1
|
Costello WN, Xiao Y, Mentink-Vigier F, Kragelj J, Frederick KK. DNP-assisted solid-state NMR enables detection of proteins at nanomolar concentrations in fully protonated cellular milieu. JOURNAL OF BIOMOLECULAR NMR 2024; 78:95-108. [PMID: 38520488 PMCID: PMC11572114 DOI: 10.1007/s10858-024-00436-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/09/2024] [Indexed: 03/25/2024]
Abstract
With the sensitivity enhancements conferred by dynamic nuclear polarization (DNP), magic angle spinning (MAS) solid state NMR spectroscopy experiments can attain the necessary sensitivity to detect very low concentrations of proteins. This potentially enables structural investigations of proteins at their endogenous levels in their biological contexts where their native stoichiometries with potential interactors is maintained. Yet, even with DNP, experiments are still sensitivity limited. Moreover, when an isotopically-enriched target protein is present at physiological levels, which typically range from low micromolar to nanomolar concentrations, the isotope content from the natural abundance isotopes in the cellular milieu can outnumber the isotope content of the target protein. Using isotopically enriched yeast prion protein, Sup35NM, diluted into natural abundance yeast lysates, we optimized sample composition. We found that modest cryoprotectant concentrations and fully protonated environments support efficient DNP. We experimentally validated theoretical calculations of the limit of specificity for an isotopically enriched protein in natural abundance cellular milieu. We establish that, using pulse sequences that are selective for adjacent NMR-active nuclei, proteins can be specifically detected in cellular milieu at concentrations in the hundreds of nanomolar. Finally, we find that maintaining native stoichiometries of the protein of interest to the components of the cellular environment may be important for proteins that make specific interactions with cellular constituents.
Collapse
Affiliation(s)
- Whitney N Costello
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, 75390-8816, USA
| | - Yiling Xiao
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, 75390-8816, USA
| | | | - Jaka Kragelj
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, 75390-8816, USA
- Slovenian NMR centre, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Kendra K Frederick
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, 75390-8816, USA.
- Center for Alzheimer's and Neurodegenerative Disease, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
2
|
Mariner BL, Felker DP, Cantergiani RJ, Peterson J, McCormick MA. Multiomics of GCN4-Dependent Replicative Lifespan Extension Models Reveals Gcn4 as a Regulator of Protein Turnover in Yeast. Int J Mol Sci 2023; 24:16163. [PMID: 38003352 PMCID: PMC10671045 DOI: 10.3390/ijms242216163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
We have shown that multiple tRNA synthetase inhibitors can increase lifespan in both the nematode C. elegans and the budding yeast S. cerevisiae by acting through the conserved transcription factor Gcn4 (yeast)/ATF-4 (worms). To further understand the biology downstream from this conserved transcription factor in the yeast model system, we looked at two different yeast models known to have upregulated Gcn4 and GCN4-dependent increased replicative lifespan. These two models were rpl31aΔ yeast and yeast treated with the tRNA synthetase inhibitor borrelidin. We used both proteomic and RNAseq analysis of a block experimental design that included both of these models to identify GCN4-dependent changes in these two long-lived strains of yeast. Proteomic analysis of these yeast indicate that the long-lived yeast have increased abundances of proteins involved in amino acid biosynthesis. The RNAseq of these same yeast uncovered further regulation of protein degradation, identifying the differential expression of genes associated with autophagy and the ubiquitin-proteasome system (UPS). The data presented here further underscore the important role that GCN4 plays in the maintenance of protein homeostasis, which itself is an important hallmark of aging. In particular, the changes in autophagy and UPS-related gene expression that we have observed could also have wide-ranging implications for the understanding and treatment of diseases of aging that are associated with protein aggregation.
Collapse
Affiliation(s)
- Blaise L. Mariner
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA (D.P.F.); (R.J.C.)
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - Daniel P. Felker
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA (D.P.F.); (R.J.C.)
| | - Ryla J. Cantergiani
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA (D.P.F.); (R.J.C.)
| | - Jack Peterson
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA (D.P.F.); (R.J.C.)
| | - Mark A. McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA (D.P.F.); (R.J.C.)
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
3
|
Wu S, Edskes HK, Wickner RB. Human proteins curing yeast prions. Proc Natl Acad Sci U S A 2023; 120:e2314781120. [PMID: 37903258 PMCID: PMC10636303 DOI: 10.1073/pnas.2314781120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/25/2023] [Indexed: 11/01/2023] Open
Abstract
Recognition that common human amyloidoses are prion diseases makes the use of the Saccharomyces cerevisiae prion model systems to screen for possible anti-prion components of increasing importance. [PSI+] and [URE3] are amyloid-based prions of Sup35p and Ure2p, respectively. Yeast has at least six anti-prion systems that together cure nearly all [PSI+] and [URE3] prions arising in their absence. We made a GAL-promoted bank of 14,913 human open reading frames in a yeast shuttle plasmid and isolated 20 genes whose expression cures [PSI+] or [URE3]. PRPF19 is an E3 ubiquitin ligase that cures [URE3] if its U-box is intact. DNAJA1 is a J protein that cures [PSI+] unless its interaction with Hsp70s is defective. Human Bag5 efficiently cures [URE3] and [PSI+]. Bag family proteins share a 110 to 130 residue "BAG domain"; Bag 1, 2, 3, 4, and 6 each have one BAG domain while Bag5 has five BAG domains. Two BAG domains are necessary for curing [PSI+], but one can suffice to cure [URE3]. Although most Bag proteins affect autophagy in mammalian cells, mutations blocking autophagy in yeast do not affect Bag5 curing of [PSI+] or [URE3]. Curing by Bag proteins depends on their interaction with Hsp70s, impairing their role, with Hsp104 and Sis1, in the amyloid filament cleavage necessary for prion propagation. Since Bag5 curing is reduced by overproduction of Sis1, we propose that Bag5 cures prions by blocking Sis1 access to Hsp70s in its role with Hsp104 in filament cleavage.
Collapse
Affiliation(s)
- Songsong Wu
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0830
| | - Herman K. Edskes
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0830
| | - Reed B. Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0830
| |
Collapse
|
4
|
Josefson R, Kumar N, Hao X, Liu B, Nyström T. The GET pathway is a major bottleneck for maintaining proteostasis in Saccharomyces cerevisiae. Sci Rep 2023; 13:9285. [PMID: 37286562 DOI: 10.1038/s41598-023-35666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
A hallmark of aging in a variety of organisms is a breakdown of proteostasis and an ensuing accumulation of protein aggregates and inclusions. However, it is not clear if the proteostasis network suffers from a uniform breakdown during aging or if some distinct components act as bottlenecks especially sensitive to functional decline. Here, we report on a genome-wide, unbiased, screen for single genes in young cells of budding yeast required to keep the proteome aggregate-free under non-stress conditions as a means to identify potential proteostasis bottlenecks. We found that the GET pathway, required for the insertion of tail-anchored (TA) membrane proteins in the endoplasmic reticulum, is such a bottleneck as single mutations in either GET3, GET2 or GET1 caused accumulation of cytosolic Hsp104- and mitochondria-associated aggregates in nearly all cells when growing at 30 °C (non-stress condition). Further, results generated by a second screen identifying proteins aggregating in GET mutants and analyzing the behavior of cytosolic reporters of misfolding, suggest that there is a general collapse in proteostasis in GET mutants that affects other proteins than TA proteins.
Collapse
Affiliation(s)
- Rebecca Josefson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Navinder Kumar
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Xinxin Hao
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Nyström
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
5
|
Zhouravleva GA, Bondarev SA, Zemlyanko OM, Moskalenko SE. Role of Proteins Interacting with the eRF1 and eRF3 Release Factors in the Regulation of Translation and Prionization. Mol Biol 2022. [DOI: 10.1134/s0026893322010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Wang Y, Fang S, Chen G, Ganti R, Chernova TA, Zhou L, Duong D, Kiyokawa H, Li M, Zhao B, Shcherbik N, Chernoff YO, Yin J. Regulation of the endocytosis and prion-chaperoning machineries by yeast E3 ubiquitin ligase Rsp5 as revealed by orthogonal ubiquitin transfer. Cell Chem Biol 2021; 28:1283-1297.e8. [PMID: 33667410 PMCID: PMC8380759 DOI: 10.1016/j.chembiol.2021.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/22/2020] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Attachment of the ubiquitin (UB) peptide to proteins via the E1-E2-E3 enzymatic machinery regulates diverse biological pathways, yet identification of the substrates of E3 UB ligases remains a challenge. We overcame this challenge by constructing an "orthogonal UB transfer" (OUT) cascade with yeast E3 Rsp5 to enable the exclusive delivery of an engineered UB (xUB) to Rsp5 and its substrate proteins. The OUT screen uncovered new Rsp5 substrates in yeast, such as Pal1 and Pal2, which are partners of endocytic protein Ede1, and chaperones Hsp70-Ssb, Hsp82, and Hsp104 that counteract protein misfolding and control self-perpetuating amyloid aggregates (prions), resembling those involved in human amyloid diseases. We showed that prion formation and effect of Hsp104 on prion propagation are modulated by Rsp5. Overall, our work demonstrates the capacity of OUT to deconvolute the complex E3-substrate relationships in crucial biological processes such as endocytosis and protein assembly disorders through protein ubiquitination.
Collapse
Affiliation(s)
- Yiyang Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA; Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Shuai Fang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA; Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Geng Chen
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA; Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Rakhee Ganti
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Li Zhou
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Duc Duong
- Integrated Proteomics Core, Emory University, Atlanta, GA 30322, USA
| | - Hiroaki Kiyokawa
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Ming Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48019, USA
| | - Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| | - Natalia Shcherbik
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA.
| | - Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia.
| | - Jun Yin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
7
|
Fry MY, Saladi SM, Clemons WM. The STI1-domain is a flexible alpha-helical fold with a hydrophobic groove. Protein Sci 2021; 30:882-898. [PMID: 33620121 PMCID: PMC7980504 DOI: 10.1002/pro.4049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/05/2023]
Abstract
STI1-domains are present in a variety of co-chaperone proteins and are required for the transfer of hydrophobic clients in various cellular processes. The domains were first identified in the yeast Sti1 protein where they were referred to as DP1 and DP2. Based on hidden Markov model searches, this domain had previously been found in other proteins including the mammalian co-chaperone SGTA, the DNA damage response protein Rad23, and the chloroplast import protein Tic40. Here, we refine the domain definition and carry out structure-based sequence alignment of STI1-domains showing conservation of five amphipathic helices. Upon examinations of these identified domains, we identify a preceding helix 0 and unifying sequence properties, determine new molecular models, and recognize that STI1-domains nearly always occur in pairs. The similarity at the sequence, structure, and molecular levels likely supports a unified functional role.
