1
|
Soni K, Horvath A, Dybkov O, Schwan M, Trakansuebkul S, Flemming D, Wild K, Urlaub H, Fischer T, Sinning I. Structures of aberrant spliceosome intermediates on their way to disassembly. Nat Struct Mol Biol 2025; 32:914-925. [PMID: 39833470 PMCID: PMC12086092 DOI: 10.1038/s41594-024-01480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Intron removal during pre-mRNA splicing is of extraordinary complexity and its disruption causes a vast number of genetic diseases in humans. While key steps of the canonical spliceosome cycle have been revealed by combined structure-function analyses, structural information on an aberrant spliceosome committed to premature disassembly is not available. Here, we report two cryo-electron microscopy structures of post-Bact spliceosome intermediates from Schizosaccharomyces pombe primed for disassembly. We identify the DEAH-box helicase-G-patch protein pair (Gih35-Gpl1, homologous to human DHX35-GPATCH1) and show how it maintains catalytic dormancy. In both structures, Gpl1 recognizes a remodeled active site introduced by an overstabilization of the U5 loop I interaction with the 5' exon leading to a single-nucleotide insertion at the 5' splice site. Remodeling is communicated to the spliceosome surface and the Ntr1 complex that mediates disassembly is recruited. Our data pave the way for a targeted analysis of splicing quality control.
Collapse
Affiliation(s)
- Komal Soni
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.
| | - Attila Horvath
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Olexandr Dybkov
- Bioanalytical Mass Spectrometry group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Merlin Schwan
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Sasanan Trakansuebkul
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Dirk Flemming
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Tamás Fischer
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.
| |
Collapse
|
2
|
Zhan X, Lu Y, Shi Y. Molecular basis for the activation of human spliceosome. Nat Commun 2024; 15:6348. [PMID: 39068178 PMCID: PMC11283556 DOI: 10.1038/s41467-024-50785-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024] Open
Abstract
The spliceosome executes pre-mRNA splicing through four sequential stages: assembly, activation, catalysis, and disassembly. Activation of the spliceosome, namely remodeling of the pre-catalytic spliceosome (B complex) into the activated spliceosome (Bact complex) and the catalytically activated spliceosome (B* complex), involves major flux of protein components and structural rearrangements. Relying on a splicing inhibitor, we have captured six intermediate states between the B and B* complexes: pre-Bact, Bact-I, Bact-II, Bact-III, Bact-IV, and post-Bact. Their cryo-EM structures, together with an improved structure of the catalytic step I spliceosome (C complex), reveal how the catalytic center matures around the internal stem loop of U6 snRNA, how the branch site approaches 5'-splice site, how the RNA helicase PRP2 rearranges to bind pre-mRNA, and how U2 snRNP undergoes remarkable movement to facilitate activation. We identify a previously unrecognized key role of PRP2 in spliceosome activation. Our study recapitulates a molecular choreography of the human spliceosome during its catalytic activation.
Collapse
Affiliation(s)
- Xiechao Zhan
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Yichen Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- College of Life Sciences, Fudan University, Shanghai, China
| | - Yigong Shi
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Chung CS, Wai HL, Kao CY, Cheng SC. An ATP-independent role for Prp16 in promoting aberrant splicing. Nucleic Acids Res 2023; 51:10815-10828. [PMID: 37858289 PMCID: PMC10639067 DOI: 10.1093/nar/gkad861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/03/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023] Open
Abstract
The spliceosome is assembled through a step-wise process of binding and release of its components to and from the pre-mRNA. The remodeling process is facilitated by eight DExD/H-box RNA helicases, some of which have also been implicated in splicing fidelity control. In this study, we unveil a contrasting role for the prototypic splicing proofreader, Prp16, in promoting the utilization of aberrant 5' splice sites and mutated branchpoints. Prp16 is not essential for the branching reaction in wild-type pre-mRNA. However, when a mutation is present at the 5' splice site or if Cwc24 is absent, Prp16 facilitates the reaction and encourages aberrant 5' splice site usage independently of ATP. Prp16 also promotes the utilization of mutated branchpoints while preventing the use of nearby cryptic branch sites. Our study demonstrates that Prp16 can either enhance or impede the utilization of faulty splice sites by stabilizing or destabilizing interactions with other splicing components. Thus, Prp16 exerts dual roles in 5' splice site and branch site selection, via ATP-dependent and ATP-independent activities. Furthermore, we provide evidence that these functions of Prp16 are mediated through the step-one factor Cwc25.
