1
|
Kuang S, Wang Z, Hu X, Dong Z, Wang C, Xiao Y, Li Z, Shi D, Li S, Zhou Z. Prevalence and genetic characteristics of Campylobacter jejuni from laying-hens in Hubei Province, China. BMC Vet Res 2025; 21:84. [PMID: 39987068 PMCID: PMC11846460 DOI: 10.1186/s12917-025-04600-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/14/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Campylobacter jejuni (C. jejuni), a major global cause of foodborne bacterial diseases, accounts for more than 90% of all reported cases. Poultry is considered a major reservoir for the transmission of Campylobacter to humans. While extensive research has been conducted abroad on the occurrence and epidemiology of C. jejuni in laying hens, there are scant reports on its prevalence in layer chickens in China. The present study was designed to isolate C. jejuni from 482 cloacal swabs collected from seven laying hen farms located in Hubei Province between January and March 2024. Furthermore, the study aimed to explore the genetic diversity, antibiotic resistance, and virulence gene profiles of the isolated strains. RESULTS The overall prevalence of C. jejuni amounted to 4.36% (21/482). Whole-genome sequencing of these 21 isolates revealed 11 distinct sequence types (STs) and eight clonal complexes (CCs), with ST-6522 and CC-443 emerging as the predominant genotypes. Antimicrobial susceptibility testing against 11 antibiotics revealed high resistance rates among C. jejuni isolates, particularly towards ceftriaxone and enrofloxacin, where resistance was universal (100%). Similarly, high resistance levels were also observed for doxycycline (95.24%), ceftiofur (80.95%), tilmicosin (76.19%), and amoxicillin-clavulanic acid (57.14%). Through genomic resistance gene prediction, a total of eighteen resistance genes were identified within the 21 C. jejuni isolates. The most frequently occurring resistance genes were the gyrA (T86I) point mutation (95.14%), cmeR (95.14%), and tet(O) (95.14%). Notably, a robust correlation was discernibled between enrofloxacin resistance and the gyrA (T86I) point mutation, as well as between resistance to ceftriaxone and tilmicosin and the presence of the cmeR gene. Conversely, the correlations between other antibiotic resistance phenotypes and their corresponding resistance genes were less robust. A comprehensive analysis of virulence genes isolated from C. jejuni strains revealed a total of 117 virulence genes, categorized according to their functional roles. These categories encompass adhesion (cadF, jlpA, porA, pebA), invasion (ciaB), motility (flaA, flgB, flhB), toxin production (cdtA, cdtB, cdtC), and immune modulation (htrB, wlaN). CONCLUSIONS Our results revealed the high resistance rate of C. jejuni from laying-hens in hubei Province, China, which will help the farms take the necessary action to develop effective mitigation strategies for reducing Campylobacter infection in poultry.
Collapse
Affiliation(s)
- Shichang Kuang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Agricultural Microbiology of State, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhaoyang Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Agricultural Microbiology of State, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiuzhong Hu
- Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, 430070, China
| | - Zeyuan Dong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Agricultural Microbiology of State, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Chun Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Agricultural Microbiology of State, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yuncai Xiao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Agricultural Microbiology of State, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zili Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Agricultural Microbiology of State, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Deshi Shi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Agricultural Microbiology of State, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shaowen Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Agricultural Microbiology of State, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zutao Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Key Lab of Agricultural Microbiology of State, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
2
|
Portes AB, Panzenhagen P, dos Santos AMP, de Jesus ACS, Ochioni AC, Duque SDS, Aburjaile FF, Brenig B, Azevedo V, Conte Junior CA. Draft genomes of multidrug-resistant Campylobacter jejuni and Campylobacter coli strains from Brazil representing novel sequence types. Microbiol Resour Announc 2024; 13:e0052424. [PMID: 39287410 PMCID: PMC11478019 DOI: 10.1128/mra.00524-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Whole-genome sequencing identified three previously unidentified multilocus sequence types of Campylobacter jejuni (ST-12332) and Campylobacter coli (ST-12333 and ST-12663), harboring resistance genes for multiple antimicrobial classes. The sources of isolation highlight the circulation of resistance strains within animals and humans, emphasizing the need for preventive measures.
