1
|
Elkhadragy L, Myers A, Long W. Role of the Atypical MAPK ERK3 in Cancer Growth and Progression. Cancers (Basel) 2024; 16:1381. [PMID: 38611058 PMCID: PMC11011113 DOI: 10.3390/cancers16071381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3) is an atypical mitogen-activated protein kinase (MAPK) whose structural and regulatory features are distinct from those of conventional MAPKs, such as ERK1/2. Since its identification in 1991, the regulation, substrates and functions of ERK3 have remained largely unknown. However, recent years have witnessed a wealth of new findings about ERK3 signaling. Several important biological functions for ERK3 have been revealed, including its role in neuronal morphogenesis, inflammation, metabolism, endothelial cell tube formation and epithelial architecture. In addition, ERK3 has been recently shown to play important roles in cancer cell proliferation, migration, invasion and chemoresistance in multiple types of cancers. Furthermore, accumulating studies have uncovered various molecular mechanisms by which the expression level, protein stability and activity of ERK3 are regulated. In particular, several post-translational modifications (PTMs), including ubiquitination, hydroxylation and phosphorylation, have been shown to regulate the stability and activity of ERK3 protein. In this review, we discuss recent findings regarding biochemical and cellular functions of ERK3, with a main focus on its roles in cancers, as well as the molecular mechanisms of regulating its expression and activity.
Collapse
Affiliation(s)
- Lobna Elkhadragy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; (L.E.); (A.M.)
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Amanda Myers
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; (L.E.); (A.M.)
| | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; (L.E.); (A.M.)
| |
Collapse
|
2
|
Javary J, Goupil E, Soulez M, Kanshin E, Bouchard A, Seternes OM, Thibault P, Labbé JC, Meloche S. Phosphoproteomic analysis identifies supervillin as an ERK3 substrate regulating cytokinesis and cell ploidy. J Cell Physiol 2024; 239:e30938. [PMID: 36576983 DOI: 10.1002/jcp.30938] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
Extracellular signal-regulated kinase 3 (ERK3) is a poorly characterized member of the mitogen-activated protein (MAP) kinase family. Functional analysis of the ERK3 signaling pathway has been hampered by a lack of knowledge about the substrates and downstream effectors of the kinase. Here, we used large-scale quantitative phosphoproteomics and targeted gene silencing to identify direct ERK3 substrates and gain insight into its cellular functions. Detailed validation of one candidate substrate identified the gelsolin/villin family member supervillin (SVIL) as a bona fide ERK3 substrate. We show that ERK3 phosphorylates SVIL on Ser245 to regulate myosin II activation and cytokinesis completion in dividing cells. Depletion of SVIL or ERK3 leads to increased cytokinesis failure and multinucleation, a phenotype rescued by wild type SVIL but not by the non-phosphorylatable S245A mutant. Our results unveil a new function of the atypical MAP kinase ERK3 in cell division and the regulation of cell ploidy.
Collapse
Affiliation(s)
- Joaquim Javary
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Eugénie Goupil
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Mathilde Soulez
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Evgeny Kanshin
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
- NYU Langone Health, New York City, New York, USA
| | - Antoine Bouchard
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
| | | | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
- Department of Chemistry, Faculty of Arts and Sciences, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Claude Labbé
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Cassidy A, Onal M, Pelletier S. Novel methods for the generation of genetically engineered animal models. Bone 2023; 167:116612. [PMID: 36379415 PMCID: PMC9936561 DOI: 10.1016/j.bone.2022.116612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
Genetically modified mouse models have shaped our understanding of biological systems in both physiological and pathological conditions. For decades, mouse genome engineering has relied on transgenesis and spontaneous gene replacement in embryonic stem (ES) cells. While these technologies provided a wealth of knowledge, they remain imprecise and expensive to use. Recent advances in genome editing technologies such as the development of targetable nucleases, the improvement of delivery systems, and the simplification of targeting strategies now allow for the rapid, precise manipulation of the mouse genome. In this review article, we discuss novel methods and targeting strategies for the generation of mouse models for the study of bone and skeletal muscle biology.