Collapse
Affiliation(s)
- Che-Sheng Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Hsu Lei Wai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Ching-Yang Kao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| |
Collapse
|
4
|
Theil AF, Pines A, Kalayci T, Heredia‐Genestar JM, Raams A, Rietveld MH, Sridharan S, Tanis SEJ, Mulder KW, Büyükbabani N, Karaman B, Uyguner ZO, Kayserili H, Hoeijmakers JHJ, Lans H, Demmers JAA, Pothof J, Altunoglu U, El Ghalbzouri A, Vermeulen W. Trichothiodystrophy-associated MPLKIP maintains DBR1 levels for proper lariat debranching and ectodermal differentiation. EMBO Mol Med 2023; 15:e17973. [PMID: 37800682 PMCID: PMC10630875 DOI: 10.15252/emmm.202317973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
The brittle hair syndrome Trichothiodystrophy (TTD) is characterized by variable clinical features, including photosensitivity, ichthyosis, growth retardation, microcephaly, intellectual disability, hypogonadism, and anaemia. TTD-associated mutations typically cause unstable mutant proteins involved in various steps of gene expression, severely reducing steady-state mutant protein levels. However, to date, no such link to instability of gene-expression factors for TTD-associated mutations in MPLKIP/TTDN1 has been established. Here, we present seven additional TTD individuals with MPLKIP mutations from five consanguineous families, with a newly identified MPLKIP variant in one family. By mass spectrometry-based interaction proteomics, we demonstrate that MPLKIP interacts with core splicing factors and the lariat debranching protein DBR1. MPLKIP-deficient primary fibroblasts have reduced steady-state DBR1 protein levels. Using Human Skin Equivalents (HSEs), we observed impaired keratinocyte differentiation associated with compromised splicing and eventually, an imbalanced proteome affecting skin development and, interestingly, also the immune system. Our data show that MPLKIP, through its DBR1 stabilizing role, is implicated in mRNA splicing, which is of particular importance in highly differentiated tissue.
Collapse
Affiliation(s)
- Arjan F Theil
- Department of Molecular GeneticsErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Alex Pines
- Department of Molecular GeneticsErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Tuğba Kalayci
- Department of Medical Genetics, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| | | | - Anja Raams
- Department of Molecular GeneticsErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Marion H Rietveld
- Department of DermatologyLeiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Sriram Sridharan
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Sabine EJ Tanis
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life SciencesRadboud UniversityNijmegenThe Netherlands
| | - Klaas W Mulder
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life SciencesRadboud UniversityNijmegenThe Netherlands
| | - Nesimi Büyükbabani
- Department of Pathology, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
- Department of Medical GeneticsKoc University HospitalIstanbulTurkey
| | - Birsen Karaman
- Department of Medical Genetics, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
- Department of Pediatric Basic Sciences, Child Health InstituteIstanbul UniversityIstanbulTurkey
| | - Zehra O Uyguner
- Department of Medical Genetics, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| | - Hülya Kayserili
- Department of Medical Genetics, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
- Department of Medical GeneticsKoc University School of Medicine (KUSOM)IstanbulTurkey
| | - Jan HJ Hoeijmakers