Collapse
Affiliation(s)
- Ana Beatriz Portes
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology, Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Veterinary Hygiene and Technological Processing, Faculty of Veterinary Medicine, Fluminense Federal University, Niterói, Brazil
| | - Pedro Panzenhagen
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology, Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Collection of Campylobacter, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Anamaria Mota Pereira dos Santos
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology, Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Veterinary Hygiene and Technological Processing, Faculty of Veterinary Medicine, Fluminense Federal University, Niterói, Brazil
| | - Ana Carolina Silva de Jesus
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology, Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Food Science, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alan Clavelland Ochioni
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology, Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sheila da Silva Duque
- Collection of Campylobacter, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Flávia Figueira Aburjaile
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Bertram Brenig
- Georg August University of Göttingen, Göttingen, Germany
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Carlos Adam Conte Junior
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology, Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Veterinary Hygiene and Technological Processing, Faculty of Veterinary Medicine, Fluminense Federal University, Niterói, Brazil
- Graduate Program in Food Science, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Ghatak S, Milton AAP, Das S, Momin KM, Srinivas K, Pyngrope DA, Priya GB. Campylobacter coli of porcine origin exhibits an open pan-genome within a single clonal complex: insights from comparative genomic analysis. Front Cell Infect Microbiol 2024; 14:1449856. [PMID: 39415896 PMCID: PMC11480030 DOI: 10.3389/fcimb.2024.1449856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Although Campylobacter spp., including Campylobacter coli, have emerged as important zoonotic foodborne pathogens globally, the understanding of the genomic epidemiology of C. coli of porcine origin is limited. Methods As pigs are an important reservoir of C. coli, we analyzed C. coli genomes that were isolated (n = 3) from pigs and sequenced (this study) them along with all other C. coli genomes for which pig intestines, pig feces, and pigs were mentioned as sources in the NCBI database up to January 6, 2023. In this paper, we report the pan-genomic features, the multi-locus sequence types, the resistome, virulome, and mobilome, and the phylogenomic analysis of these organisms that were obtained from pigs. Results and discussion Our analysis revealed that, in addition to having an open pan-genome, majority (63%) of the typeable isolates of C. coli of pig origin belonged to a single clonal complex, ST-828. The resistome of these C. coli isolates was predominated by the genes tetO (53%), blaOXA-193 (49%), and APH (3')-IIIa (21%); however, the virulome analysis revealed a core set of 37 virulence genes. Analysis of the mobile genetic elements in the genomes revealed wide diversity of the plasmids and bacteriophages, while 30 transposons were common to all genomes of C. coli of porcine origin. Phylogenomic analysis showed two discernible clusters comprising isolates originating from Japan and another set of isolates comprising mostly copies of a type strain stored in three different culture collections.
Collapse
Affiliation(s)
- Sandeep Ghatak
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, India
| | | | - Samir Das
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, India
| | - Kasanchi M. Momin
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, India
| | - Kandhan Srinivas
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, India
| | - Daniel Aibor Pyngrope
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, India
| | - G. Bhuvana Priya
- College of Agriculture (CAU, Imphal), Kyrdemkulai, Meghalaya, India
| |
Collapse
|
4
|
Barata R, Saavedra MJ, Almeida G. A Decade of Antimicrobial Resistance in Human and Animal Campylobacter spp. Isolates. Antibiotics (Basel) 2024; 13:904. [PMID: 39335077 PMCID: PMC11429304 DOI: 10.3390/antibiotics13090904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Objectives: Campylobacter spp. remain a leading cause of bacterial gastroenteritis worldwide, with resistance to antibiotics posing significant challenges to treatment and public health. This study examines profiles in antimicrobial resistance (AMR) for Campylobacter isolates from human and animal sources over the past decade. Methods: We conducted a comprehensive review of resistance data from studies spanning ten years, analyzing profiles in resistance to key antibiotics, ciprofloxacin (CIP), tetracycline (TET), erythromycin (ERY), chloramphenicol (CHL), and gentamicin (GEN). Data were collated from various regions to assess global and regional patterns of resistance. Results: The analysis reveals a concerning trend of increasing resistance patterns, particularly to CIP and TET, across multiple regions. While resistance to CHL and GEN remains relatively low, the high prevalence of CIP resistance has significantly compromised treatment options for campylobacteriosis. Discrepancies in resistance patterns were observed between human and animal isolates, with variations across different continents and countries. Notably, resistance to ERY and CHL showed regional variability, reflecting potential differences in antimicrobial usage and management practices. Conclusions: The findings underscore the ongoing challenge of AMR in Campylobacter, highlighting the need for continued surveillance and research. The rising resistance prevalence, coupled with discrepancies in resistance patterns between human and animal isolates, emphasize the importance of a One Health approach to address AMR. Enhanced monitoring, novel treatment strategies, and global cooperation are crucial for mitigating the impact of resistance and ensuring the effective management of Campylobacter-related infections.