Collapse
Affiliation(s)
- Annelise Cassidy
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Melda Onal
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stephane Pelletier
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| |
Collapse
|
4
|
Cassidy AM, Thomas DB, Kuliyev E, Chen H, Pelletier S. One-step generation of a conditional allele in mice using a short artificial intron. Heliyon 2022; 8:e12630. [PMID: 36619446 PMCID: PMC9816766 DOI: 10.1016/j.heliyon.2022.e12630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/20/2022] [Accepted: 12/19/2022] [Indexed: 12/26/2022] Open
Abstract
Despite tremendous advances in genome editing technologies, generation of conditional alleles in mice has remained challenging. Recent studies in cells have successfully made use of short artificial introns to engineer conditional alleles. The approach consists of inserting a small cassette within an exon of a gene using CRISPR-Cas9 technology. The cassette, referred to as Artificial Intron version 4 (AIv4), contains sequences encoding a splice donor, essential intronic sequences flanked by loxP sites and a splice acceptor site. Under normal conditions, the artificial intron is removed by the splicing machinery, allowing for proper expression of the gene product. Following Cre-mediated recombination of the two loxP sites, the intron is disabled, and splicing can no longer occur. The remaining intronic sequences create a frameshift and early translation termination. Here we describe the application of this technology to engineer a conditional allele in mice using Scyl1 as a model gene. Insertion of the cassette occurred in 17% of edited mice obtained from pronuclear stage zygote microinjection. Mice homozygous for the insertion expressed SCYL1 at levels comparable to wild-type mice and showed no overt abnormalities associated with the loss of Scyl1 function, indicating the proper removal of the artificial intron. Inactivation of the cassette via Cre-mediated recombination in vivo occurred at high frequency, abrogated SCYL1 protein expression, and resulted in loss-of-function phenotypes. Our results broaden the applicability of this approach to engineering conditional alleles in mice.
Collapse
Affiliation(s)
- Annelise M. Cassidy
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indiana University—Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Destinée B. Thomas
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indiana University—Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Emin Kuliyev
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Hanying Chen
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indiana University—Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Stephane Pelletier
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indiana University—Purdue University Indianapolis, Indianapolis, IN, 46202, USA,Corresponding author.
| |
Collapse
|
5
|
On the Therapeutic Potential of ERK4 in Triple-Negative Breast Cancer. Cancers (Basel) 2022; 15:cancers15010025. [PMID: 36612022 PMCID: PMC9817496 DOI: 10.3390/cancers15010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
ERK3 and ERK4 define a distinct and understudied subfamily of mitogen-activated protein kinases (MAPKs). Little is known about the physiological roles of these atypical MAPKs and their association with human diseases. Interestingly, accumulating evidence points towards a role for ERK3 and ERK4 signaling in the initiation and progression of various types of cancer. Notably, a recent study reported that ERK4 is expressed in a subset of triple-negative breast cancer (TNBC) cell lines and that this expression is critical for AKT activation and for sustaining TNBC cell proliferation in vitro and tumor growth in mice. The authors also showed that depletion of ERK4 sensitizes TNBC cells to phosphatidylinositol-3-kinase (PI3K) inhibitors. They concluded that ERK4 is a promising therapeutic target for TNBC and has potential for combination therapy with PI3K inhibitors. Here, we raise concerns about the cellular models and experimental approaches used in this study, which compromise the conclusions on the oncogenic role of ERK4 in TNBC.
Collapse
|
6
|
Loza-Valdes A, El-Merahbi R, Kassouf T, Demczuk A, Reuter S, Viera JT, Karwen T, Noh M, Löffler MC, Romero-Becerra R, Torres JL, Marcos M, Sabio G, Wojda U, Sumara G. Targeting ERK3/MK5 complex for treatment of obesity and diabetes. Biochem Biophys Res Commun 2022; 612:119-125. [PMID: 35523049 DOI: 10.1016/j.bbrc.2022.04.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/15/2022] [Indexed: 11/28/2022]
Abstract
Kinases represent one of the largest druggable families of proteins. Importantly, many kinases are aberrantly activated/de-activated in multiple organs during obesity, which contributes to the development of diabetes and associated diseases. Previous results indicate that the complex between Extracellular-regulated kinase 3 (ERK3) and Mitogen-Activated Protein Kinase (MAPK)-activated protein kinase 5 (MK5) suppresses energy dissipation and promotes fatty acids (FAs) output in adipose tissue and, therefore promotes obesity and diabetes. However, the therapeutic potential of targeting this complex at the systemic level has not been fully explored. Here we applied a translational approach to target the ERK3/MK5 complex in mice. Importantly, deletion of ERK3 in the whole body or administration of MK5-specific inhibitor protects against obesity and promotes insulin sensitivity. Finally, we show that the expression of ERK3 and MK5 correlates with the degree of obesity and that ERK3/MK5 complex regulates energy dissipation in human adipocytes. Altogether, we demonstrate that ERK3/MK5 complex can be targeted in vivo to preserve metabolic health and combat obesity and diabetes.