Collapse
Affiliation(s)
- Michelle Y. Fry
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Shyam M. Saladi
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - William M. Clemons
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| |
Collapse
|
8
|
Cho H, Shim WJ, Liu Y, Shan SO. J-domain proteins promote client relay from Hsp70 during tail-anchored membrane protein targeting. J Biol Chem 2021; 296:100546. [PMID: 33741343 PMCID: PMC8054193 DOI: 10.1016/j.jbc.2021.100546] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/22/2021] [Accepted: 03/15/2021] [Indexed: 01/17/2023] Open
Abstract
J-domain proteins (JDPs) play essential roles in Hsp70 function by assisting Hsp70 in client trapping and regulating the Hsp70 ATPase cycle. Here, we report that JDPs can further enhance the targeting competence of Hsp70-bound client proteins during tail-anchored protein (TA) biogenesis. In the guided-entry-of-tail-anchored protein pathway in yeast, nascent TAs are captured by cytosolic Hsp70 and sequentially relayed to downstream chaperones, Sgt2 and Get3, for delivery to the ER. We found that two JDPs, Ydj1 and Sis1, function in parallel to support TA targeting to the ER in vivo. Biochemical analyses showed that, while Ydj1 and Sis1 differ in their ability to assist Hsp70 in TA trapping, both JDPs enhance the transfer of Hsp70-bound TAs to Sgt2. The ability of the JDPs to regulate the ATPase cycle of Hsp70 is essential for enhancing the transfer competence of Hsp70-bound TAs in vitro and for supporting TA insertion in vivo. These results demonstrate a role of JDPs in regulating the conformation of Hsp70-bound clients during membrane protein biogenesis.
Collapse
Affiliation(s)
- Hyunju Cho
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Woo Jun Shim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Yumeng Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA.
| |
Collapse
|
9
|
Phithakrotchanakoon C, Puseenam A, Kruasuwan W, Likhitrattanapisal S, Phaonakrop N, Roytrakul S, Ingsriswang S, Tanapongpipat S, Roongsawang N. Identification of proteins responsive to heterologous protein production in thermotolerant methylotrophic yeast Ogataea thermomethanolica TBRC656. Yeast 2021; 38:316-325. [PMID: 33445217 DOI: 10.1002/yea.3548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 11/09/2022] Open
Abstract
The thermotolerant methylotrophic yeast Ogataea thermomethanolica TBRC656 is a potential host for heterologous protein production. However, overproduction of heterologous protein can induce cellular stress and limit the level of its secretion. To improve the secretion of heterologous protein, we identified the candidate proteins with altered production during production of heterologous protein in O. thermomethanolica by using a label-free comparative proteomic approach. Four hundred sixty-four proteins with various biological functions showed differential abundance between O. thermomethanolica expressing fungal xylanase (OT + Xyl) and a control strain. The induction of proteins in transport and proteasomal proteolysis was prominently observed. Eight candidate proteins involved in cell wall biosynthesis (Chs3, Gas4), chaperone (Sgt2, Pex19), glycan metabolism (Csf1), protein transport (Ypt35), and vacuole and protein sorting (Cof1, Npr2) were mutated by a CRISPR/Cas9 approach. An Sgt2 mutant showed higher phytase and xylanase activity compared with the control strain (13%-20%), whereas mutants of other genes including Cof1, Pex19, Gas4, and Ypt35 showed lower xylanase activity compared with the control strain (15%-25%). In addition, an Npr2 mutant showed defective growth, while overproduction of Npr2 enhanced xylanase activity. These results reveal genes that can be mutated to modulate heterologous protein production and growth of O. thermomethanolica TBRC656.
Collapse
Affiliation(s)
- Chitwadee Phithakrotchanakoon
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Aekkachai Puseenam
- Microbial Cell Factory Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Worarat Kruasuwan
- Microbial Cell Factory Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Somsak Likhitrattanapisal
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Supawadee Ingsriswang
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sutipa Tanapongpipat
- Microbial Cell Factory Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Niran Roongsawang
- Microbial Cell Factory Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| |
Collapse
|
10
|
Lin KF, Fry MY, Saladi SM, Clemons WM. Molecular basis of tail-anchored integral membrane protein recognition by the cochaperone Sgt2. J Biol Chem 2021; 296:100441. [PMID: 33610544 PMCID: PMC8010706 DOI: 10.1016/j.jbc.2021.100441] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 02/08/2023] Open
Abstract
The targeting and insertion of tail-anchored (TA) integral membrane proteins (IMPs) into the correct membrane is critical for cellular homeostasis. The fungal protein Sgt2, and its human homolog SGTA, is the entry point for clients to the guided entry of tail-anchored protein (GET) pathway, which targets endoplasmic reticulum-bound TA IMPs. Consisting of three structurally independent domains, the C terminus of Sgt2 binds to the hydrophobic transmembrane domain (TMD) of clients. However, the exact binding interface within Sgt2 and molecular details that underlie its binding mechanism and client preference are not known. Here, we reveal the mechanism of Sgt2 binding to hydrophobic clients, including TA IMPs. Through sequence analysis, biophysical characterization, and a series of capture assays, we establish that the Sgt2 C-terminal domain is flexible but conserved and sufficient for client binding. A molecular model for this domain reveals a helical hand forming a hydrophobic groove approximately 15 Å long that is consistent with our observed higher affinity for client TMDs with a hydrophobic face and a minimal length of 11 residues. This work places Sgt2 into a broader family of TPR-containing cochaperone proteins, demonstrating structural and sequence-based similarities to the DP domains in the yeast Hsp90 and Hsp70 coordinating protein, Sti1.
Collapse
Affiliation(s)
- Ku-Feng Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Michelle Y Fry
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Shyam M Saladi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - William M Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA.
| |
Collapse
|
11
|
Aggregation and Prion-Inducing Properties of the G-Protein Gamma Subunit Ste18 are Regulated by Membrane Association. Int J Mol Sci 2020; 21:ijms21145038. [PMID: 32708832 PMCID: PMC7403958 DOI: 10.3390/ijms21145038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Yeast prions and mnemons are respectively transmissible and non-transmissible self-perpetuating protein assemblies, frequently based on cross-β ordered detergent-resistant aggregates (amyloids). Prions cause devastating diseases in mammals and control heritable traits in yeast. It was shown that the de novo formation of the prion form [PSI+] of yeast release factor Sup35 is facilitated by aggregates of other proteins. Here we explore the mechanism of the promotion of [PSI+] formation by Ste18, an evolutionarily conserved gamma subunit of a G-protein coupled receptor, a key player in responses to extracellular stimuli. Ste18 forms detergent-resistant aggregates, some of which are colocalized with de novo generated Sup35 aggregates. Membrane association of Ste18 is required for both Ste18 aggregation and [PSI+] induction, while functional interactions involved in signal transduction are not essential for these processes. This emphasizes the significance of a specific location for the nucleation of protein aggregation. In contrast to typical prions, Ste18 aggregates do not show a pattern of heritability. Our finding that Ste18 levels are regulated by the ubiquitin-proteasome system, in conjunction with the previously reported increase in Ste18 levels upon the exposure to mating pheromone, suggests that the concentration-dependent Ste18 aggregation may mediate a mnemon-like response to physiological stimuli.
Collapse
|
12
|
Manjrekar J, Shah H. Protein-based inheritance. Semin Cell Dev Biol 2019; 97:138-155. [PMID: 31344459 DOI: 10.1016/j.semcdb.2019.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/08/2019] [Indexed: 01/17/2023]
Abstract
Epigenetic mechanisms of inheritance have come to occupy a prominent place in our understanding of living systems, primarily eukaryotes. There has been considerable and lively discussion of the possible evolutionary significance of transgenerational epigenetic inheritance. One particular type of epigenetic inheritance that has not figured much in general discussions is that based on conformational changes in proteins, where proteins with altered conformations can act as templates to propagate their own structure. An increasing number of such proteins - prions and prion-like - are being discovered. Phenotypes due to the structurally altered proteins are transmitted along with their structures. This review discusses the properties and implications of "classical" amyloid-forming prions, as well as the broader class of proteins with intrinsically disordered domains, which are proving to have fascinating properties that appear to play important roles in cell organisation and function, especially during stress responses.
Collapse
Affiliation(s)
- Johannes Manjrekar
- Microbiology Department and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India.
| | - Hiral Shah
- Microbiology Department and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| |
Collapse
|
13
|
Coy-Vergara J, Rivera-Monroy J, Urlaub H, Lenz C, Schwappach B. A trap mutant reveals the physiological client spectrum of TRC40. J Cell Sci 2019; 132:jcs.230094. [PMID: 31182645 PMCID: PMC6633398 DOI: 10.1242/jcs.230094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022] Open
Abstract
The transmembrane recognition complex (TRC) pathway targets tail-anchored (TA) proteins to the membrane of the endoplasmic reticulum (ER). While many TA proteins are known to be able to use this pathway, it is essential for the targeting of only a few. Here, we uncover a large number of TA proteins that engage with TRC40 when other targeting machineries are fully operational. We use a dominant-negative ATPase-impaired mutant of TRC40 in which aspartate 74 was replaced by a glutamate residue to trap TA proteins in the cytoplasm. Manipulation of the hydrophobic TA-binding groove in TRC40 (also known as ASNA1) reduces interaction with most, but not all, substrates suggesting that co-purification may also reflect interactions unrelated to precursor protein targeting. We confirm known TRC40 substrates and identify many additional TA proteins interacting with TRC40. By using the trap approach in combination with quantitative mass spectrometry, we show that Golgi-resident TA proteins such as the golgins golgin-84, CASP and giantin as well as the vesicle-associated membrane-protein-associated proteins VAPA and VAPB interact with TRC40. Thus, our results provide new avenues to assess the essential role of TRC40 in metazoan organisms. This article has an associated First Person interview with the first author of the paper. Summary: A strategy to decipher which tail-anchored proteins do (as opposed to can or must) use the TRC pathway in intact cells generates a comprehensive list of human TRC40 clients.
