachmann A. A novel computational pipeline for var gene expression augments the discovery of changes in the Plasmodium falciparum transcriptome during transition from in vivo to short-term in vitro culture. eLife 2024; 12:RP87726. [PMID: 38270586 PMCID: PMC10945709 DOI: 10.7554/elife.87726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The pathogenesis of severe Plasmodium falciparum malaria involves cytoadhesive microvascular sequestration of infected erythrocytes, mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 variants are encoded by the highly polymorphic family of var genes, the sequences of which are largely unknown in clinical samples. Previously, we published new approaches for var gene profiling and classification of predicted binding phenotypes in clinical P. falciparum isolates (Wichers et al., 2021), which represented a major technical advance. Building on this, we report here a novel method for var gene assembly and multidimensional quantification from RNA-sequencing that outperforms the earlier approach of Wichers et al., 2021, on both laboratory and clinical isolates across a combination of metrics. Importantly, the tool can interrogate the var transcriptome in context with the rest of the transcriptome and can be applied to enhance our understanding of the role of var genes in malaria pathogenesis. We applied this new method to investigate changes in var gene expression through early transition of parasite isolates to in vitro culture, using paired sets of ex vivo samples from our previous study, cultured for up to three generations. In parallel, changes in non-polymorphic core gene expression were investigated. Modest but unpredictable var gene switching and convergence towards var2csa were observed in culture, along with differential expression of 19% of the core transcriptome between paired ex vivo and generation 1 samples. Our results cast doubt on the validity of the common practice of using short-term cultured parasites to make inferences about in vivo phenotype and behaviour.
Collapse
Affiliation(s)
- Clare Andradi-Brown
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Department of Life Sciences, Imperial College London, South KensingtonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Jan Stephan Wichers-Misterek
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Heidrun von Thien
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Yannick D Höppner
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Judith AM Scholz
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
| | - Helle Hansson
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of CopenhagenCopenhagenDenmark
- Department of Infectious Diseases, Copenhagen University HospitalCopenhagenDenmark
| | - Emma Filtenborg Hocke
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of CopenhagenCopenhagenDenmark
- Department of Infectious Diseases, Copenhagen University HospitalCopenhagenDenmark
| | - Tim Wolf Gilberger
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Michael F Duffy
- Department of Microbiology and Immunology, University of MelbourneMelbourneAustralia
| | - Thomas Lavstsen
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of CopenhagenCopenhagenDenmark
- Department of Infectious Diseases, Copenhagen University HospitalCopenhagenDenmark
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South KensingtonLondonUnited Kingdom
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW, KensingtonSydneyUnited Kingdom
| | - Thomas D Otto
- School of Infection & Immunity, MVLS, University of GlasgowGlasgowUnited Kingdom
| | - Aubrey J Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-RiemsHamburgGermany
| |
Collapse
|
3
|
Gill J, Singh H, Sharma A. Profiles of global mutations in the human intercellular adhesion molecule-1 (ICAM-1) shed light on population-specific malaria susceptibility. BMC Genomics 2023; 24:773. [PMID: 38093209 PMCID: PMC10720214 DOI: 10.1186/s12864-023-09846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Plasmodium falciparum is responsible for malaria-related morbidity and mortality. PfEMP1 (P. falciparum erythrocyte membrane protein 1) mediates infected erythrocytes adhesion to various surface vascular receptors, including intercellular adhesion molecule-1 (ICAM-1), associating this interaction with severe malaria in several studies. Genetic variation in host ICAM-1 plays a significant role in determining susceptibility to malaria infection via clinical phenotypes such as the ICAM-1Kilifi variant which has been reported to be associated with susceptibility in populations. Our genomic and structural analysis of single nucleotide polymorphisms (SNPs) in ICAM-1 revealed 9 unique mutations each in its distinct A-type and BC-type PfEMP1 DBLβ-interacting regions. These mutations are noted in only a few field isolates and mainly in the African/African American population. The ICAM-1Kilifi variant lies in a flexible loop proximal to the DBLβ-interacting region. This analysis will assist in establishing functional correlations of reported global mutations via experimental and clinical studies and in the tailored design of population-specific genetic surveillance studies. Understanding host polymorphism as an evolutionary force in diverse populations can help to predict predisposition to disease severity and will contribute towards laying the framework for designing population-specific personalized medicines for severe malaria.