- Department of Molecular GeneticsErasmus MC Cancer InstituteRotterdamThe Netherlands
- Institute for Genome Stability in Aging and Disease, CECAD ForschungszentrumUniversity Hospital of CologneKölnGermany
- Princess Máxima Center for Pediatric OncologyONCODE InstituteUtrechtThe Netherlands
| | - Hannes Lans
- Department of Molecular GeneticsErasmus MC Cancer InstituteRotterdamThe Netherlands
| | | | - Joris Pothof
- Department of Molecular GeneticsErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Umut Altunoglu
- Department of Medical Genetics, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
- Department of Medical GeneticsKoc University School of Medicine (KUSOM)IstanbulTurkey
| | | | - Wim Vermeulen
- Department of Molecular GeneticsErasmus MC Cancer InstituteRotterdamThe Netherlands
| |
Collapse
|
5
|
Tseng CK, Cheng SC. Arresting Spliceosome Intermediates at Various Stages of the Splicing Pathway. Methods Mol Biol 2023; 2666:193-211. [PMID: 37166667 DOI: 10.1007/978-1-0716-3191-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The spliceosome is a dynamic ribonucleoprotein particle and is assembled via sequential binding of five snRNAs and numerous protein factors. To understand the molecular mechanism of the splicing reaction, it is necessary to dissect the spliceosome pathway and isolate spliceosome intermediates in various stages of the pathway for biochemical and structural analysis. Here, we describe protocols for preparing intron-containing transcripts, cell-free splicing extracts, and in vitro splicing reactions, as well as procedures to arrest the spliceosome at different stages of the pathway for characterization of specific splicing complexes from the budding yeast Saccharomyces cerevisiae. Methods for arresting spliceosomes at specific stages include depletion with antibodies against factors required for specific steps of the pathway, use of extracts prepared from temperature-sensitive mutants, use of dominant negative mutants of DExD/H-box proteins, and use of mutant substrates.
Collapse
Affiliation(s)
- Chi-Kang Tseng
- Graduate Institute of Microbiology, National Taiwan University, College of Medicine, Taipei, Taiwan, Republic of China
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China.
| |
Collapse
|
6
|
Ioannidis AD, Khan SG, Tamura D, DiGiovanna JJ, Rizza E, Kraemer KH, Rice RH. Trichothiodystrophy hair shafts display distinct ultrastructural features. Exp Dermatol 2022; 31:1270-1275. [PMID: 35615778 PMCID: PMC10575343 DOI: 10.1111/exd.14614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022]
Abstract
Hair shafts from three trichothiodystrophy (TTD) patients with mutations in the ERCC2 (XPD) gene were examined by transmission electron microscopy. TTD is a rare, recessive disorder with mutations in several genes in the DNA repair/transcription pathway, including ERCC2. Unlike previous studies, the hair shafts were examined after relaxation of their structure by partial disulphide bond reduction in the presence of sodium dodecyl sulphate, permitting improved visualization. Compared with hair shafts of normal phenotype, TTD cuticle cells displayed aberrant marginal bands and exocuticle layers. Clusters of cells stained differently (light versus dark) in the cortex of aberrant shafts, and the keratin macrofibrils appeared much shorter in the cytoplasm. Considerable heterogeneity in these properties was evident among samples and even along the length of single hair shafts. The results are consistent with not only a paucity of high sulphur components, such as keratin-associated proteins, but also a profound imbalance in protein content and organization.