Collapse
Affiliation(s)
- Javier Coy-Vergara
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Jhon Rivera-Monroy
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany.,Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen 37077, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany.,Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen 37077, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen 37073, Germany .,Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| |
Collapse
|
14
|
Wickner RB, Son M, Edskes HK. Prion Variants of Yeast are Numerous, Mutable, and Segregate on Growth, Affecting Prion Pathogenesis, Transmission Barriers, and Sensitivity to Anti-Prion Systems. Viruses 2019; 11:v11030238. [PMID: 30857327 PMCID: PMC6466074 DOI: 10.3390/v11030238] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023] Open
Abstract
The known amyloid-based prions of Saccharomyces cerevisiae each have multiple heritable forms, called "prion variants" or "prion strains". These variants, all based on the same prion protein sequence, differ in their biological properties and their detailed amyloid structures, although each of the few examined to date have an in-register parallel folded β sheet architecture. Here, we review the range of biological properties of yeast prion variants, factors affecting their generation and propagation, the interaction of prion variants with each other, the mutability of prions, and their segregation during mitotic growth. After early differentiation between strong and weak stable and unstable variants, the parameters distinguishing the variants has dramatically increased, only occasionally correlating with the strong/weak paradigm. A sensitivity to inter- and intraspecies barriers, anti-prion systems, and chaperone deficiencies or excesses and other factors all have dramatic selective effects on prion variants. Recent studies of anti-prion systems, which cure prions in wild strains, have revealed an enormous array of new variants, normally eliminated as they arise and so not previously studied. This work suggests that defects in the anti-prion systems, analogous to immune deficiencies, may be at the root of some human amyloidoses.
Collapse
Affiliation(s)
- Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | - Moonil Son
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | - Herman K Edskes
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| |
Collapse
|
15
|
Bondarev SA, Antonets KS, Kajava AV, Nizhnikov AA, Zhouravleva GA. Protein Co-Aggregation Related to Amyloids: Methods of Investigation, Diversity, and Classification. Int J Mol Sci 2018; 19:ijms19082292. [PMID: 30081572 PMCID: PMC6121665 DOI: 10.3390/ijms19082292] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 01/04/2023] Open
Abstract
Amyloids are unbranched protein fibrils with a characteristic spatial structure. Although the amyloids were first described as protein deposits that are associated with the diseases, today it is becoming clear that these protein fibrils play multiple biological roles that are essential for different organisms, from archaea and bacteria to humans. The appearance of amyloid, first of all, causes changes in the intracellular quantity of the corresponding soluble protein(s), and at the same time the aggregate can include other proteins due to different molecular mechanisms. The co-aggregation may have different consequences even though usually this process leads to the depletion of a functional protein that may be associated with different diseases. The protein co-aggregation that is related to functional amyloids may mediate important biological processes and change of protein functions. In this review, we survey the known examples of the amyloid-related co-aggregation of proteins, discuss their pathogenic and functional roles, and analyze methods of their studies from bacteria and yeast to mammals. Such analysis allow for us to propose the following co-aggregation classes: (i) titration: deposition of soluble proteins on the amyloids formed by their functional partners, with such interactions mediated by a specific binding site; (ii) sequestration: interaction of amyloids with certain proteins lacking a specific binding site; (iii) axial co-aggregation of different proteins within the same amyloid fibril; and, (iv) lateral co-aggregation of amyloid fibrils, each formed by different proteins.
Collapse
Affiliation(s)
- Stanislav A Bondarev
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
- Laboratory of Amyloid Biology, St. Petersburg State University, Russia, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
| | - Kirill S Antonets
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh., 3, Pushkin, St. Petersburg 196608, Russia.
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR 5237 CNRS, Université Montpellier 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France.
- Institut de Biologie Computationnelle (IBC), 34095 Montpellier, France.
- University ITMO, Institute of Bioengineering, Kronverksky Pr. 49, St. Petersburg 197101, Russia.
| | - Anton A Nizhnikov
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh., 3, Pushkin, St. Petersburg 196608, Russia.
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
- Laboratory of Amyloid Biology, St. Petersburg State University, Russia, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
| |
Collapse
|
16
|
Hac1 function revealed by the protein expression profile of a OtHAC1 mutant of thermotolerant methylotrophic yeast Ogataea thermomethanolica. Mol Biol Rep 2018; 45:1311-1319. [DOI: 10.1007/s11033-018-4287-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/26/2018] [Indexed: 12/13/2022]
|
17
|
Cho H, Shan SO. Substrate relay in an Hsp70-cochaperone cascade safeguards tail-anchored membrane protein targeting. EMBO J 2018; 37:embj.201899264. [PMID: 29973361 DOI: 10.15252/embj.201899264] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 12/14/2022] Open
Abstract
Membrane proteins are aggregation-prone in aqueous environments, and their biogenesis poses acute challenges to cellular protein homeostasis. How the chaperone network effectively protects integral membrane proteins during their post-translational targeting is not well understood. Here, biochemical reconstitutions showed that the yeast cytosolic Hsp70 is responsible for capturing newly synthesized tail-anchored membrane proteins (TAs) in the soluble form. Moreover, direct interaction of Hsp70 with the cochaperone Sgt2 initiates a sequential series of TA relays to the dedicated TA targeting factor Get3. In contrast to direct loading of TAs to downstream chaperones, stepwise substrate loading via Hsp70 maintains the solubility and targeting competence of TAs, ensuring their efficient delivery to the endoplasmic reticulum (ER). Inactivation of cytosolic Hsp70 severely impairs TA translocation in vivo Our results demonstrate a new role of cytosolic Hsp70 in directly assisting the targeting of an essential class of integral membrane proteins and provide a paradigm for how "substrate funneling" through a chaperone cascade preserves the conformational quality of nascent membrane proteins during their biogenesis.
Collapse
Affiliation(s)
- Hyunju Cho
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
18
|
Hanna DA, Hu R, Kim H, Martinez-Guzman O, Torres MP, Reddi AR. Heme bioavailability and signaling in response to stress in yeast cells. J Biol Chem 2018; 293:12378-12393. [PMID: 29921585 DOI: 10.1074/jbc.ra118.002125] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/15/2018] [Indexed: 12/28/2022] Open
Abstract
Protoheme (hereafter referred to as heme) is an essential cellular cofactor and signaling molecule that is also potentially cytotoxic. To mitigate heme toxicity, heme synthesis and degradation are tightly coupled to heme utilization in order to limit the intracellular concentration of "free" heme. Such a model, however, would suggest that a readily accessible steady-state, bioavailable labile heme (LH) pool is not required for supporting heme-dependent processes. Using the yeast Saccharomyces cerevisiae as a model and fluorescent heme sensors, site-specific heme chelators, and molecular genetic approaches, we found here that 1) yeast cells preferentially use LH in heme-depleted conditions; 2) sequestration of cytosolic LH suppresses heme signaling; and 3) lead (Pb2+) stress contributes to a decrease in total heme, but an increase in LH, which correlates with increased heme signaling. We also observed that the proteasome is involved in the regulation of the LH pool and that loss of proteasomal activity sensitizes cells to Pb2+ effects on heme homeostasis. Overall, these findings suggest an important role for LH in supporting heme-dependent functions in yeast physiology.
Collapse
Affiliation(s)
| | - Rebecca Hu
- From the School of Chemistry and Biochemistry
| | - Hyojung Kim
- From the School of Chemistry and Biochemistry.,School of Biological Sciences, and
| | | | - Matthew P Torres
- School of Biological Sciences, and.,Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Amit R Reddi
- From the School of Chemistry and Biochemistry, .,Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| |
Collapse
|
19
|
Wickner RB, Edskes HK, Son M, Bezsonov EE, DeWilde M, Ducatez M. Yeast Prions Compared to Functional Prions and Amyloids. J Mol Biol 2018; 430:3707-3719. [PMID: 29698650 DOI: 10.1016/j.jmb.2018.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 01/25/2023]
Abstract
Saccharomyces cerevisiae is an occasional host to an array of prions, most based on self-propagating, self-templating amyloid filaments of a normally soluble protein. [URE3] is a prion of Ure2p, a regulator of nitrogen catabolism, while [PSI+] is a prion of Sup35p, a subunit of the translation termination factor Sup35p. In contrast to the functional prions, [Het-s] of Podospora anserina and [BETA] of yeast, the amyloid-based yeast prions are rare in wild strains, arise sporadically, have an array of prion variants for a single prion protein sequence, have a folded in-register parallel β-sheet amyloid architecture, are detrimental to their hosts, arouse a stress response in the host, and are subject to curing by various host anti-prion systems. These characteristics allow a logical basis for distinction between functional amyloids/prions and prion diseases. These infectious yeast amyloidoses are outstanding models for the many common human amyloid-based diseases that are increasingly found to have some infectious characteristics.
Collapse
Affiliation(s)
- Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0830, MD, USA.
| | - Herman K Edskes
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0830, MD, USA
| | - Moonil Son
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0830, MD, USA
| | - Evgeny E Bezsonov
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0830, MD, USA
| | - Morgan DeWilde
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0830, MD, USA
| | - Mathieu Ducatez
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0830, MD, USA
| |
Collapse
|
20
|
Astor MT, Kamiya E, Sporn ZA, Berger SE, Hines JK. Variant-specific and reciprocal Hsp40 functions in Hsp104-mediated prion elimination. Mol Microbiol 2018; 109:41-62. [PMID: 29633387 PMCID: PMC6099457 DOI: 10.1111/mmi.13966] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2018] [Indexed: 01/02/2023]
Abstract
The amyloid-based prions of Saccharomyces cerevisiae are heritable aggregates of misfolded proteins, passed to daughter cells following fragmentation by molecular chaperones including the J-protein Sis1, Hsp70 and Hsp104. Overexpression of Hsp104 efficiently cures cell populations of the prion [PSI+ ] by an alternative Sis1-dependent mechanism that is currently the subject of significant debate. Here, we broadly investigate the role of J-proteins in this process by determining the impact of amyloid polymorphisms (prion variants) on the ability of well-studied Sis1 constructs to compensate for Sis1 and ask whether any other S. cerevisiae cytosolic J-proteins are also required for this process. Our comprehensive screen, examining all 13 members of the yeast cytosolic/nuclear J-protein complement, uncovered significant variant-dependent genetic evidence for a role of Apj1 (antiprion DnaJ) in this process. For strong, but not weak [PSI+ ] variants, depletion of Apj1 inhibits Hsp104-mediated curing. Overexpression of either Apj1 or Sis1 enhances curing, while overexpression of Ydj1 completely blocks it. We also demonstrated that Sis1 was the only J-protein necessary for the propagation of at least two weak [PSI+ ] variants and no J-protein alteration, or even combination of alterations, affected the curing of weak [PSI+ ] variants, suggesting the possibility of biochemically distinct, variant-specific Hsp104-mediated curing mechanisms.