Collapse
Affiliation(s)
- Rita Barata
- National Institute of Agricultural and Veterinary Research (INIAV), 4485-655 Vila do Conde, Portugal;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- Center for Veterinary and Animal Research (CECAV), Associated Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Maria José Saavedra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- Center for Veterinary and Animal Research (CECAV), Associated Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- AB2Unit—Antimicrobials, Biocides & Biofilms Unit, Veterinary Sciences Department, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
| | - Gonçalo Almeida
- National Institute of Agricultural and Veterinary Research (INIAV), 4485-655 Vila do Conde, Portugal;
- Center for Animal Science Studies (CECA-ICETA), Associated Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Porto, 4099-002 Porto, Portugal
| |
Collapse
|
5
|
Sodagari HR, Agrawal I, Sohail MN, Yudhanto S, Varga C. Monitoring antimicrobial resistance in Campylobacter isolates of chickens and turkeys at the slaughter establishment level across the United States, 2013-2021. Epidemiol Infect 2024; 152:e41. [PMID: 38403893 PMCID: PMC10945939 DOI: 10.1017/s0950268824000359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/27/2024] Open
Abstract
Foodborne infections with antimicrobial-resistant Campylobacter spp. remain an important public health concern. Publicly available data collected by the National Antimicrobial Resistance Monitoring System for Enteric Bacteria related to antimicrobial resistance (AMR) in Campylobacter spp. isolated from broiler chickens and turkeys at the slaughterhouse level across the United States between 2013 and 2021 were analysed. A total of 1,899 chicken-origin (1,031 Campylobacter coli (C. coli) and 868 Campylobacter jejuni (C. jejuni)) and 798 turkey-origin (673 C. coli and 123 C. jejuni) isolates were assessed. Chicken isolates exhibited high resistance to tetracycline (43.65%), moderate resistance to ciprofloxacin (19.5%), and low resistance to clindamycin (4.32%) and azithromycin (3.84%). Turkey isolates exhibited very high resistance to tetracycline (69%) and high resistance to ciprofloxacin (39%). The probability of resistance to all tested antimicrobials, except for tetracycline, significantly decreased during the latter part of the study period. Turkey-origin Campylobacter isolates had higher odds of resistance to all antimicrobials than isolates from chickens. Compared to C. jejuni isolates, C. coli isolates had higher odds of resistance to all antimicrobials, except for ciprofloxacin. The study findings emphasize the need for poultry-type-specific strategies to address differences in AMR among Campylobacter isolates.