Collapse
Affiliation(s)
- Jasmita Gill
- ICMR-National Institute of Malaria Research, Sector-8 Dwarka, New Delhi, India.
| | - Himmat Singh
- ICMR-National Institute of Malaria Research, Sector-8 Dwarka, New Delhi, India
| | - Amit Sharma
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
4
|
Walker IS, Rogerson SJ. Pathogenicity and virulence of malaria: Sticky problems and tricky solutions. Virulence 2023; 14:2150456. [PMID: 36419237 PMCID: PMC9815252 DOI: 10.1080/21505594.2022.2150456] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Infections with Plasmodium falciparum and Plasmodium vivax cause over 600,000 deaths each year, concentrated in Africa and in young children, but much of the world's population remain at risk of infection. In this article, we review the latest developments in the immunogenicity and pathogenesis of malaria, with a particular focus on P. falciparum, the leading malaria killer. Pathogenic factors include parasite-derived toxins and variant surface antigens on infected erythrocytes that mediate sequestration in the deep vasculature. Host response to parasite toxins and to variant antigens is an important determinant of disease severity. Understanding how parasites sequester, and how antibody to variant antigens could prevent sequestration, may lead to new approaches to treat and prevent disease. Difficulties in malaria diagnosis, drug resistance, and specific challenges of treating P. vivax pose challenges to malaria elimination, but vaccines and other preventive strategies may offer improved disease control.
Collapse
Affiliation(s)
- Isobel S Walker
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| | - Stephen J Rogerson
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| |
Collapse
|
5
|
Wiser MF. Knobs, Adhesion, and Severe Falciparum Malaria. Trop Med Infect Dis 2023; 8:353. [PMID: 37505649 PMCID: PMC10385726 DOI: 10.3390/tropicalmed8070353] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/29/2023] Open
Abstract
Plasmodium falciparum can cause a severe disease with high mortality. A major factor contributing to the increased virulence of P. falciparum, as compared to other human malarial parasites, is the sequestration of infected erythrocytes in the capillary beds of organs and tissues. This sequestration is due to the cytoadherence of infected erythrocytes to endothelial cells. Cytoadherence is primarily mediated by a parasite protein expressed on the surface of the infected erythrocyte called P. falciparum erythrocyte membrane protein-1 (PfEMP1). PfEMP1 is embedded in electron-dense protuberances on the surface of the infected erythrocytes called knobs. These knobs are assembled on the erythrocyte membrane via exported parasite proteins, and the knobs function as focal points for the cytoadherence of infected erythrocytes to endothelial cells. PfEMP1 is a member of the var gene family, and there are approximately 60 antigenically distinct PfEMP1 alleles per parasite genome. Var gene expression exhibits allelic exclusion, with only a single allele being expressed by an individual parasite. This results in sequential waves of antigenically distinct infected erythrocytes and this antigenic variation allows the parasite to establish long-term chronic infections. A wide range of endothelial cell receptors can bind to the various PfEMP1 alleles, and thus, antigenic variation also results in a change in the cytoadherence phenotype. The cytoadherence phenotype may result in infected erythrocytes sequestering in different tissues and this difference in sequestration may explain the wide range of possible clinical manifestations associated with severe falciparum malaria.