Collapse
Affiliation(s)
| | - Erina Kamiya
- Department of ChemistryLafayette CollegeEastonPAUSA
| | - Zachary A. Sporn
- Department of ChemistryLafayette CollegeEastonPAUSA
- Present address:
Geisinger Commonwealth School of MedicineScrantonPAUSA
| | | | | |
Collapse
|
21
|
Hsp104 disaggregase at normal levels cures many [ PSI+] prion variants in a process promoted by Sti1p, Hsp90, and Sis1p. Proc Natl Acad Sci U S A 2017; 114:E4193-E4202. [PMID: 28484020 DOI: 10.1073/pnas.1704016114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Overproduction or deficiency of many chaperones and other cellular components cure the yeast prions [PSI+] (formed by Sup35p) or [URE3] (based on Ure2p). However, at normal expression levels, Btn2p and Cur1p eliminate most newly arising [URE3] variants but do not cure [PSI+], even after overexpression. Deficiency or overproduction of Hsp104 cures the [PSI+] prion. Hsp104 deficiency curing is a result of failure to cleave the Sup35p amyloid filaments to make new seeds, whereas Hsp104 overproduction curing occurs by a different mechanism. Hsp104(T160M) can propagate [PSI+], but cannot cure it by overproduction, thus separating filament cleavage from curing activities. Here we show that most [PSI+] variants arising spontaneously in an hsp104(T160M) strain are cured by restoration of just normal levels of the WT Hsp104. Both strong and weak [PSI+] variants are among those cured by this process. This normal-level Hsp104 curing is promoted by Sti1p, Hsp90, and Sis1p, proteins previously implicated in the Hsp104 overproduction curing of [PSI+]. The [PSI+] prion arises in hsp104(T160M) cells at more than 10-fold the frequency in WT cells. The curing activity of Hsp104 thus constitutes an antiprion system, culling many variants of the [PSI+] prion at normal Hsp104 levels.
Collapse
|
22
|
Oliver EE, Troisi EM, Hines JK. Prion-specific Hsp40 function: The role of the auxilin homolog Swa2. Prion 2017; 11:174-185. [PMID: 28574745 PMCID: PMC5480384 DOI: 10.1080/19336896.2017.1331810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 01/14/2023] Open
Abstract
Yeast prions are protein-based genetic elements that propagate through cell populations via cytosolic transfer from mother to daughter cell. Molecular chaperone proteins including Hsp70, the Hsp40/J-protein Sis1, and Hsp104 are required for continued prion propagation, however the specific requirements of chaperone proteins differ for various prions. We recently reported that Swa2, the yeast homolog of the mammalian protein auxilin, is specifically required for the propagation of the prion [URE3]. 1 [URE3] propagation requires both a functional J-domain and the tetratricopeptide repeat (TPR) domain of Swa2, but does not require Swa2 clathrin binding. We concluded that the TPR domain determines the specificity of the genetic interaction between Swa2 and [URE3], and that this domain likely interacts with one or more proteins with a C-terminal EEVD motif. Here we extend that analysis to incorporate additional data that supports this hypothesis. We also present new data eliminating Hsp104 as the relevant Swa2 binding partner and discuss our findings in the context of other recent work involving Hsp90. Based on these findings, we propose a new model for Swa2's involvement in [URE3] propagation in which Swa2 and Hsp90 mediate the formation of a multi-protein complex that increases the number of sites available for Hsp104 disaggregation.
Collapse
|
23
|
Zhao X, Rodriguez R, Silberman RE, Ahearn JM, Saidha S, Cummins KC, Eisenberg E, Greene LE. Heat shock protein 104 (Hsp104)-mediated curing of [ PSI+] yeast prions depends on both [ PSI+] conformation and the properties of the Hsp104 homologs. J Biol Chem 2017; 292:8630-8641. [PMID: 28373280 DOI: 10.1074/jbc.m116.770719] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/29/2017] [Indexed: 11/06/2022] Open
Abstract
Prions arise from proteins that have two possible conformations: properly folded and non-infectious or misfolded and infectious. The [PSI+] yeast prion, which is the misfolded and self-propagating form of the translation termination factor eRF3 (Sup35), can be cured of its infectious conformation by overexpression of Hsp104, which helps dissolve the prion seeds. This dissolution depends on the trimming activity of Hsp104, which reduces the size of the prion seeds without increasing their number. To further understand the relationship between trimming and curing, trimming was followed by measuring the loss of GFP-labeled Sup35 foci from both strong and weak [PSI+] variants; the former variant has more seeds and less soluble Sup35 than the latter. Overexpression of Saccharomyces cerevisiae Hsp104 (Sc-Hsp104) trimmed the weak [PSI+] variants much faster than the strong variants and cured the weak variants an order of magnitude faster than the strong variants. Overexpression of the fungal Hsp104 homologs from Schizosaccharomyces pombe (Sp-Hsp104) or Candida albicans (Ca-Hsp104) also trimmed and cured the weak variants, but interestingly, it neither trimmed nor cured the strong variants. These results show that, because Sc-Hsp104 has greater trimming activity than either Ca-Hsp104 or Sp-Hsp104, it cures both the weak and strong variants, whereas Ca-Hsp104 and Sp-Hsp104 only cure the weak variants. Therefore, curing by Hsp104 overexpression depends on both the trimming ability of the fungal Hsp104 homolog and the strength of the [PSI+] variant: the greater the trimming activity of the Hsp104 homolog and the weaker the variant, the greater the curing.
Collapse
Affiliation(s)
- Xiaohong Zhao
- From the Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-0301
| | - Ramon Rodriguez
- From the Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-0301
| | - Rebecca E Silberman
- From the Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-0301
| | - Joseph M Ahearn
- From the Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-0301
| | - Sheela Saidha
- From the Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-0301
| | - Kaelyn C Cummins
- From the Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-0301
| | - Evan Eisenberg
- From the Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-0301
| | - Lois E Greene
- From the Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-0301
| |
Collapse
|
24
|
Kryndushkin D, Edskes HK, Shewmaker FP, Wickner RB. Prions. Cold Spring Harb Protoc 2017; 2017:2017/2/pdb.top077586. [PMID: 28148884 DOI: 10.1101/pdb.top077586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Infectious proteins (prions) are usually self-templating filamentous protein polymers (amyloids). Yeast prions are genes composed of protein and, like the multiple alleles of DNA-based genes, can have an array of "variants," each a distinct self-propagating amyloid conformation. Like the lethal mammalian prions and amyloid diseases, yeast prions may be lethal, or only mildly detrimental, and show an array of phenotypes depending on the protein involved and the prion variant. Yeast prions are models for both rare mammalian prion diseases and for several very common amyloidoses such as Alzheimer's disease, type 2 diabetes, and Parkinson's disease. Here, we describe their detection and characterization using genetic, cell biological, biochemical, and physical methods.
Collapse
Affiliation(s)
- Dmitry Kryndushkin
- Department of Pharmacology, Uniformed Services University of Health Sciences, Bethesda, Maryland 20814
| | - Herman K Edskes
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830
| | - Frank P Shewmaker
- Department of Pharmacology, Uniformed Services University of Health Sciences, Bethesda, Maryland 20814
| | - Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830
| |
Collapse
|
25
|
Chernova TA, Wilkinson KD, Chernoff YO. Prions, Chaperones, and Proteostasis in Yeast. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a023663. [PMID: 27815300 DOI: 10.1101/cshperspect.a023663] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Prions are alternatively folded, self-perpetuating protein isoforms involved in a variety of biological and pathological processes. Yeast prions are protein-based heritable elements that serve as an excellent experimental system for studying prion biology. The propagation of yeast prions is controlled by the same Hsp104/70/40 chaperone machinery that is involved in the protection of yeast cells against proteotoxic stress. Ribosome-associated chaperones, proteolytic pathways, cellular quality-control compartments, and cytoskeletal networks influence prion formation, maintenance, and toxicity. Environmental stresses lead to asymmetric prion distribution in cell divisions. Chaperones and cytoskeletal proteins mediate this effect. Overall, this is an intimate relationship with the protein quality-control machinery of the cell, which enables prions to be maintained and reproduced. The presence of many of these same mechanisms in higher eukaryotes has implications for the diagnosis and treatment of mammalian amyloid diseases.
Collapse
Affiliation(s)
- Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Keith D Wilkinson
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332-2000.,Laboratory of Amyloid Biology and Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
26
|
Abstract
Disruption of protein quality control can be detrimental, having toxic effects on single cell organisms and contributing to neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's in humans. Here, we examined the effects of polyglutamine (polyQ) aggregation in a major fungal pathogen of humans, Candida albicans, with the goal of identifying new approaches to disable this fungus. However, we discovered that expression of polyQ stretches up to 230Q had no effect on C. albicans ability to grow and withstand proteotoxic stress. Bioinformatics analysis demonstrates that C. albicans has a similarly glutamine-rich proteome to the unicellular fungus Saccharomyces cerevisiae, which exhibits polyQ toxicity with as few as 72Q. Surprisingly, global transcriptional profiles indicated no significant change upon induction of up to 230Q. Proteomic analysis highlighted two key interactors of 230Q, Sis1 and Sgt2; however, loss of either protein had no additional effect on C. albicans toxicity. Our data suggest that C. albicans has evolved powerful mechanisms to overcome the toxicity associated with aggregation-prone proteins, providing a unique model for studying polyQ-associated diseases.