Collapse
Affiliation(s)
- Angeliki-Diotima Ioannidis
- Department of Environmental Toxicology and Forensic Science Program, University of California, Davis, California, USA
| | - Sikandar G. Khan
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Deborah Tamura
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - John J. DiGiovanna
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Elizabeth Rizza
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Kenneth H. Kraemer
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Robert H. Rice
- Department of Environmental Toxicology and Forensic Science Program, University of California, Davis, California, USA
| |
Collapse
|
7
|
Botta E, Theil AF, Raams A, Caligiuri G, Giachetti S, Bione S, Accadia M, Lombardi A, Smith DEC, Mendes MI, Swagemakers SMA, van der Spek PJ, Salomons GS, Hoeijmakers JHJ, Yesodharan D, Nampoothiri S, Ogi T, Lehmann AR, Orioli D, Vermeulen W. Protein instability associated with AARS1 and MARS1 mutations causes Trichothiodystrophy. Hum Mol Genet 2021; 30:1711-1720. [PMID: 33909043 PMCID: PMC8411986 DOI: 10.1093/hmg/ddab123] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Trichothiodystrophy (TTD) is a rare hereditary neurodevelopmental disorder defined by sulfur-deficient brittle hair and nails and scaly skin, but with otherwise remarkably variable clinical features. The photosensitive TTD (PS-TTD) forms exhibits in addition to progressive neuropathy and other features of segmental accelerated aging and is associated with impaired genome maintenance and transcription. New factors involved in various steps of gene expression have been identified for the different non-photosensitive forms of TTD (NPS-TTD), which do not appear to show features of premature aging. Here, we identify alanyl-tRNA synthetase 1 and methionyl-tRNA synthetase 1 variants as new gene defects that cause NPS-TTD. These variants result in the instability of the respective gene products alanyl- and methionyl-tRNA synthetase. These findings extend our previous observations that TTD mutations affect the stability of the corresponding proteins and emphasize this phenomenon as a common feature of TTD. Functional studies in skin fibroblasts from affected individuals demonstrate that these new variants also impact on the rate of tRNA charging, which is the first step in protein translation. The extension of reduced abundance of TTD factors to translation as well as transcription redefines TTD as a syndrome in which proteins involved in gene expression are unstable.
Collapse
Affiliation(s)
- Elena Botta
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" (IGM) CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Arjan F Theil
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Anja Raams
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Giuseppina Caligiuri
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" (IGM) CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Sarah Giachetti
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" (IGM) CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Silvia Bione
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" (IGM) CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Maria Accadia
- Medical Genetics Service, Hospital "Cardinale G. Panico", Via San Pio X Tricase, Italy
| | - Anita Lombardi
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" (IGM) CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Desiree E C Smith
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, 1081 HZ Amsterdam, The Netherlands
| | - Marisa I Mendes
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, 1081 HZ Amsterdam, The Netherlands
| | - Sigrid M A Swagemakers
- Department of Pathology and Clinical Bioinformatics Unit, Erasmus University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Peter J van der Spek
- Department of Pathology and Clinical Bioinformatics Unit, Erasmus University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Gajja S Salomons
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, 1081 HZ Amsterdam, The Netherlands.,Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.,Princess Maxima Center for Pediatric Oncology, Oncode Institute, 3584 CS Utrecht, the Netherlands.,Institute for Genome Stability in Ageing and Disease, CECAD Forschungszentrum, University of Cologne, 50931 Cologne, Germany
| | - Dhanya Yesodharan
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, AIMS Ponekkara PO, Cochin 682041, Kerala, India
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, AIMS Ponekkara PO, Cochin 682041, Kerala, India
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan/Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Alan R Lehmann
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Donata Orioli
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" (IGM) CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
8
|
Mendelsohn BA, Beleford DT, Abu-El-Haija A, Alsaleh NS, Rahbeeni Z, Martin PM, Rego S, Huang A, Capodanno G, Shieh JT, Van Ziffle J, Risch N, Alkuraya FS, Slavotinek AM. A novel truncating variant in ring finger protein 113A (RNF113A) confirms the association of this gene with X-linked trichothiodystrophy. Am J Med Genet A 2019; 182:513-520. [PMID: 31880405 DOI: 10.1002/ajmg.a.61450] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 11/09/2022]
Abstract
We describe an 11-year old boy with severe global developmental delays, failure to thrive and growth retardation, refractory seizures with recurrent status epilepticus, hypogammaglobulinemia, hypergonadotropic hypogonadism, and duodenal strictures. He had facial and skin findings compatible with trichothiodystrophy, including sparse and brittle hair, thin eyebrows, and dry skin. Exome sequencing showed a hemizygous, truncating variant in RNF113A, c.903_910delGCAGACCA, predicting p.(Gln302fs*12), that was inherited from his mother. Although his clinical features overlap closely with features described in the two previously reported male first cousins with RNF113A loss of function mutations, the duodenal strictures seen in this patient have not been reported. Interestingly, the patient's mother had short stature and 100% skewed X-inactivation as seen in other obligate female carriers. A second male with developmental delays, microcephaly, seizures, ambiguous genitalia, and facial anomalies that included sparse and brittle hair, thin eyebrows and dry skin was recently reported to have c.897_898delTG, predicting p.(Cys299*) in RNF113A and we provide additional clinical details for this patient. This report further supports deleterious variants in RNF113A as a cause of a novel trichothiodystrophy syndrome.