Collapse
Affiliation(s)
- Mark F Wiser
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, USA
| |
Collapse
|
6
|
Suurbaar J, Moussiliou A, Tahar R, Olsen RW, Adams Y, Dalgaard N, Baafour EK, Adukpo S, Hviid L, Kusi KA, Alao J, Ofori MF, Ndam NT, Jensen AR. ICAM-1-binding Plasmodium falciparum erythrocyte membrane protein 1 variants elicits opsonic-phagocytosis IgG responses in Beninese children. Sci Rep 2022; 12:12994. [PMID: 35906450 PMCID: PMC9338288 DOI: 10.1038/s41598-022-16305-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022] Open
Abstract
Members of the highly polymorphic Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family expressed on the surface of infected erythrocytes (IEs) are important virulence factors, which mediate vascular adhesion of IEs via endothelial host receptors and are targets of naturally acquired immunity. The PfEMP1 family can be divided into clinically relevant subgroups, of which some bind intercellular adhesion molecule 1 (ICAM-1). While the acquisition of IgG specific for ICAM-1-binding DBLβ domains is known to differ between PfEMP1 groups, its ability to induce antibody-dependent cellular phagocytosis (ADCP) is unclear. We therefore measured plasma levels of DBLβ-specific IgG, the ability of such IgG to inhibit PfEMP1-binding to ICAM-1, and its ability to opsonize IEs for ADCP, using plasma from Beninese children with severe (SM) or uncomplicated malaria (UM). IgG specific for DBLβ from group A and B ICAM-1-binding PfEMP1 were dominated by IgG1 and IgG3, and were similar in SM and UM. However, levels of plasma IgG inhibiting ICAM-1-binding of group A DBLβ of PFD1235w was significantly higher in children with UM than SM, and acute UM plasma induced a higher ADCP response than acute SM plasma.
Collapse
Affiliation(s)
- Jennifer Suurbaar
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, University for Development Studies, Tamale, Ghana
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Université de Paris Cité, MERIT, IRD, 75006, Paris, France
| | | | - Rachida Tahar
- Université de Paris Cité, MERIT, IRD, 75006, Paris, France
| | - Rebecca W Olsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yvonne Adams
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nanna Dalgaard
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eric K Baafour
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Selorme Adukpo
- Department of Pharmaceutics and Microbiology, School of Pharmacy, University of Ghana, Legon, Ghana
| | - Lars Hviid
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Kwadwo A Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Jules Alao
- Paediatric Department, Mother and Child University and Hospital Center (CHUMEL), Cotonou, Benin
| | - Michael F Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Nicaise T Ndam
- Université de Paris Cité, MERIT, IRD, 75006, Paris, France
| | - Anja R Jensen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Albrecht-Schgoer K, Lackner P, Schmutzhard E, Baier G. Cerebral Malaria: Current Clinical and Immunological Aspects. Front Immunol 2022; 13:863568. [PMID: 35514965 PMCID: PMC9067128 DOI: 10.3389/fimmu.2022.863568] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
Abstract
This review focuses on current clinical and immunological aspects of cerebral malaria induced by Plasmodium falciparum infection. Albeit many issues concerning the inflammatory responses remain unresolved and need further investigations, current knowledge of the underlying molecular mechanisms is highlighted. Furthermore, and in the light of significant limitations in preventative diagnosis and treatment of cerebral malaria, this review mainly discusses our understanding of immune mechanisms in the light of the most recent research findings. Remarkably, the newly proposed CD8+ T cell-driven pathophysiological aspects within the central nervous system are summarized, giving first rational insights into encouraging studies with immune-modulating adjunctive therapies that protect from symptomatic cerebral participation of Plasmodium falciparum infection.
Collapse
Affiliation(s)
- Karin Albrecht-Schgoer
- Division of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Lackner
- Department of Neurology, Klinik Floridsdorf, Wien, Austria
| | - Erich Schmutzhard
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gottfried Baier
- Division of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
8
|