Collapse
|
27
|
Tikhodeyev ON, Tarasov OV, Bondarev SA. Allelic variants of hereditary prions: The bimodularity principle. Prion 2017; 11:4-24. [PMID: 28281926 PMCID: PMC5360123 DOI: 10.1080/19336896.2017.1283463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/04/2017] [Accepted: 01/10/2017] [Indexed: 12/26/2022] Open
Abstract
Modern biology requires modern genetic concepts equally valid for all discovered mechanisms of inheritance, either "canonical" (mediated by DNA sequences) or epigenetic. Applying basic genetic terms such as "gene" and "allele" to protein hereditary factors is one of the necessary steps toward these concepts. The basic idea that different variants of the same prion protein can be considered as alleles has been previously proposed by Chernoff and Tuite. In this paper, the notion of prion allele is further developed. We propose the idea that any prion allele is a bimodular hereditary system that depends on a certain DNA sequence (DNA determinant) and a certain epigenetic mark (epigenetic determinant). Alteration of any of these 2 determinants may lead to establishment of a new prion allele. The bimodularity principle is valid not only for hereditary prions; it seems to be universal for any epigenetic hereditary factor.
Collapse
Affiliation(s)
- Oleg N. Tikhodeyev
- Department of Genetics & Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Oleg V. Tarasov
- Department of Genetics & Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
- Saint-Petersburg Scientific Center of RAS, Saint-Petersburg, Russia
| | - Stanislav A. Bondarev
- Department of Genetics & Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
- The Laboratory of Amyloid Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
28
|
Prion Aggregates Are Recruited to the Insoluble Protein Deposit (IPOD) via Myosin 2-Based Vesicular Transport. PLoS Genet 2016; 12:e1006324. [PMID: 27689885 PMCID: PMC5045159 DOI: 10.1371/journal.pgen.1006324] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 08/25/2016] [Indexed: 12/31/2022] Open
Abstract
Aggregation of amyloidogenic proteins is associated with several neurodegenerative diseases. Sequestration of misfolded and aggregated proteins into specialized deposition sites may reduce their potentially detrimental properties. Yeast exhibits a distinct deposition site for amyloid aggregates termed "Insoluble PrOtein Deposit (IPOD)", but nothing is known about the mechanism of substrate recruitment to this site. The IPOD is located directly adjacent to the Phagophore Assembly Site (PAS) where the cell initiates autophagy and the Cytoplasm-to-Vacuole Targeting (CVT) pathway destined for delivery of precursor peptidases to the vacuole. Recruitment of CVT substrates to the PAS was proposed to occur via vesicular transport on Atg9 vesicles and requires an intact actin cytoskeleton and "SNAP (Soluble NSF Attachment Protein) Receptor Proteins (SNARE)" protein function. It is, however, unknown how this vesicular transport machinery is linked to the actin cytoskeleton. We demonstrate that recruitment of model amyloid PrD-GFP and the CVT substrate precursor-aminopeptidase 1 (preApe1) to the IPOD or PAS, respectively, is disturbed after genetic impairment of Myo2-based actin cable transport and SNARE protein function. Rather than accumulating at the respective deposition sites, both substrates reversibly accumulated often together in the same punctate structures. Components of the CVT vesicular transport machinery including Atg8 and Atg9 as well as Myo2 partially co-localized with the joint accumulations. Thus we propose a model where vesicles, loaded with preApe1 or PrD-GFP, are recruited to tropomyosin coated actin cables via the Myo2 motor protein for delivery to the PAS and IPOD, respectively. We discuss that deposition at the IPOD is not an integrated mandatory part of the degradation pathway for amyloid aggregates, but more likely stores excess aggregates until downstream degradation pathways have the capacity to turn them over after liberation by the Hsp104 disaggregation machinery.
Collapse
|
29
|
Philp LK, Day TK, Butler MS, Laven-Law G, Jindal S, Hickey TE, Scher HI, Butler LM, Tilley WD. Small Glutamine-Rich Tetratricopeptide Repeat-Containing Protein Alpha (SGTA) Ablation Limits Offspring Viability and Growth in Mice. Sci Rep 2016; 6:28950. [PMID: 27358191 PMCID: PMC4928056 DOI: 10.1038/srep28950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/07/2016] [Indexed: 01/26/2023] Open
Abstract
Small glutamine-rich tetratricopeptide repeat-containing protein α (SGTA) has been implicated as a co-chaperone and regulator of androgen and growth hormone receptor (AR, GHR) signalling. We investigated the functional consequences of partial and full Sgta ablation in vivo using Cre-lox Sgta-null mice. Sgta(+/-) breeders generated viable Sgta(-/-) offspring, but at less than Mendelian expectancy. Sgta(-/-) breeders were subfertile with small litters and higher neonatal death (P < 0.02). Body size was significantly and proportionately smaller in male and female Sgta(-/-) (vs WT, Sgta(+/-) P < 0.001) from d19. Serum IGF-1 levels were genotype- and sex-dependent. Food intake, muscle and bone mass and adiposity were unchanged in Sgta(-/-). Vital and sex organs had normal relative weight, morphology and histology, although certain androgen-sensitive measures such as penis and preputial size, and testis descent, were greater in Sgta(-/-). Expression of AR and its targets remained largely unchanged, although AR localisation was genotype- and tissue-dependent. Generally expression of other TPR-containing proteins was unchanged. In conclusion, this thorough investigation of SGTA-null mutation reports a mild phenotype of reduced body size. The model's full potential likely will be realised by genetic crosses with other models to interrogate the role of SGTA in the many diseases in which it has been implicated.
Collapse
Affiliation(s)
- Lisa K. Philp
- Adelaide Prostate Cancer Research Centre and Dame Roma Mitchell Cancer Research Laboratories, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
| | - Tanya K. Day
- Adelaide Prostate Cancer Research Centre and Dame Roma Mitchell Cancer Research Laboratories, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
| | - Miriam S. Butler
- Adelaide Prostate Cancer Research Centre and Dame Roma Mitchell Cancer Research Laboratories, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
| | - Geraldine Laven-Law
- Adelaide Prostate Cancer Research Centre and Dame Roma Mitchell Cancer Research Laboratories, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
| | - Shalini Jindal
- Adelaide Prostate Cancer Research Centre and Dame Roma Mitchell Cancer Research Laboratories, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
| | - Theresa E. Hickey
- Adelaide Prostate Cancer Research Centre and Dame Roma Mitchell Cancer Research Laboratories, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
| | | | - Lisa M. Butler
- Adelaide Prostate Cancer Research Centre and Dame Roma Mitchell Cancer Research Laboratories, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
- Freemason’s Foundation Centre for Men’s Health, School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
| | - Wayne D. Tilley
- Adelaide Prostate Cancer Research Centre and Dame Roma Mitchell Cancer Research Laboratories, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
- Freemason’s Foundation Centre for Men’s Health, School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
30
|
Masison DC, Reidy M. Yeast prions are useful for studying protein chaperones and protein quality control. Prion 2016; 9:174-83. [PMID: 26110609 DOI: 10.1080/19336896.2015.1027856] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Protein chaperones help proteins adopt and maintain native conformations and play vital roles in cellular processes where proteins are partially folded. They comprise a major part of the cellular protein quality control system that protects the integrity of the proteome. Many disorders are caused when proteins misfold despite this protection. Yeast prions are fibrous amyloid aggregates of misfolded proteins. The normal action of chaperones on yeast prions breaks the fibers into pieces, which results in prion replication. Because this process is necessary for propagation of yeast prions, even small differences in activity of many chaperones noticeably affect prion phenotypes. Several other factors involved in protein processing also influence formation, propagation or elimination of prions in yeast. Thus, in much the same way that the dependency of viruses on cellular functions has allowed us to learn much about cell biology, the dependency of yeast prions on chaperones presents a unique and sensitive way to monitor the functions and interactions of many components of the cell's protein quality control system. Our recent work illustrates the utility of this system for identifying and defining chaperone machinery interactions.
Collapse
Affiliation(s)
- Daniel C Masison
- a Laboratory of Biochemistry and Genetics; National Institute of Diabetes and Digestive and Kidney Diseases; National Institutes of Health ; Bethesda , MD USA
| | | |
Collapse
|
31
|
Frederick KK, Michaelis VK, Corzilius B, Ong TC, Jacavone AC, Griffin RG, Lindquist S. Sensitivity-enhanced NMR reveals alterations in protein structure by cellular milieus. Cell 2015; 163:620-8. [PMID: 26456111 PMCID: PMC4621972 DOI: 10.1016/j.cell.2015.09.024] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/03/2015] [Accepted: 08/26/2015] [Indexed: 12/11/2022]
Abstract
Biological processes occur in complex environments containing a myriad of potential interactors. Unfortunately, limitations on the sensitivity of biophysical techniques normally restrict structural investigations to purified systems, at concentrations that are orders of magnitude above endogenous levels. Dynamic nuclear polarization (DNP) can dramatically enhance the sensitivity of nuclear magnetic resonance (NMR) spectroscopy and enable structural studies in biologically complex environments. Here, we applied DNP NMR to investigate the structure of a protein containing both an environmentally sensitive folding pathway and an intrinsically disordered region, the yeast prion protein Sup35. We added an exogenously prepared isotopically labeled protein to deuterated lysates, rendering the biological environment "invisible" and enabling highly efficient polarization transfer for DNP. In this environment, structural changes occurred in a region known to influence biological activity but intrinsically disordered in purified samples. Thus, DNP makes structural studies of proteins at endogenous levels in biological contexts possible, and such contexts can influence protein structure.
Collapse
Affiliation(s)
| | - Vladimir K Michaelis
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Björn Corzilius
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ta-Chung Ong
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Angela C Jacavone
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
32
|
Kumar N, Gaur D, Gupta A, Puri A, Sharma D. Hsp90-Associated Immunophilin Homolog Cpr7 Is Required for the Mitotic Stability of [URE3] Prion in Saccharomyces cerevisiae. PLoS Genet 2015; 11:e1005567. [PMID: 26473735 PMCID: PMC4608684 DOI: 10.1371/journal.pgen.1005567] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/14/2015] [Indexed: 11/18/2022] Open
Abstract
The role of Hsp70 chaperones in yeast prion propagation is well established. Highly conserved Hsp90 chaperones participate in a number of cellular processes, such as client protein maturation, protein degradation, cellular signalling and apoptosis, but little is known about their role in propagation of infectious prion like aggregates. Here, we examine the influence of Hsp90 in the maintenance of yeast prion [URE3] which is a prion form of native protein Ure2, and reveal a previously unknown role of Hsp90 as an important regulator of [URE3] stability. We show that the C-terminal MEEVD pentapeptide motif, but not the client maturation activity of Hsp90, is essential for [URE3] prion stability. In testing deletions of various Hsp90 co-chaperones known to bind this motif, we find the immunophilin homolog Cpr7 is essential for [URE3] propagation. We show that Cpr7 interacts with Ure2 and enhances its fibrillation. The requirement of Cpr7 is specific for [URE3] as its deletion does not antagonize both strong and weak variant of another yeast prion [PSI+], suggesting a distinct role of the Hsp90 co-chaperone with different yeast prions. Our data show that, similar to the Hsp70 family, the Hsp90 chaperones also influence yeast prion maintenance, and that immunophilins could regulate protein multimerization independently of their activity as peptidyl-prolyl isomerases.