Collapse
Affiliation(s)
- Bryce A Mendelsohn
- Division of Medical Genetics, University of California, San Francisco, San Francisco, California
| | - Daniah T Beleford
- Division of Medical Genetics, University of California, San Francisco, San Francisco, California
| | - Aya Abu-El-Haija
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts.,Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts
| | - Norah S Alsaleh
- Division of Genetics and Metabolic Medicine, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Pierre-Marie Martin
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| | - Shannon Rego
- Division of Medical Genetics, University of California, San Francisco, San Francisco, California
| | - Alyssa Huang
- Division of Pediatric Endocrinology, University of California, San Francisco, California
| | - Gina Capodanno
- Division of Pediatric Endocrinology, University of California, San Francisco, California
| | - Joseph T Shieh
- Division of Medical Genetics, University of California, San Francisco, San Francisco, California.,Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| | - Jessica Van Ziffle
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| | - Neil Risch
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| | - Fowzan S Alkuraya
- Division of Genetics and Metabolic Medicine, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Anne M Slavotinek
- Division of Medical Genetics, University of California, San Francisco, San Francisco, California.,Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| |
Collapse
|
9
|
Wu NY, Cheng SC. Functional analysis of Cwc24 ZF-domain in 5' splice site selection. Nucleic Acids Res 2019; 47:10327-10339. [PMID: 31504764 PMCID: PMC6821175 DOI: 10.1093/nar/gkz733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/07/2019] [Accepted: 08/15/2019] [Indexed: 11/30/2022] Open
Abstract
The essential splicing factor Cwc24 contains a zinc-finger (ZF) domain required for its function in splicing. Cwc24 binds over the 5' splice site after the spliceosome is activated, and its binding prior to Prp2-mediated spliceosome remodeling is important for proper interactions of U5 and U6 with the 5' splice site sequence and selection of the 5' splice site. Here, we show that Cwc24 transiently interacts with the 5' splice site in formation of the functional RNA catalytic core during spliceosome remodeling, and the ZF-motif is required for specific interaction of Cwc24 with the 5' splice site. Deletion of the ZF domain or mutation of the conserved ZF residues greatly weakened the association of Cwc24 with the spliceosome, and lowered the affinity and specificity of its interaction with the 5' splice site, resulting in atypical interactions of U5, U6 and Prp8 with the 5' splice site, and aberrant cleavage at the 5' splice site. Our results reveal a crucial role of the Cwc24 ZF-motif for defining 5' splice site selection in the first splicing step.