Collapse
Affiliation(s)
- Angel Loza-Valdes
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Rabih El-Merahbi
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080, Würzburg, Germany
| | - Toufic Kassouf
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Agnieszka Demczuk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Saskia Reuter
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080, Würzburg, Germany
| | - Jonathan Trujillo Viera
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080, Würzburg, Germany
| | - Till Karwen
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080, Würzburg, Germany
| | - Minhe Noh
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080, Würzburg, Germany
| | - Mona C Löffler
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080, Würzburg, Germany
| | - Rafael Romero-Becerra
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Jorge L Torres
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Salamanca, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Salamanca, Spain; Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Urszula Wojda
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Grzegorz Sumara
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland; Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080, Würzburg, Germany.
| |
Collapse
|
7
|
Abstract
Mitogen-activated protein kinase (MAPK)-activated protein kinases (MAPKAPKs) are defined by their exclusive activation by MAPKs. They can be activated by classical and atypical MAPKs that have been stimulated by mitogens and various stresses. Genetic deletions of MAPKAPKs and availability of highly specific small-molecule inhibitors have continuously increased our functional understanding of these kinases. MAPKAPKs cooperate in the regulation of gene expression at the level of transcription; RNA processing, export, and stability; and protein synthesis. The diversity of stimuli for MAPK activation, the cross talk between the different MAPKs and MAPKAPKs, and the specific substrate pattern of MAPKAPKs orchestrate immediate-early and inflammatory responses in space and time and ensure proper control of cell growth, differentiation, and cell behavior. Hence, MAPKAPKs are promising targets for cancer therapy and treatments for conditions of acute and chronic inflammation, such as cytokine storms and rheumatoid arthritis. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Natalia Ronkina
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany;
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany;
| |
Collapse
|
8
|
Soulez M, Tanguay PL, Dô F, Dort J, Crist C, Kotlyarov A, Gaestel M, Ferron M, Dumont NA, Meloche S. ERK3-MK5 signaling regulates myogenic differentiation and muscle regeneration by promoting FoxO3 degradation. J Cell Physiol 2022; 237:2271-2287. [PMID: 35141958 DOI: 10.1002/jcp.30695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 12/25/2022]
Abstract
The physiological functions and downstream effectors of the atypical mitogen-activated protein kinase extracellular signal-regulated kinase 3 (ERK3) remain to be characterized. We recently reported that mice expressing catalytically-inactive ERK3 (Mapk6KD/KD ) exhibit a reduced postnatal growth rate as compared to control mice. Here, we show that genetic inactivation of ERK3 impairs postnatal skeletal muscle growth and adult muscle regeneration after injury. Loss of MAPK-activated protein kinase 5 (MK5) phenocopies the muscle phenotypes of Mapk6KD/KD mice. At the cellular level, genetic or pharmacological inactivation of ERK3 or MK5 induces precocious differentiation of C2C12 or primary myoblasts, concomitant with MyoD activation. Reciprocally, ectopic expression of activated MK5 inhibits myogenic differentiation. Mechanistically, we show that MK5 directly phosphorylates FoxO3, promoting its degradation and reducing its association with MyoD. Depletion of FoxO3 rescues in part the premature differentiation of C2C12 myoblasts observed upon inactivation of ERK3 or MK5. Our findings reveal that ERK3 and its substrate MK5 act in a linear signaling pathway to control postnatal myogenic differentiation.