Brisset J, Angendu Baki K, Watier L, Kinkpé E, Bailly J, Ayédadjou L, Alao MJ, Dossou-Dagba I, Bertin GI, Cot M, Boumédiène F, Ajzenberg D, Aubouy A, Houzé S, Faucher JF, Affolabi D, Argy N, Biokou B, Degbelo JE, Calavi, Benin, Deloron P, Dramane L, Fraering J, Guillochon E, Jafari-Guemouri S, Houzé L, Joste V, Kamaliddin C, Labrunie A, Ladipo Y, Lathiere T, Massougbodji A, Mowendabeka A, Papin J, Pipy B, Preux PM, Raymondeau M, Royo J, Sossou D, Techer B, Vianou B. Non-traumatic coma in young children in Benin: are viral and bacterial infections gaining ground on cerebral malaria? Infect Dis Poverty 2022; 11:29. [PMID: 35287726 PMCID: PMC8919613 DOI: 10.1186/s40249-022-00956-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/01/2022] [Indexed: 11/24/2022] Open
Abstract
Background While malaria morbidity and mortality have declined since 2000, viral central nervous system infections appear to be an important, underestimated cause of coma in malaria-endemic Eastern Africa. We aimed to describe the etiology of non-traumatic comas in young children in Benin, as well as their management and early outcomes, and to identify factors associated with death. Methods From March to November 2018, we enrolled all HIV-negative children aged between 2 and 6 years, with a Blantyre Coma Score ≤ 2, in this prospective observational study. Children were screened for malaria severity signs and assessed using a systematic diagnostic protocol, including blood cultures, malaria diagnostics, and cerebrospinal fluid analysis using multiplex PCR. To determine factors associated with death, univariate and multivariate analyses were performed. Results From 3244 admissions, 84 children were included: malaria was diagnosed in 78, eight of whom had a viral or bacterial co-infection. Six children had a non-malarial infection or no identified cause. The mortality rate was 29.8% (25/84), with 20 children dying in the first 24 h. Co-infected children appeared to have a poorer prognosis. Of the 76 children who consulted a healthcare professional before admission, only 5 were prescribed adequate antimalarial oral therapy. Predictors of early death were jaundice or increased bilirubin [odd ratio (OR)= 8.6; 95% confidential interval (CI): 2.03–36.1] and lactate > 5 mmol/L (OR = 5.1; 95% CI: 1.49–17.30). Antibiotic use before admission (OR = 0.1; 95% CI: 0.02–0.85) and vaccination against yellow fever (OR = 0.2, 95% CI: 0.05–0.79) protected against mortality. Conclusions Infections were found in all children who died, and cerebral malaria was by far the most common cause of non-traumatic coma. Missed opportunities to receive early effective antimalarial treatment were common. Other central nervous system infections must be considered in their management. Some factors that proved to be protective against early death were unexpected. Supplementary Information The online version contains supplementary material available at 10.1186/s40249-022-00956-2.
Collapse
|
9
|
Guillochon E, Fraering J, Joste V, Kamaliddin C, Vianou B, Houzé L, Baudrin LG, Faucher JF, Aubouy A, Houzé S, Cot M, Argy N, Taboureau O, Bertin GI, NeuroCM group
AlaoJulesAffolabiDissouBiokouBibianeDegbeloJean-EudesDeloronPhilippeDramaneLatifouJafari-GuemouriSayehLabrunieAnaïsLadipoYéléLathiereThomasMassougbodjiAchilleMowendabekaAudreyPapinJadePipyBernardPreuxPierre-MarieRaymondeauMarieRoyoJadeSossouDariusTecherBrigitte. OUP accepted manuscript. J Infect Dis 2022; 225:2187-2196. [PMID: 35255125 PMCID: PMC9200161 DOI: 10.1093/infdis/jiac086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/03/2022] [Indexed: 11/24/2022] Open
Abstract
Cerebral malaria (CM) is the severest form of Plasmodium falciparum infection. Children under 5 years old are those most vulnerable to CM, and they consequently have the highest risk of malaria-related death. Parasite-associated factors leading to CM are not yet fully elucidated. We therefore sought to characterize the gene expression profile associated with CM, using RNA sequencing data from 15 CM and 15 uncomplicated malaria isolates from Benin. Cerebral malaria parasites displayed reduced circulation times, possibly related to higher cytoadherence capacity. Consistent with the latter, we detected increased var genes abundance in CM isolates. Differential expression analyses showed that distinct transcriptome profiles are signatures of malaria severity. Genes involved in adhesion, excluding variant surface antigens, were dysregulated, supporting the idea of increased cytoadhesion capacity of CM parasites. Finally, we found dysregulated expression of genes in the entry into host pathway that may reflect greater erythrocyte invasion capacity of CM parasites.