Collapse
Affiliation(s)
- Nan-Ying Wu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| |
Collapse
|
10
|
Brickner JR, Townley BA, Mosammaparast N. Intersections between transcription-coupled repair and alkylation damage reversal. DNA Repair (Amst) 2019; 81:102663. [PMID: 31326362 DOI: 10.1016/j.dnarep.2019.102663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The response to DNA damage intersects with many other physiological processes in the cell, such as DNA replication, chromatin remodeling, and the cell cycle. Certain damaging lesions, such as UV-induced pyrimidine dimers, also strongly block RNA polymerases, necessitating the coordination of the repair mechanism with remodeling of the elongating transcriptional machinery, in a process called transcription-coupled nucleotide excision repair (TC-NER). This pathway is typically not thought to be engaged with smaller lesions such as base alkylation. However, recent work has uncovered the potential for shared molecular components between the cellular response to alkylation and UV damage. Here, we review our current understanding of the alkylation damage response and its impacts on RNA biogenesis. We give particular attention to the Activating Signal Cointegrator Complex (ASCC), which plays important roles in the transcriptional response during UV damage as well as alkylation damage reversal, and intersects with trichothiodystrophy, an inherited disease associated with TC-NER.
Collapse
Affiliation(s)
- Joshua R Brickner
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Brittany A Townley
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
11
|
Chung CS, Tseng CK, Lai YH, Wang HF, Newman AJ, Cheng SC. Dynamic protein-RNA interactions in mediating splicing catalysis. Nucleic Acids Res 2019; 47:899-910. [PMID: 30395327 PMCID: PMC6344849 DOI: 10.1093/nar/gky1089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/19/2018] [Indexed: 11/16/2022] Open
Abstract
The spliceosome is assembled via sequential interactions of pre-mRNA with five small nuclear RNAs and many proteins. Recent determination of cryo-EM structures for several spliceosomal complexes has provided deep insights into interactions between spliceosomal components and structural changes of the spliceosome between steps, but information on how the proteins interact with pre-mRNA to mediate the reaction is scarce. By systematic analysis of proteins interacting with the splice sites (SSs), we have identified many previously unknown interactions of spliceosomal components with the pre-mRNA. Prp8 directly binds over the 5′SS and the branch site (BS) for the first catalytic step, and the 5′SS and 3′SS for the second step. Switching the Prp8 interaction from the BS to the 3′SS requires Slu7, which interacts dynamically with pre-mRNA first, and then interacts stably with the 3′-exon after Prp16-mediated spliceosome remodeling. Our results suggest that Prp8 plays a key role in positioning the 5′SS and 3′SS, facilitated by Slu7 through interactions with Prp8 and substrate RNA to advance exon ligation. We also provide evidence that Prp16 first docks on the intron 3′ tail, then translocates in the 3′ to 5′ direction on remodeling the spliceosome.
Collapse
Affiliation(s)
- Che-Sheng Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Chi-Kang Tseng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Yung-Hua Lai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China.,Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan 112, Republic of China
| | - Hui-Fang Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China.,Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan 112, Republic of China
| | - Andrew J Newman
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| |
Collapse
|
12
|
Theil AF, Botta E, Raams A, Smith DE, Mendes MI, Caligiuri G, Giachetti S, Bione S, Carriero R, Liberi G, Zardoni L, Swagemakers SM, Salomons GS, Sarasin A, Lehmann A, van der Spek PJ, Ogi T, Hoeijmakers JH, Vermeulen W, Orioli D. Bi-allelic TARS Mutations Are Associated with Brittle Hair Phenotype. Am J Hum Genet 2019; 105:434-440. [PMID: 31374204 DOI: 10.1016/j.ajhg.2019.06.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022] Open
Abstract
Brittle and "tiger-tail" hair is the diagnostic hallmark of trichothiodystrophy (TTD), a rare recessive disease associated with a wide spectrum of clinical features including ichthyosis, intellectual disability, decreased fertility, and short stature. As a result of premature abrogation of terminal differentiation, the hair is brittle and fragile and contains reduced cysteine content. Hypersensitivity to UV light is found in about half of individuals with TTD; all of these individuals harbor bi-allelic mutations in components of the basal transcription factor TFIIH, and these mutations lead to impaired nucleotide excision repair and basal transcription. Different genes have been found to be associated with non-photosensitive TTD (NPS-TTD); these include MPLKIP (also called TTDN1), GTF2E2 (also called TFIIEβ), and RNF113A. However, a relatively large group of these individuals with NPS-TTD have remained genetically uncharacterized. Here we present the identification of an NPS-TTD-associated gene, threonyl-tRNA synthetase (TARS), found by next-generation sequencing of a group of uncharacterized individuals with NPS-TTD. One individual has compound heterozygous TARS variants, c.826A>G (p.Lys276Glu) and c.1912C>T (p.Arg638∗), whereas a second individual is homozygous for the TARS variant: c.680T>C (p.Leu227Pro). We showed that these variants have a profound effect on TARS protein stability and enzymatic function. Our results expand the spectrum of genes involved in TTD to include genes implicated in amino acid charging of tRNA, which is required for the last step in gene expression, namely protein translation. We previously proposed that some of the TTD-specific features derive from subtle transcription defects as a consequence of unstable transcription factors. We now extend the definition of TTD from a transcription syndrome to a "gene-expression" syndrome.