Collapse
Affiliation(s)
- Mathilde Soulez
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Pierre-Luc Tanguay
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada.,Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Ipsen Biopharmaceuticals Canada, Mississauga, Ontario, Canada
| | - Florence Dô
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Junio Dort
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.,School of Rehabilitation, Université de Montréal, Montreal, Quebec, Canada
| | - Colin Crist
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Alexey Kotlyarov
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Mathieu Ferron
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada.,Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Nicolas A Dumont
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.,School of Rehabilitation, Université de Montréal, Montreal, Quebec, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada.,Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
9
|
An HJ, Lee CJ, Lee GE, Choi Y, Jeung D, Chen W, Lee HS, Kang HC, Lee JY, Kim DJ, Choi JS, Cho ES, Choi JS, Cho YY. FBXW7-mediated ERK3 degradation regulates the proliferation of lung cancer cells. Exp Mol Med 2022; 54:35-46. [PMID: 35022544 PMCID: PMC8813941 DOI: 10.1038/s12276-021-00721-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 11/22/2022] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3) is an atypical member of the mitogen-activated protein kinase (MAPK) family, members of which play essential roles in diverse cellular processes during carcinogenesis, including cell proliferation, differentiation, migration, and invasion. Unlike other MAPKs, ERK3 is an unstable protein with a short half-life. Although deubiquitination of ERK3 has been suggested to regulate the activity, its ubiquitination has not been described in the literature. Here, we report that FBXW7 (F-box and WD repeat domain-containing 7) acts as a ubiquitination E3 ligase for ERK3. Mammalian two-hybrid assay and immunoprecipitation results demonstrated that ERK3 is a novel binding partner of FBXW7. Furthermore, complex formation between ERK3 and the S-phase kinase-associated protein 1 (SKP1)-cullin 1-F-box protein (SCF) E3 ligase resulted in the destabilization of ERK3 via a ubiquitination-mediated proteasomal degradation pathway, and FBXW7 depletion restored ERK3 protein levels by inhibiting this ubiquitination. The interaction between ERK3 and FBXW7 was driven by binding between the C34D of ERK3, especially at Thr417 and Thr421, and the WD40 domain of FBXW7. A double mutant of ERK3 (Thr417 and Thr421 to alanine) abrogated FBXW7-mediated ubiquitination. Importantly, ERK3 knockdown inhibited the proliferation of lung cancer cells by regulating the G1/S-phase transition of the cell cycle. These results show that FBXW7-mediated ERK3 destabilization suppresses lung cancer cell proliferation in vitro.
Collapse
Affiliation(s)
- Hyun-Jung An
- grid.411947.e0000 0004 0470 4224College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do 14662 Republic of Korea ,grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Cheol-Jung Lee
- grid.411947.e0000 0004 0470 4224College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do 14662 Republic of Korea ,grid.410885.00000 0000 9149 5707Research Center for Materials Analysis, Korea Basic Science Institute, 169-148, Gwahak-Ro, Yuseong-Gu, Daejeon, 34133 Republic of Korea
| | - Ga-Eun Lee
- grid.411947.e0000 0004 0470 4224College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do 14662 Republic of Korea ,grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Youngwon Choi
- grid.411947.e0000 0004 0470 4224College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do 14662 Republic of Korea ,grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Dohyun Jeung
- grid.411947.e0000 0004 0470 4224College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do 14662 Republic of Korea ,grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Weidong Chen
- grid.411947.e0000 0004 0470 4224College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do 14662 Republic of Korea ,grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Hye Suk Lee
- grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Han Chang Kang
- grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Joo Young Lee
- grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Dae Joon Kim
- grid.449717.80000 0004 5374 269XDepartment of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, MBMRF, 1.410, 5300, North L St., McAleen, TX 78504 USA
| | - Jin-Sung Choi
- grid.411947.e0000 0004 0470 4224College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do 14662 Republic of Korea
| | - Eun Suh Cho
- grid.17635.360000000419368657College of Biological Science, University of Minnesota, 3-104 MCB, 420 Washington Ave SE, Minneapolis, MN 55455 USA
| | - Jong-Soon Choi
- grid.410885.00000 0000 9149 5707Research Center for Materials Analysis, Korea Basic Science Institute, 169-148, Gwahak-Ro, Yuseong-Gu, Daejeon, 34133 Republic of Korea ,grid.254230.20000 0001 0722 6377Graduate School of Analytical Science and Technology, Chungnam National University, 99, Daehak-Ro, Yuseong-Gu, Daejeon, 34134 Republic of Korea
| | - Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do, 14662, Republic of Korea. .,BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do, 14662, Republic of Korea.
| |
Collapse
|
10
|
Loss of interleukin-17 receptor D promotes chronic inflammation-associated tumorigenesis. Oncogene 2020; 40:452-464. [PMID: 33177649 DOI: 10.1038/s41388-020-01540-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 10/07/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022]
Abstract
Interleukin-17 receptor D (IL-17RD), also known as similar expression to Fgf genes (SEF), is proposed to act as a signaling hub that negatively regulates mitogenic signaling pathways, like the ERK1/2 MAP kinase pathway, and innate immune signaling. The expression of IL-17RD is downregulated in certain solid tumors, which has led to the hypothesis that it may exert tumor suppressor functions. However, the role of IL-17RD in tumor biology remains to be studied in vivo. Here, we show that genetic disruption of Il17rd leads to the increased formation of spontaneous tumors in multiple tissues of aging mice. Loss of IL-17RD also promotes tumor development in a model of colitis-associated colorectal cancer, associated with an exacerbated inflammatory response. Colon tumors from IL-17RD-deficient mice are characterized by a strong enrichment in inflammation-related gene signatures, elevated expression of pro-inflammatory tumorigenic cytokines, such as IL-17A and IL-6, and increased STAT3 tyrosine phosphorylation. We further show that RNAi depletion of IL-17RD enhances Toll-like receptor and IL-17A signaling in colon adenocarcinoma cells. No change in the proliferation of normal or tumor intestinal epithelial cells was observed upon genetic inactivation of IL-17RD. Our findings establish IL-17RD as a tumor suppressor in mice and suggest that the protein exerts its function mainly by limiting the extent and duration of inflammation.