Collapse
Affiliation(s)
- Navinder Kumar
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Deepika Gaur
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Arpit Gupta
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Anuradhika Puri
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
33
|
Troisi EM, Rockman ME, Nguyen PP, Oliver EE, Hines JK. Swa2, the yeast homolog of mammalian auxilin, is specifically required for the propagation of the prion variant [URE3-1]. Mol Microbiol 2015; 97:926-41. [PMID: 26031938 PMCID: PMC4689296 DOI: 10.1111/mmi.13076] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2015] [Indexed: 01/09/2023]
Abstract
Yeast prions require a core set of chaperone proteins including Sis1, Hsp70 and Hsp104 to generate new amyloid templates for stable propagation, yet emerging studies indicate that propagation of some prions requires additional chaperone activities, demonstrating chaperone specificity beyond the common amyloid requirements. To comprehensively assess such prion-specific requirements for the propagation of the [URE3] prion variant [URE3-1], we screened 12 yeast cytosolic J-proteins, and here we report a novel role for the J-protein Swa2/Aux1. Swa2 is the sole yeast homolog of the mammalian protein auxilin, which, like Swa2, functions in vesicle-mediated endocytosis by disassembling the structural lattice formed by the protein clathrin. We found that, in addition to Sis1, [URE3-1] is specifically dependent upon Swa2, but not on any of the 11 other J-proteins. Further, we show that [URE3-1] propagation requires both a functional J-domain and the tetratricopeptide repeat (TPR) domain, but surprisingly does not require Swa2-clathrin binding. Because the J-domain of Swa2 can be replaced with the J-domains of other proteins, our data strongly suggest that prion-chaperone specificity arises from the Swa2 TPR domain and supports a model where Swa2 acts through Hsp70, most likely to provide additional access points for Hsp104 to promote prion template generation.
Collapse
Affiliation(s)
| | | | - Phil P Nguyen
- Department of Chemistry, Lafayette College, Easton, PA, USA
| | - Emily E Oliver
- Department of Chemistry, Lafayette College, Easton, PA, USA
| | - Justin K Hines
- Department of Chemistry, Lafayette College, Easton, PA, USA
| |
Collapse
|
34
|
Wear MP, Kryndushkin D, O’Meally R, Sonnenberg JL, Cole RN, Shewmaker FP. Proteins with Intrinsically Disordered Domains Are Preferentially Recruited to Polyglutamine Aggregates. PLoS One 2015; 10:e0136362. [PMID: 26317359 PMCID: PMC4552826 DOI: 10.1371/journal.pone.0136362] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/31/2015] [Indexed: 12/12/2022] Open
Abstract
Intracellular protein aggregation is the hallmark of several neurodegenerative diseases. Aggregates formed by polyglutamine (polyQ)-expanded proteins, such as Huntingtin, adopt amyloid-like structures that are resistant to denaturation. We used a novel purification strategy to isolate aggregates formed by human Huntingtin N-terminal fragments with expanded polyQ tracts from both yeast and mammalian (PC-12) cells. Using mass spectrometry we identified the protein species that are trapped within these polyQ aggregates. We found that proteins with very long intrinsically-disordered (ID) domains (≥100 amino acids) and RNA-binding proteins were disproportionately recruited into aggregates. The removal of the ID domains from selected proteins was sufficient to eliminate their recruitment into polyQ aggregates. We also observed that several neurodegenerative disease-linked proteins were reproducibly trapped within the polyQ aggregates purified from mammalian cells. Many of these proteins have large ID domains and are found in neuronal inclusions in their respective diseases. Our study indicates that neurodegenerative disease-associated proteins are particularly vulnerable to recruitment into polyQ aggregates via their ID domains. Also, the high frequency of ID domains in RNA-binding proteins may explain why RNA-binding proteins are frequently found in pathological inclusions in various neurodegenerative diseases.
Collapse
Affiliation(s)
- Maggie P. Wear
- Department of Pharmacology, Uniformed Services University of the Heath Sciences, Bethesda, Maryland, 20814, United States of America
| | - Dmitry Kryndushkin
- Department of Pharmacology, Uniformed Services University of the Heath Sciences, Bethesda, Maryland, 20814, United States of America
| | - Robert O’Meally
- Johns Hopkins Mass Spectrometry and Proteomic Facility, Johns Hopkins University, Baltimore, Maryland, 21218, United States of America
| | - Jason L. Sonnenberg
- Chemistry department, School of Sciences, Stevenson University, Stevenson, Maryland, 21153, United States of America
| | - Robert N. Cole
- Johns Hopkins Mass Spectrometry and Proteomic Facility, Johns Hopkins University, Baltimore, Maryland, 21218, United States of America
| | - Frank P. Shewmaker
- Department of Pharmacology, Uniformed Services University of the Heath Sciences, Bethesda, Maryland, 20814, United States of America
- * E-mail:
| |
Collapse
|
35
|
Abstract
A prion is an infectious protein horizontally transmitting a disease or trait without a required nucleic acid. Yeast and fungal prions are nonchromosomal genes composed of protein, generally an altered form of a protein that catalyzes the same alteration of the protein. Yeast prions are thus transmitted both vertically (as genes composed of protein) and horizontally (as infectious proteins, or prions). Formation of amyloids (linear ordered β-sheet-rich protein aggregates with β-strands perpendicular to the long axis of the filament) underlies most yeast and fungal prions, and a single prion protein can have any of several distinct self-propagating amyloid forms with different biological properties (prion variants). Here we review the mechanism of faithful templating of protein conformation, the biological roles of these prions, and their interactions with cellular chaperones, the Btn2 and Cur1 aggregate-handling systems, and other cellular factors governing prion generation and propagation. Human amyloidoses include the PrP-based prion conditions and many other, more common amyloid-based diseases, several of which show prion-like features. Yeast prions increasingly are serving as models for the understanding and treatment of many mammalian amyloidoses. Patients with different clinical pictures of the same amyloidosis may be the equivalent of yeasts with different prion variants.
Collapse
|
36
|
Tchourine K, Poultney CS, Wang L, Silva GM, Manohar S, Mueller CL, Bonneau R, Vogel C. One third of dynamic protein expression profiles can be predicted by a simple rate equation. MOLECULAR BIOSYSTEMS 2015; 10:2850-62. [PMID: 25111754 DOI: 10.1039/c4mb00358f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cells respond to environmental stimuli with expression changes at both the mRNA and protein level, and a plethora of known and unknown regulators affect synthesis and degradation rates of the resulting proteins. To investigate the major principles of gene expression regulation in dynamic systems, we estimated protein synthesis and degradation rates from parallel time series data of mRNA and protein expression and tested the degree to which expression changes can be modeled by a simple linear differential equation. Examining three published datasets for yeast responding to diamide, rapamycin, and sodium chloride treatment, we find that almost one-third of genes can be well-modeled, and the estimated rates assume realistic values. Prediction quality is linked to low measurement noise and the shape of the expression profile. Synthesis and degradation rates do not correlate within one treatment, consistent with their independent regulation. When performing robustness analyses of the rate estimates, we observed that most genes adhere to one of two major modes of regulation, which we term synthesis- and degradation-independent regulation. These two modes, in which only one of the rates has to be tightly set, while the other one can assume various values, offer an efficient way for the cell to respond to stimuli and re-establish proteostasis. We experimentally validate degradation-independent regulation under oxidative stress for the heatshock protein Ssa4.
Collapse
|
37
|
Abstract
A prion is an infectious protein horizontally transmitting a disease or trait without a required nucleic acid. Yeast and fungal prions are nonchromosomal genes composed of protein, generally an altered form of a protein that catalyzes the same alteration of the protein. Yeast prions are thus transmitted both vertically (as genes composed of protein) and horizontally (as infectious proteins, or prions). Formation of amyloids (linear ordered β-sheet-rich protein aggregates with β-strands perpendicular to the long axis of the filament) underlies most yeast and fungal prions, and a single prion protein can have any of several distinct self-propagating amyloid forms with different biological properties (prion variants). Here we review the mechanism of faithful templating of protein conformation, the biological roles of these prions, and their interactions with cellular chaperones, the Btn2 and Cur1 aggregate-handling systems, and other cellular factors governing prion generation and propagation. Human amyloidoses include the PrP-based prion conditions and many other, more common amyloid-based diseases, several of which show prion-like features. Yeast prions increasingly are serving as models for the understanding and treatment of many mammalian amyloidoses. Patients with different clinical pictures of the same amyloidosis may be the equivalent of yeasts with different prion variants.