Collapse
|
13
|
Gatti da Silva GH, Jurica MS, Chagas da Cunha JP, Oliveira CC, Coltri PP. Human RNF113A participates of pre-mRNA splicing in vitro. J Cell Biochem 2019; 120:8764-8774. [PMID: 30506991 DOI: 10.1002/jcb.28163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 11/08/2018] [Indexed: 01/24/2023]
Abstract
Pre-messenger RNA (mRNA) splicing is an essential step in the control of eukaryotic gene expression. During splicing, the introns are removed from the gene transcripts as the exons are ligated to create mature mRNA sequences. Splicing is performed by the spliceosome, which is a macromolecular complex composed of five small nuclear RNAs (snRNAs) and more than 100 proteins. Except for the core snRNP proteins, most spliceosome proteins are transiently associated and presumably involved with the regulation of spliceosome activity. In this study, we explored the association and participation of the human protein RNF113A in splicing. The addition of excess recombinant RNF113A to in vitro splicing reactions results in splicing inhibition. In whole-cell lysates, RNF113A co-immunoprecipitated with U2, U4, and U6 snRNAs, which are components of the tri-snRNP, and with proteins PRP19 and BRR2. When HeLa cells were CRISPR-edited to reduce the RNF113A levels, the in vitro splicing efficiency was severely affected. Consistently, the splicing activity was partially restored after the addition of the recombinant GST-RNF113A. On the basis on these results, we propose a model in which RNF113A associates with the spliceosome by interacting with PRP19, promoting essential rearrangements that lead to splicing.
Collapse
Affiliation(s)
- Guilherme H Gatti da Silva
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Melissa S Jurica
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California
| | | | - Carla C Oliveira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Patricia P Coltri
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California.,Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Theil AF, Mandemaker IK, van den Akker E, Swagemakers SMA, Raams A, Wüst T, Marteijn JA, Giltay JC, Colombijn RM, Moog U, Kotzaeridou U, Ghazvini M, von Lindern M, Hoeijmakers JHJ, Jaspers NGJ, van der Spek PJ, Vermeulen W. Trichothiodystrophy causative TFIIEβ mutation affects transcription in highly differentiated tissue. Hum Mol Genet 2018; 26:4689-4698. [PMID: 28973399 PMCID: PMC5886110 DOI: 10.1093/hmg/ddx351] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/29/2017] [Indexed: 01/01/2023] Open
Abstract
The rare recessive developmental disorder Trichothiodystrophy (TTD) is characterized by brittle hair and nails. Patients also present a variable set of poorly explained additional clinical features, including ichthyosis, impaired intelligence, developmental delay and anemia. About half of TTD patients are photosensitive due to inherited defects in the DNA repair and transcription factor II H (TFIIH). The pathophysiological contributions of unrepaired DNA lesions and impaired transcription have not been dissected yet. Here, we functionally characterize the consequence of a homozygous missense mutation in the general transcription factor II E, subunit 2 (GTF2E2/TFIIEβ) of two unrelated non-photosensitive TTD (NPS-TTD) families. We demonstrate that mutant TFIIEβ strongly reduces the total amount of the entire TFIIE complex, with a remarkable temperature-sensitive transcription defect, which strikingly correlates with the phenotypic aggravation of key clinical symptoms after episodes of high fever. We performed induced pluripotent stem (iPS) cell reprogramming of patient fibroblasts followed by in vitro erythroid differentiation to translate the intriguing molecular defect to phenotypic expression in relevant tissue, to disclose the molecular basis for some specific TTD features. We observed a clear hematopoietic defect during late-stage differentiation associated with hemoglobin subunit imbalance. These new findings of a DNA repair-independent transcription defect and tissue-specific malfunctioning provide novel mechanistic insight into the etiology of TTD.