Collapse
Affiliation(s)
- Hamid R. Sodagari
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Isha Agrawal
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Mohammad N. Sohail
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Setyo Yudhanto
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Csaba Varga
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
6
|
Yao GF, Hu YL, Kong NQ, Liu JH, Luo YW, Li CY, Bi SL. Rapid Genotyping of Campylobacter coli Strains from Poultry Meat by PFGE, Sau-PCR, and fla-DGGE. Curr Microbiol 2023; 80:402. [PMID: 37930435 DOI: 10.1007/s00284-023-03517-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
The genotyping of Campylobacter coli was done using three methods, pulsed-field gel electrophoresis (PFGE), Sau-polymerase chain reaction (Sau-PCR), and denaturing gradient gel electrophoresis assay of flagellin gene (fla-DGGE) and the characteristics of these assays were compared. The results showed that a total of 53 strains of C. coli were isolated from chicken and duck samples in three markets. All isolates were clustered into 31, 33, and 15 different patterns with Simpson's index of diversity (SID) values of 0.972, 0.974, and 0.919, respectively. Sau-PCR assay was simpler, more rapid, and had higher discriminatory power than PFGE assay. Fla-DGGE assay could detect and illustrate the number of contamination types of C. jejuni and C. coli without cultivation, which saved more time and cost than Sau-PCR and PFGE assays. Therefore, Sau-PCR and fla-DGGE assays are both rapid, economical, and easy to perform, which have the potential to be promising and accessible for primary laboratories in genotyping C. coli strains.
Collapse
Affiliation(s)
- Ge-Feng Yao
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China
- College of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi-Lin Hu
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China
- College of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Nian-Qing Kong
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China
- College of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jin-Hong Liu
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China
- College of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yong-Wen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chu-Yi Li
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| | - Shui-Lian Bi
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China.
| |
Collapse
|
7
|
Xiao J, Cheng Y, Zhang W, Lu Q, Guo Y, Hu Q, Wen G, Shao H, Luo Q, Zhang T. Genetic characteristics, antimicrobial susceptibility, and virulence genes distribution of Campylobacter isolated from local dual-purpose chickens in central China. Front Cell Infect Microbiol 2023; 13:1236777. [PMID: 37743858 PMCID: PMC10517862 DOI: 10.3389/fcimb.2023.1236777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Food-borne antibiotic-resistant Campylobacter poses a serious threat to public health. To understand the prevalence and genetic characteristics of Campylobacter in Chinese local dual-purpose (meat and eggs) chickens, the genomes of 30 Campylobacter isolates, including 13 C. jejuni and 17 C. coli from Jianghan-chickens in central China, were sequenced and tested for antibiotic susceptibility. The results showed that CC-354 and CC-828 were the dominant clonal complexes of C. jejuni and C. coli, respectively, and a phylogenetic analysis showed that three unclassified multilocus sequence types of C. coli were more closely genetically related to C. jejuni than to other C. coli in this study. Of the six antibiotics tested, the highest resistance rates were to ciprofloxacin and tetracycline (100%), followed by lincomycin (63.3%), erythromycin (30.0%), amikacin (26.7%), and cefotaxime (20.0%). The antibiotic resistance rate of C. coli was higher than that of C. jejuni. The GyrA T86I mutation and 15 acquired resistance genes were detected with whole-genome sequencing (WGS). Among those, the GyrA T86I mutation and tet(O) were most prevalent (both 96.7%), followed by the blaOXA-type gene (90.0%), ant(6)-Ia (26.7%), aac(6')-aph(3'') (23.3%), erm(B) (13.3%), and other genes (3.3%). The ciprofloxacin and tetracycline resistance phenotypes correlated strongly with the GyrA T86I mutation and tet(O)/tet(L), respectively, but for other antibiotics, the correlation between genes and resistance phenotypes were weak, indicating that there may be resistance mechanisms other than the resistance genes detected in this study. Virulence gene analysis showed that several genes related to adhesion, colonization, and invasion (including cadF, porA, ciaB, and jlpA) and cytolethal distending toxin (cdtABC) were only present in C. jejuni. Overall, this study extends our knowledge of the epidemiology and antibiotic resistance of Campylobacter in local Chinese dual-purpose chickens.