Collapse
|
38
|
Arslan F, Hong JY, Kanneganti V, Park SK, Liebman SW. Heterologous aggregates promote de novo prion appearance via more than one mechanism. PLoS Genet 2015; 11:e1004814. [PMID: 25568955 PMCID: PMC4287349 DOI: 10.1371/journal.pgen.1004814] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/09/2014] [Indexed: 12/12/2022] Open
Abstract
Prions are self-perpetuating conformational variants of particular proteins. In yeast, prions cause heritable phenotypic traits. Most known yeast prions contain a glutamine (Q)/asparagine (N)-rich region in their prion domains. [PSI+], the prion form of Sup35, appears de novo at dramatically enhanced rates following transient overproduction of Sup35 in the presence of [PIN+], the prion form of Rnq1. Here, we establish the temporal de novo appearance of Sup35 aggregates during such overexpression in relation to other cellular proteins. Fluorescently-labeled Sup35 initially forms one or a few dots when overexpressed in [PIN+] cells. One of the dots is perivacuolar, colocalizes with the aggregated Rnq1 dot and grows into peripheral rings/lines, some of which also colocalize with Rnq1. Sup35 dots that are not near the vacuole do not always colocalize with Rnq1 and disappear by the time rings start to grow. Bimolecular fluorescence complementation failed to detect any interaction between Sup35-VN and Rnq1-VC in [PSI+][PIN+] cells. In contrast, all Sup35 aggregates, whether newly induced or in established [PSI+], completely colocalize with the molecular chaperones Hsp104, Sis1, Ssa1 and eukaryotic release factor Sup45. In the absence of [PIN+], overexpressed aggregating proteins such as the Q/N-rich Pin4C or the non-Q/N-rich Mod5 can also promote the de novo appearance of [PSI+]. Similar to Rnq1, overexpressed Pin4C transiently colocalizes with newly appearing Sup35 aggregates. However, no interaction was detected between Mod5 and Sup35 during [PSI+] induction in the absence of [PIN+]. While the colocalization of Sup35 and aggregates of Rnq1 or Pin4C are consistent with the model that the heterologous aggregates cross-seed the de novo appearance of [PSI+], the lack of interaction between Mod5 and Sup35 leaves open the possibility of other mechanisms. We also show that Hsp104 is required in the de novo appearance of [PSI+] aggregates in a [PIN+]-independent pathway. Certain proteins can misfold into β-sheet-rich, self-seeding aggregates. Such proteins appear to be associated with neurodegenerative diseases such as prion, Alzheimer's and Parkinson's. Yeast prions also misfold into self-seeding aggregates and provide a good model to study how these rogue polymers first appear. De novo prion appearance can be made very frequent in yeast by transient overexpression of the prion protein in the presence of heterologous prions or prion-like aggregates. Here, we show that the aggregates of one such newly induced prion are initially formed in a dot-like structure near the vacuole. These dots then grow into rings at the periphery of the cell prior to becoming smaller rings surrounding the vacuole and maturing into the characteristic heritable prion tiny dots found throughout the cytoplasm. We found considerable colocalization of two heterologous prion/prion-like aggregates with the newly appearing prion protein aggregates, which is consistent with the prevalent model that existing prion aggregates can cross-seed the de novo aggregation of a heterologous prion protein. However, we failed to find any physical interaction between another heterologous aggregating protein and the newly appearing prion aggregates it stimulated to appear, which is inconsistent with cross-seeding.
Collapse
Affiliation(s)
- Fatih Arslan
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
| | - Joo Y. Hong
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
| | - Vydehi Kanneganti
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
| | - Sei-Kyoung Park
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
| | - Susan W. Liebman
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
- * E-mail:
| |
Collapse
|
39
|
Nizhnikov AA, Alexandrov AI, Ryzhova TA, Mitkevich OV, Dergalev AA, Ter-Avanesyan MD, Galkin AP. Proteomic screening for amyloid proteins. PLoS One 2014; 9:e116003. [PMID: 25549323 PMCID: PMC4280166 DOI: 10.1371/journal.pone.0116003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/02/2014] [Indexed: 11/18/2022] Open
Abstract
Despite extensive study, progress in elucidation of biological functions of amyloids and their role in pathology is largely restrained due to the lack of universal and reliable biochemical methods for their discovery. All biochemical methods developed so far allowed only identification of glutamine/asparagine-rich amyloid-forming proteins or proteins comprising amyloids that form large deposits. In this article we present a proteomic approach which may enable identification of a broad range of amyloid-forming proteins independently of specific features of their sequences or levels of expression. This approach is based on the isolation of protein fractions enriched with amyloid aggregates via sedimentation by ultracentrifugation in the presence of strong ionic detergents, such as sarkosyl or SDS. Sedimented proteins are then separated either by 2D difference gel electrophoresis or by SDS-PAGE, if they are insoluble in the buffer used for 2D difference gel electrophoresis, after which they are identified by mass-spectrometry. We validated this approach by detection of known yeast prions and mammalian proteins with established capacity for amyloid formation and also revealed yeast proteins forming detergent-insoluble aggregates in the presence of human huntingtin with expanded polyglutamine domain. Notably, with one exception, all these proteins contained glutamine/asparagine-rich stretches suggesting that their aggregates arose due to polymerization cross-seeding by human huntingtin. Importantly, though the approach was developed in a yeast model, it can easily be applied to any organism thus representing an efficient and universal tool for screening for amyloid proteins.
Collapse
Affiliation(s)
- Anton A. Nizhnikov
- Dept. of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
- St. Petersburg Branch, Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg, Russia
| | | | - Tatyana A. Ryzhova
- Dept. of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
- St. Petersburg Branch, Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Olga V. Mitkevich
- A.N. Bach Institute of Biochemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander A. Dergalev
- A.N. Bach Institute of Biochemistry of the Russian Academy of Sciences, Moscow, Russia
| | | | - Alexey P. Galkin
- Dept. of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
- St. Petersburg Branch, Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
40
|
Structural and functional characterization of ybr137wp implicates its involvement in the targeting of tail-anchored proteins to membranes. Mol Cell Biol 2014; 34:4500-12. [PMID: 25288638 DOI: 10.1128/mcb.00697-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nearly 5% of membrane proteins are guided to nuclear, endoplasmic reticulum (ER), mitochondrial, Golgi, or peroxisome membranes by their C-terminal transmembrane domain and are classified as tail-anchored (TA) membrane proteins. In Saccharomyces cerevisiae, the guided entry of TA protein (GET) pathway has been shown to function in the delivery of TA proteins to the ER. The sorting complex for this pathway is comprised of Sgt2, Get4, and Get5 and facilitates the loading of nascent tail-anchored proteins onto the Get3 ATPase. Multiple pulldown assays also indicated that Ybr137wp associates with this complex in vivo. Here, we report a 2.8-Å-resolution crystal structure for Ybr137wp from Saccharomyces cerevisiae. The protein is a decamer in the crystal and also in solution, as observed by size exclusion chromatography and analytical ultracentrifugation. In addition, isothermal titration calorimetry indicated that the C-terminal acidic motif of Ybr137wp interacts with the tetratricopeptide repeat (TPR) domain of Sgt2. Moreover, an in vivo study demonstrated that Ybr137wp is induced in yeast exiting the log phase and ameliorates the defect of TA protein delivery and cell viability derived by the impaired GET system under starvation conditions. Therefore, this study suggests a possible role for Ybr137wp related to targeting of tail-anchored proteins.
Collapse
|
41
|
Ali M, Chernova TA, Newnam GP, Yin L, Shanks J, Karpova TS, Lee A, Laur O, Subramanian S, Kim D, McNally JG, Seyfried NT, Chernoff YO, Wilkinson KD. Stress-dependent proteolytic processing of the actin assembly protein Lsb1 modulates a yeast prion. J Biol Chem 2014; 289:27625-39. [PMID: 25143386 PMCID: PMC4183801 DOI: 10.1074/jbc.m114.582429] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/06/2014] [Indexed: 11/06/2022] Open
Abstract
Yeast prions are self-propagating amyloid-like aggregates of Q/N-rich protein that confer heritable traits and provide a model of mammalian amyloidoses. [PSI(+)] is a prion isoform of the translation termination factor Sup35. Propagation of [PSI(+)] during cell division under normal conditions and during the recovery from damaging environmental stress depends on cellular chaperones and is influenced by ubiquitin proteolysis and the actin cytoskeleton. The paralogous yeast proteins Lsb1 and Lsb2 bind the actin assembly protein Las17 (a yeast homolog of human Wiskott-Aldrich syndrome protein) and participate in the endocytic pathway. Lsb2 was shown to modulate maintenance of [PSI(+)] during and after heat shock. Here, we demonstrate that Lsb1 also regulates maintenance of the Sup35 prion during and after heat shock. These data point to the involvement of Lsb proteins in the partitioning of protein aggregates in stressed cells. Lsb1 abundance and cycling between actin patches, endoplasmic reticulum, and cytosol is regulated by the Guided Entry of Tail-anchored proteins pathway and Rsp5-dependent ubiquitination. Heat shock-induced proteolytic processing of Lsb1 is crucial for prion maintenance during stress. Our findings identify Lsb1 as another component of a tightly regulated pathway controlling protein aggregation in changing environments.
Collapse
Affiliation(s)
- Moiez Ali
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Tatiana A Chernova
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322,
| | - Gary P Newnam
- the School of Biology and Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Luming Yin
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - John Shanks
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Tatiana S Karpova
- the Center for Cancer Research Core Fluorescence Imaging Facility, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Andrew Lee
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Oskar Laur
- the Division of Microbiology, Yerkes Research Center, Emory University, Atlanta, Georgia 30329, and
| | - Sindhu Subramanian
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Dami Kim
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - James G McNally
- the Center for Cancer Research Core Fluorescence Imaging Facility, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Nicholas T Seyfried
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Yury O Chernoff
- the School of Biology and Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, the Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia 199034
| | - Keith D Wilkinson
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322,
| |
Collapse
|
42
|
Chang HY, Hou SC, Way TD, Wong CH, Wang IF. Heat-shock protein dysregulation is associated with functional and pathological TDP-43 aggregation. Nat Commun 2014; 4:2757. [PMID: 24220679 DOI: 10.1038/ncomms3757] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 10/14/2013] [Indexed: 01/05/2023] Open
Abstract
Conformational disorders are involved in various neurodegenerative diseases. Reactive oxygen species (ROS) are the major contributors to neurodegenerative disease; however, ROS that affect the structural changes in misfolded disease proteins have yet to be well characterized. Here we demonstrate that the intrinsic propensity of TDP-43 to aggregate drives the assembly of TDP-43-positive stress granules and soluble toxic TDP-43 oligomers in response to a ROS insult via a disulfide crosslinking-independent mechanism. Notably, ROS-induced TDP-43 protein assembly correlates with the dynamics of certain TDP-43-associated chaperones. The heat-shock protein (HSP)-90 inhibitor 17-AAG prevents ROS-induced TDP-43 aggregation, alters the type of TDP-43 multimers and reduces the severity of pathological TDP-43 inclusions. In summary, our study suggests that a common mechanism could be involved in the pathogenesis of conformational diseases that result from HSP dysregulation.