Collapse
Affiliation(s)
- Arjan F Theil
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, The Netherlands
| | - Imke K Mandemaker
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, The Netherlands
| | - Emile van den Akker
- Sanquin Research, Department of Hematopoiesis/Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Anja Raams
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, The Netherlands
| | - Tatjana Wüst
- Sanquin Research, Department of Hematopoiesis/Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, The Netherlands
| | - Jacques C Giltay
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Ute Moog
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Mehrnaz Ghazvini
- Department of Developmental Biology, iPS Core Facility, Erasmus MC, Rotterdam, The Netherlands
| | - Marieke von Lindern
- Sanquin Research, Department of Hematopoiesis/Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, The Netherlands
| | - Nicolaas G J Jaspers
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, The Netherlands
| | | | - Wim Vermeulen
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
15
|
Zhang X, Yan C, Zhan X, Li L, Lei J, Shi Y. Structure of the human activated spliceosome in three conformational states. Cell Res 2018; 28:307-322. [PMID: 29360106 PMCID: PMC5835773 DOI: 10.1038/cr.2018.14] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 12/13/2022] Open
Abstract
During each cycle of pre-mRNA splicing, the pre-catalytic spliceosome (B complex) is converted into the activated spliceosome (Bact complex), which has a well-formed active site but cannot proceed to the branching reaction. Here, we present the cryo-EM structure of the human Bact complex in three distinct conformational states. The EM map allows atomic modeling of nearly all protein components of the U2 small nuclear ribonucleoprotein (snRNP), including three of the SF3a complex and seven of the SF3b complex. The structure of the human Bact complex contains 52 proteins, U2, U5, and U6 small nuclear RNA (snRNA), and a pre-mRNA. Three distinct conformations have been captured, representing the early, mature, and late states of the human Bact complex. These complexes differ in the orientation of the Switch loop of Prp8, the splicing factors RNF113A and NY-CO-10, and most components of the NineTeen complex (NTC) and the NTC-related complex. Analysis of these three complexes and comparison with the B and C complexes reveal an ordered flux of components in the B-to-Bact and the Bact-to-B* transitions, which ultimately prime the active site for the branching reaction.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiechao Zhan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lijia Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Shilongshan Road No. 18, Hangzhou, Zhejiang 310064, China
| |
Collapse
|
16
|
Fica SM, Nagai K. Cryo-electron microscopy snapshots of the spliceosome: structural insights into a dynamic ribonucleoprotein machine. Nat Struct Mol Biol 2017; 24:791-799. [PMID: 28981077 DOI: 10.1038/nsmb.3463] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/10/2017] [Indexed: 12/18/2022]
Abstract
The spliceosome excises introns from pre-messenger RNAs using an RNA-based active site that is cradled by a dynamic protein scaffold. A recent revolution in cryo-electron microscopy (cryo-EM) has led to near-atomic-resolution structures of key spliceosome complexes that provide insight into the mechanism of activation, splice site positioning, catalysis, protein rearrangements and ATPase-mediated dynamics of the active site. The cryo-EM structures rationalize decades of observations from genetic and biochemical studies and provide a molecular framework for future functional studies.
Collapse
|