Collapse
Affiliation(s)
- E Guillochon
- Université Paris Cité, MERIT, IRD, Paris, France
- Université Paris Cité, INSERM U1133, CNRS UMR 8251, Paris, France
| | - J Fraering
- Université Paris Cité, MERIT, IRD, Paris, France
| | - V Joste
- Université Paris Cité, MERIT, IRD, Paris, France
- Parasitology Laboratory, Hôpital Bichat - Claude-Bernard, APHP, Paris, France
- French Malaria Reference Center, Hôpital Bichat, APHP, Paris, France
| | - C Kamaliddin
- Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - B Vianou
- Université Paris Cité, MERIT, IRD, Paris, France
- Institut de Recherche Clinique du Bénin, Cotonou, Bénin
| | - L Houzé
- Université Paris Cité, MERIT, IRD, Paris, France
| | - L G Baudrin
- Institut Curie Genomics of Excellence Platform, PSL Research University, Research Center, Institut Curie, Paris, France
| | - J F Faucher
- INSERM, Univ. Limoges, CHU Limoges, IRD, U1094 Tropical Neuroepidemiology, Institute of Epidemiology and Tropical Neurology, GEIST, Limoges, France
| | - A Aubouy
- Université de Toulouse, PHARMADEV, IRD, UPS, Toulouse, France
| | - S Houzé
- Université Paris Cité, MERIT, IRD, Paris, France
- Parasitology Laboratory, Hôpital Bichat - Claude-Bernard, APHP, Paris, France
- French Malaria Reference Center, Hôpital Bichat, APHP, Paris, France
| | - M Cot
- Université Paris Cité, MERIT, IRD, Paris, France
| | - N Argy
- Université Paris Cité, MERIT, IRD, Paris, France
- Parasitology Laboratory, Hôpital Bichat - Claude-Bernard, APHP, Paris, France
- French Malaria Reference Center, Hôpital Bichat, APHP, Paris, France
| | - O Taboureau
- Université Paris Cité, INSERM U1133, CNRS UMR 8251, Paris, France
| | - G I Bertin
- Correspondence: Gwladys I. Bertin, PhD, Université Paris Cité, MERIT, IRD, 4 avenue de l’Observatoire, 75006 Paris, France ()
| | | |
Collapse
|
10
|
Yi H, Jiang W, Yang F, Li F, Li Y, Zhu W, Li Q, Fakhar SH, Cao Y, Luo L, Zhang W, He Y. G6pd-Deficient Mice Are Protected From Experimental Cerebral Malaria and Liver Injury by Suppressing Proinflammatory Response in the Early Stage of Plasmodium berghei Infection. Front Immunol 2021; 12:719189. [PMID: 34456927 PMCID: PMC8386684 DOI: 10.3389/fimmu.2021.719189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Epidemiological studies provide compelling evidence that glucose-6-phosphate dehydrogenase (G6PD) deficiency individuals are relatively protected against Plasmodium parasite infection. However, the animal model studies on this subject are lacking. Plus, the underlying mechanism in vivo is poorly known. In this study, we used a G6pd-deficient mice infected with the rodent parasite Plasmodium berghei (P.berghei) to set up a malaria model in mice. We analyzed the pathological progression of experimental cerebral malaria (ECM) and acute liver injury in mice with different G6pd activity infected with P.berghei. We performed dual RNA-seq for host-parasite transcriptomics and validated the changes of proinflammatory response in the murine model. G6pd-deficient mice exhibited a survival advantage, less severe ECM and mild liver injury compared to the wild type mice. Analysis based on dual RNA-seq suggests that G6pd-deficient mice are protected from ECM and acute liver injury were related to proinflammatory responses. Th1 differentiation and dendritic cell maturation in the liver and spleen were inhibited in G6pd-deficient mice. The levels of proinflammatory cytokines were reduced, chemokines and vascular adhesion molecules in the brain were significantly down-regulated, these led to decreased cerebral microvascular obstruction in G6pd-deficient mice. We generated the result that G6pd-deficiency mediated protection against ECM and acute liver injury were driven by the regulatory proinflammatory responses. Furthermore, bioinformatics analyses showed that P.berghei might occur ribosome loss in G6pd-deficient mice. Our findings provide a novel perspective of the underlying mechanism of G6PD deficiency mediated protection against malaria in vivo.
Collapse
Affiliation(s)
- Haoan Yi
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, China
| | - Weiyang Jiang
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, China
| | - Fang Yang
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, China
| | - Fan Li
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Yirong Li
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Wenjing Zhu
- Department of Human Anatomy/Histology and Embryology, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Qing Li
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, China
| | | | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Lan Luo
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, China
| | - Wen Zhang
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, China
| | - Yongshu He
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, China
| |
Collapse
|