Collapse
|
11
|
Bogucka K, Marini F, Rosigkeit S, Schloeder J, Jonuleit H, David K, Schlackow M, Rajalingam K. ERK3/MAPK6 is required for KRAS-mediated NSCLC tumorigenesis. Cancer Gene Ther 2020; 28:359-374. [PMID: 33070159 DOI: 10.1038/s41417-020-00245-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/18/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022]
Abstract
KRAS is one of the most frequently mutated oncogenes, especially in lung cancers. Targeting of KRAS directly or the downstream effector signaling machinery is of prime interest in treating lung cancers. Here, we uncover that ERK3, a ubiquitously expressed atypical MAPK, is required for KRAS-mediated NSCLC tumors. ERK3 is highly expressed in lung cancers, and oncogenic KRAS led to the activation and stabilization of the ERK3 protein. In particular, phosphorylation of serine 189 in the activation motif of ERK3 is significantly increased in lung adenocarcinomas in comparison to adjacent normal controls in patients. Loss of ERK3 prevents the anchorage-independent growth of KRAS G12C-transformed human bronchial epithelial cells. We further find that loss of ERK3 reduces the oncogenic growth of KRAS G12C-driven NSCLC tumors in vivo and that the kinase activity of ERK3 is required for KRAS-driven oncogenesis in vitro. Our results demonstrate an obligatory role for ERK3 in NSCLC tumor progression and suggest that ERK3 kinase inhibitors can be pursued for treating KRAS G12C-driven tumors.
Collapse
Affiliation(s)
- Katarzyna Bogucka
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Sebastian Rosigkeit
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Janine Schloeder
- Department of Dermatology of the University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Helmut Jonuleit
- Department of Dermatology of the University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | | | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany. .,University Cancer Center Mainz, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
12
|
Bogucka K, Pompaiah M, Marini F, Binder H, Harms G, Kaulich M, Klein M, Michel C, Radsak MP, Rosigkeit S, Grimminger P, Schild H, Rajalingam K. ERK3/MAPK6 controls IL-8 production and chemotaxis. eLife 2020; 9:52511. [PMID: 32314963 PMCID: PMC7192585 DOI: 10.7554/elife.52511] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
ERK3 is a ubiquitously expressed member of the atypical mitogen activated protein kinases (MAPKs) and the physiological significance of its short half-life remains unclear. By employing gastrointestinal 3D organoids, we detect that ERK3 protein levels steadily decrease during epithelial differentiation. ERK3 is not required for 3D growth of human gastric epithelium. However, ERK3 is stabilized and activated in tumorigenic cells, but deteriorates over time in primary cells in response to lipopolysaccharide (LPS). ERK3 is necessary for production of several cellular factors including interleukin-8 (IL-8), in both, normal and tumorigenic cells. Particularly, ERK3 is critical for AP-1 signaling through its interaction and regulation of c-Jun protein. The secretome of ERK3-deficient cells is defective in chemotaxis of neutrophils and monocytes both in vitro and in vivo. Further, knockdown of ERK3 reduces metastatic potential of invasive breast cancer cells. We unveil an ERK3-mediated regulation of IL-8 and epithelial secretome for chemotaxis.
Collapse
Affiliation(s)
- Katarzyna Bogucka
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Malvika Pompaiah
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Harald Binder
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Gregory Harms
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Departments of Biology and Physics, Wilkes University, Wilkes Barre, United States
| | - Manuel Kaulich
- Gene Editing Group, Institute of Biochemistry II, Goethe University, Frankfurt, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany
| | - Matthias Klein
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christian Michel
- Department of Hematology, Medical Oncology, & Pneumology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Markus P Radsak
- Department of Hematology, Medical Oncology, & Pneumology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Rosigkeit
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Peter Grimminger
- Department of General, Visceral- and Transplant Surgery, University Medical Center, Mainz, Germany
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center Mainz, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|