Collapse
Affiliation(s)
- Jia Xiao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yiluo Cheng
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wenting Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qin Lu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yunqing Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qiao Hu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Guoyuan Wen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Huabin Shao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qingping Luo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Hubei Hongshan Laboratory, Wuhan, China
| | - Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
8
|
Shrestha RD, Agunos A, Gow SP, Varga C. Assessing antimicrobial resistance in Campylobacter jejuni and Campylobacter coli and its association with antimicrobial use in Canadian turkey flocks. Epidemiol Infect 2023; 151:e152. [PMID: 37667888 PMCID: PMC10548540 DOI: 10.1017/s0950268823001462] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/16/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023] Open
Abstract
Turkeys are important sources of antimicrobial-resistant Campylobacter. A total of 1063 isolates were obtained from 293 turkey flocks across Canada between 2016 and 2021 to evaluate their antimicrobial resistance (AMR) prevalence, patterns, distribution, and association with antimicrobial use (AMU). A high proportion of C. jejuni and C. coli isolates were resistant to tetracyclines and fluoroquinolones, despite the very low use of these drugs. C. jejuni isolates had a higher probability of being resistant to tetracyclines than C. coli isolates. The chance of C. jejuni isolates being resistant to fluoroquinolones, macrolides, and lincosamides was lower compared to C. coli. Isolates from the western region had a higher probability of being resistant to fluoroquinolones than isolates from Ontario. Isolates from Ontario had higher odds of being resistant to tetracyclines than isolates from Quebec. No associations were noted between the resistance and use of the same antimicrobial, but the use of certain antimicrobial classes may have played a role in the maintenance of resistance in Campylobacter (fluoroquinolone resistance - bacitracin and streptogramin use, tetracycline resistance - flavophospholipids and streptogramins use, macrolide resistance - flavophospholipid use). Low-level multidrug-resistant Campylobacter was observed indicating a stable AMR in turkeys. This study provided insights aiding future AMU and AMR surveillance.
Collapse
Affiliation(s)
- Rima D. Shrestha
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, IL, USA
| | - Agnes Agunos
- Foodborne Disease and Antimicrobial Resistance Surveillance Division, Center for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON, Canada
| | - Sheryl P. Gow
- Center for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Saskatoon, SK, Canada
| | - Csaba Varga
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
9
|
Holman DB, Gzyl KE, Kommadath A. The gut microbiome and resistome of conventionally vs. pasture-raised pigs. Microb Genom 2023; 9:mgen001061. [PMID: 37439777 PMCID: PMC10438820 DOI: 10.1099/mgen.0.001061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/12/2023] [Indexed: 07/14/2023] Open
Abstract
Conventional swine production typically houses pigs indoors and in large groups, whereas pasture-raised pigs are reared outdoors at lower stocking densities. Antimicrobial use also differs, with conventionally raised pigs often being exposed to antimicrobials directly or indirectly to control and prevent infectious disease. However, antimicrobial use can be associated with the development and persistence of antimicrobial resistance. In this study, we used shotgun metagenomic sequencing to compare the gut microbiomes and resistomes of pigs raised indoors on a conventional farm with those raised outdoors on pasture. The microbial compositions as well as the resistomes of both groups of pigs were significantly different from each other. Bacterial species such as Intestinibaculum porci, Pseudoscardovia radai and Sharpea azabuensis were relatively more abundant in the gut microbiomes of pasture-raised pigs and Hallella faecis and Limosilactobacillus reuteri in the conventionally raised swine. The abundance of antimicrobial resistance genes (ARGs) was significantly higher in the conventionally raised pigs for nearly all antimicrobial classes, including aminoglycosides, beta-lactams, macrolides-lincosamides-streptogramin B, and tetracyclines. Functionally, the gut microbiomes of the two group of pigs also differed significantly based on their carbohydrate-active enzyme (CAZyme) profiles, with certain CAZyme families associated with host mucin degradation enriched in the conventional pig microbiomes. We also recovered 1043 dereplicated strain-level metagenome-assembled genomes (≥90 % completeness and <5 % contamination) to provide taxonomic context for specific ARGs and metabolic functions. Overall, the study provides insights into the differences between the gut microbiomes and resistomes of pigs raised under two very different production systems.
Collapse
Affiliation(s)
- Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, AB, T4L1W1, Canada
| | - Katherine E. Gzyl
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, AB, T4L1W1, Canada
| | - Arun Kommadath
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, AB, T4L1W1, Canada
| |
Collapse
|