Collapse
Affiliation(s)
- Hsiang-Yu Chang
- 1] Garage Brain Science, Taichung 413, Taiwan [2] Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung 404, Taiwan
| | | | | | | | | |
Collapse
|
43
|
Hsp104 overexpression cures Saccharomyces cerevisiae [PSI+] by causing dissolution of the prion seeds. EUKARYOTIC CELL 2014; 13:635-47. [PMID: 24632242 DOI: 10.1128/ec.00300-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The [PSI(+)] yeast prion is formed when Sup35 misfolds into amyloid aggregates. [PSI(+)], like other yeast prions, is dependent on the molecular chaperone Hsp104, which severs the prion seeds so that they pass on as the yeast cells divide. Surprisingly, however, overexpression of Hsp104 also cures [PSI(+)]. Several models have been proposed to explain this effect: inhibition of severing, asymmetric segregation of the seeds between mother and daughter cells, and dissolution of the prion seeds. First, we found that neither the kinetics of curing nor the heterogeneity in the distribution of the green fluorescent protein (GFP)-labeled Sup35 foci in partially cured yeast cells is compatible with Hsp104 overexpression curing [PSI(+)] by inhibiting severing. Second, we ruled out the asymmetric segregation model by showing that the extent of curing was essentially the same in mother and daughter cells and that the fluorescent foci did not distribute asymmetrically, but rather, there was marked loss of foci in both mother and daughter cells. These results suggest that Hsp104 overexpression cures [PSI(+)] by dissolution of the prion seeds in a two-step process. First, trimming of the prion seeds by Hsp104 reduces their size, and second, their amyloid core is eliminated, most likely by proteolysis.
Collapse
|
44
|
c-Abl Tyrosine Kinase Mediates Neurotoxic Prion Peptide-Induced Neuronal Apoptosis via Regulating Mitochondrial Homeostasis. Mol Neurobiol 2014; 49:1102-16. [DOI: 10.1007/s12035-014-8646-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/14/2014] [Indexed: 12/19/2022]
|
45
|
Chernova TA, Wilkinson KD, Chernoff YO. Physiological and environmental control of yeast prions. FEMS Microbiol Rev 2013; 38:326-44. [PMID: 24236638 DOI: 10.1111/1574-6976.12053] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/08/2013] [Accepted: 11/10/2013] [Indexed: 11/30/2022] Open
Abstract
Prions are self-perpetuating protein isoforms that cause fatal and incurable neurodegenerative disease in mammals. Recent evidence indicates that a majority of human proteins involved in amyloid and neural inclusion disorders possess at least some prion properties. In lower eukaryotes, such as yeast, prions act as epigenetic elements, which increase phenotypic diversity by altering a range of cellular processes. While some yeast prions are clearly pathogenic, it is also postulated that prion formation could be beneficial in variable environmental conditions. Yeast and mammalian prions have similar molecular properties. Crucial cellular factors and conditions influencing prion formation and propagation were uncovered in the yeast models. Stress-related chaperones, protein quality control deposits, degradation pathways, and cytoskeletal networks control prion formation and propagation in yeast. Environmental stresses trigger prion formation and loss, supposedly acting via influencing intracellular concentrations of the prion-inducing proteins, and/or by localizing prionogenic proteins to the prion induction sites via heterologous ancillary helpers. Physiological and environmental modulation of yeast prions points to new opportunities for pharmacological intervention and/or prophylactic measures targeting general cellular systems rather than the properties of individual amyloids and prions.
Collapse
Affiliation(s)
- Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
46
|
Arai C, Kurahashi H, Pack CG, Sako Y, Nakamura Y. Clearance of yeast eRF-3 prion [ PSI+] by amyloid enlargement due to the imbalance between chaperone Ssa1 and cochaperone Sgt2. TRANSLATION 2013; 1:e26574. [PMID: 26824024 PMCID: PMC4718058 DOI: 10.4161/trla.26574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/12/2013] [Accepted: 09/23/2013] [Indexed: 12/03/2022]
Abstract
The cytoplasmic [PSI+] element of budding yeast represents the prion conformation of translation release factor eRF-3 (Sup35). Prions are transmissible agents caused by self-seeded highly ordered aggregates (amyloids). Much interest lies in understanding how prions are developed and transmitted. However, the cellular mechanism involved in the prion clearance is unknown. Recently we have reported that excess misfolded multi-transmembrane protein, Dip5ΔC-v82, eliminates yeast prion [PSI+]. In this study, we showed that the prion loss was caused by enlargement of prion amyloids, unsuitable for transmission, and its efficiency was affected by the cellular balance between the chaperone Hsp70-Ssa1 and Sgt2, a small cochaperone known as a regulator of chaperone targeting to different types of aggregation-prone proteins. The present findings suggest that Sgt2 is titrated by excess Dip5ΔC-v82, and the shortage of Sgt2 led to non-productive binding of Ssa1 on [PSI+] amyloids. Clearance of prion [PSI+] by the imbalance between Ssa1 and Sgt2 might provide a novel array to regulate the release factor function in yeast.
Collapse
|
47
|
Ast T, Schuldiner M. All roads lead to Rome (but some may be harder to travel): SRP-independent translocation into the endoplasmic reticulum. Crit Rev Biochem Mol Biol 2013; 48:273-88. [PMID: 23530742 DOI: 10.3109/10409238.2013.782999] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Translocation into the endoplasmic reticulum (ER) is the first biogenesis step for hundreds of eukaryotic secretome proteins. Over the past 30 years, groundbreaking biochemical, structural and genetic studies have delineated one conserved pathway that enables ER translocation- the signal recognition particle (SRP) pathway. However, it is clear that this is not the only pathway which can mediate ER targeting and insertion. In fact, over the past decade, several SRP-independent pathways have been uncovered, which recognize proteins that cannot engage the SRP and ensure their subsequent translocation into the ER. These SRP-independent pathways face the same challenges that the SRP pathway overcomes: chaperoning the preinserted protein while in the cytosol, targeting it rapidly to the ER surface and generating vectorial movement that inserts the protein into the ER. This review strives to summarize the various mechanisms and machineries which mediate these stages of SRP-independent translocation, as well as examine why SRP-independent translocation is utilized by the cell. This emerging understanding of the various pathways utilized by secretory proteins to insert into the ER draws light to the complexity of the translocational task, and underlines that insertion into the ER might be more varied and tailored than previously appreciated.
Collapse
Affiliation(s)
- Tslil Ast
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|
48
|
Schizosaccharomyces pombe disaggregation machinery chaperones support Saccharomyces cerevisiae growth and prion propagation. EUKARYOTIC CELL 2013; 12:739-45. [PMID: 23504563 DOI: 10.1128/ec.00301-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hsp100 chaperones protect microorganisms and plants from environmental stress by cooperating with Hsp70 and its nucleotide exchange factor (NEF) and Hsp40 cochaperones to resolubilize proteins from aggregates. The Saccharomyces cerevisiae Hsp104 (Sc-Hsp104)-based disaggregation machinery also is essential for replication of amyloid-based prions. Escherichia coli ClpB can substitute for Hsp104 to propagate [PSI(+)] prions in yeast, but only if E. coli DnaK and GrpE (Hsp70 and NEF) are coexpressed. Here, we tested if the reported inability of Schizosaccharomyces pombe Hsp104 (Sp-Hsp104) to support [PSI(+)] propagation was due to similar species-specific chaperone requirements and find that Sp-Hsp104 alone supported propagation of three different yeast prions. Sp-Hsp70 and Sp-Fes1p (NEF) likewise functioned in place of their Sa. cerevisiae counterparts. Thus, chaperones of these long-diverged species possess conserved activities that function in processes essential for both cell growth and prion propagation, suggesting Sc. pombe can propagate its own prions. We show that curing by Hsp104 overexpression and inactivation can be distinguished and confirm the observation that, unlike Sc-Hsp104, Sp-Hsp104 cannot cure yeast of [PSI(+)] when it is overexpressed. These results are consistent with a view that mechanisms underlying prion replication and elimination are distinct.
Collapse
|
49
|
Lee JG, Ye Y. Bag6/Bat3/Scythe: a novel chaperone activity with diverse regulatory functions in protein biogenesis and degradation. Bioessays 2013; 35:377-85. [PMID: 23417671 DOI: 10.1002/bies.201200159] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Upon emerging from the ribosome exiting tunnel, polypeptide folding occurs immediately with the assistance of both ribosome-associated and free chaperones. While many chaperones known to date are dedicated folding catalysts, recent studies have revealed a novel chaperoning system that functions at the interface of protein biogenesis and quality control by using a special "holdase" activity in order to sort and channel client proteins to distinct destinations. The key component, Bag6/Bat3/Scythe, can effectively shield long hydrophobic segments exposed on the surface of a polypeptide, preventing aggregation or inappropriate interactions before a triaging decision is made. The biological consequences of Bag6-mediated chaperoning are divergent for different substrates, ranging from membrane integration to proteasome targeting and destruction. Accordingly, Bag6 can act in various cellular contexts in order to execute many essential cellular functions, while dysfunctions in the Bag6 system can cause severe cellular abnormalities that may be associated with some pathological conditions.
Collapse
Affiliation(s)
- Jin-Gu Lee
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
50
|
Wickner RB, Edskes HK, Bateman DA, Kelly AC, Gorkovskiy A, Dayani Y, Zhou A. Amyloids and yeast prion biology. Biochemistry 2013; 52:1514-27. [PMID: 23379365 DOI: 10.1021/bi301686a] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The prions (infectious proteins) of Saccharomyces cerevisiae are proteins acting as genes, by templating their conformation from one molecule to another in analogy to DNA templating its sequence. Most yeast prions are amyloid forms of normally soluble proteins, and a single protein sequence can have any of several self-propagating forms (called prion strains or variants), analogous to the different possible alleles of a DNA gene. A central issue in prion biology is the structural basis of this conformational templating process. The in-register parallel β sheet structure found for several infectious yeast prion amyloids naturally suggests an explanation for this conformational templating. While most prions are plainly diseases, the [Het-s] prion of Podospora anserina may be a functional amyloid, with important structural implications. Yeast prions are important models for human amyloid diseases in general, particularly because new evidence is showing infectious aspects of several human amyloidoses not previously classified as prions. We also review studies of the roles of chaperones, aggregate-collecting proteins, and other cellular components using yeast that have led the way in improving the understanding of similar processes that must be operating in many human amyloidoses.
Collapse
Affiliation(s)
- Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA.
| | | | | | | | | | | | | |
Collapse
|