1
|
Babosha V, Klimenko N, Revel-Muroz A, Tikhonova E, Georgiev P, Maksimenko O. N-terminus of Drosophila melanogaster MSL1 is critical for dosage compensation. eLife 2024; 13:RP93241. [PMID: 39699942 DOI: 10.7554/elife.93241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
The male-specific lethal complex (MSL), which consists of five proteins and two non-coding roX RNAs, is involved in the transcriptional enhancement of X-linked genes to compensate for the sex chromosome monosomy in Drosophila XY males compared with XX females. The MSL1 and MSL2 proteins form the heterotetrameric core of the MSL complex and are critical for the specific recruitment of the complex to the high-affinity 'entry' sites (HAS) on the X chromosome. In this study, we demonstrated that the N-terminal region of MSL1 is critical for stability and functions of MSL1. Amino acid deletions and substitutions in the N-terminal region of MSL1 strongly affect both the interaction with roX2 RNA and the MSL complex binding to HAS on the X chromosome. In particular, substitution of the conserved N-terminal amino-acids 3-7 in MSL1 (MSL1GS) affects male viability similar to the inactivation of genes encoding roX RNAs. In addition, MSL1GS binds to promoters such as MSL1WT but does not co-bind with MSL2 and MSL3 to X chromosomal HAS. However, overexpression of MSL2 partially restores the dosage compensation. Thus, the interaction of MSL1 with roX RNA is critical for the efficient assembly of the MSL complex on HAS of the male X chromosome.
Collapse
Affiliation(s)
- Valentin Babosha
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anastasia Revel-Muroz
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Evgeniya Tikhonova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
2
|
Tikhonova EA, Georgiev PG, Maksimenko OG. Functional Role of C-terminal Domains in the MSL2 Protein of Drosophila melanogaster. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:663-673. [PMID: 38831503 DOI: 10.1134/s0006297924040060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 06/05/2024]
Abstract
Dosage compensation complex (DCC), which consists of five proteins and two non-coding RNAs roX, specifically binds to the X chromosome in males, providing a higher level of gene expression necessary to compensate for the monosomy of the sex chromosome in male Drosophila compared to the two X chromosomes in females. The MSL2 protein contains the N-terminal RING domain, which acts as an E3 ligase in ubiquitination of proteins and is the only subunit of the complex expressed only in males. Functional role of the two C-terminal domains of the MSL2 protein, enriched with proline (P-domain) and basic amino acids (B-domain), was investigated. As a result, it was shown that the B-domain destabilizes the MSL2 protein, which is associated with the presence of two lysines ubiquitination of which is under control of the RING domain of MSL2. The unstructured proline-rich domain stimulates transcription of the roX2 gene, which is necessary for effective formation of the dosage compensation complex.
Collapse
Affiliation(s)
| | - Pavel G Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Oksana G Maksimenko
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
3
|
Tikhonova E, Revel-Muroz A, Georgiev P, Maksimenko O. Interaction of MLE with CLAMP zinc finger is involved in proper MSL proteins binding to chromosomes in Drosophila. Open Biol 2024; 14:230270. [PMID: 38471568 DOI: 10.1098/rsob.230270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
The Drosophila male-specific lethal (MSL) complex binds to the male X chromosome to activate transcription. It comprises five proteins (MSL1, MSL2, MSL3, male absent on the first (MOF), and maleless (MLE)) and two long noncoding RNAs (lncRNAs; roX1 and roX2). The MLE helicase remodels the roX lncRNAs, enabling the lncRNA-mediated assembly of the Drosophila dosage compensation complex. MSL2 is expressed only in males and interacts with the N-terminal zinc finger of the transcription factor chromatin-linked adapter for MSL proteins (CLAMP), which is important for the specific recruitment of the MSL complex to the male X chromosome. Here, we found that MLE's unstructured C-terminal region interacts with the sixth zinc-finger domain of CLAMP. In vitro, 4-5 zinc fingers are critical for the specific DNA-binding of CLAMP with GA repeats, which constitute the core motif at the high affinity binding sites for MSL proteins. Deleting the CLAMP binding region in MLE decreases the association of MSL proteins with the male X chromosome and increases male lethality. These results suggest that interactions of unstructured regions in MSL2 and MLE with CLAMP zinc finger domains are important for the specific recruitment of the MSL complex to the male X chromosome.
Collapse
Affiliation(s)
- Evgeniya Tikhonova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Anastasia Revel-Muroz
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
4
|
Babosha VA, Georgiev PG, Maksimenko OG. Study of the Role of Long Noncoding roX RNA in Maintaining of the Dosage Compensation Complex in Drosophila melanogaster. DOKL BIOCHEM BIOPHYS 2023; 513:S8-S11. [PMID: 38189885 DOI: 10.1134/s160767292370062x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 01/09/2024]
Abstract
The proteins MSL1, MSL2, MSL3, MLE, and MOF and noncoding RNAs roX1 and roX2 form the Drosophila dosage compensation complex (DCC), which specifically binds to the X chromosome of males. It is known that noncoding RNA roX are primary component of the DCC in the process of assembly and spreading of the complex among the X chromosome of males. However, the role of this RNA in maintaining the structure of the already assembled complex remains unclear. In this work, we have shown that the full-assembled dosage compensation complex dissociates rather weakly when treated with RNases: the MLE helicase is effectively released from the complex, and the remaining protein components (MSL1, MSL2, and MSL3) undergo partial disassembly and continue to be part of subcomplexes. The results confirm the importance of the noncoding roX2 RNA not only in the processes of initiation of DCC assembly but also at the stage of maintaining the structure of the already assembled complex.
Collapse
Affiliation(s)
- V A Babosha
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| | - P G Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - O G Maksimenko
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
5
|
Eggers N, Gkountromichos F, Krause S, Campos-Sparr A, Becker P. Physical interaction between MSL2 and CLAMP assures direct cooperativity and prevents competition at composite binding sites. Nucleic Acids Res 2023; 51:9039-9054. [PMID: 37602401 PMCID: PMC10516644 DOI: 10.1093/nar/gkad680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/13/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023] Open
Abstract
MSL2, the DNA-binding subunit of the Drosophila dosage compensation complex, cooperates with the ubiquitous protein CLAMP to bind MSL recognition elements (MREs) on the X chromosome. We explore the nature of the cooperative binding to these GA-rich, composite sequence elements in reconstituted naïve embryonic chromatin. We found that the cooperativity requires physical interaction between both proteins. Remarkably, disruption of this interaction does not lead to indirect, nucleosome-mediated cooperativity as expected, but to competition. The protein interaction apparently not only increases the affinity for composite binding sites, but also locks both proteins in a defined dimeric state that prevents competition. High Affinity Sites of MSL2 on the X chromosome contain variable numbers of MREs. We find that the cooperation between MSL2/CLAMP is not influenced by MRE clustering or arrangement, but happens largely at the level of individual MREs. The sites where MSL2/CLAMP bind strongly in vitro locate to all chromosomes and show little overlap to an expanded set of X-chromosomal MSL2 in vivo binding sites generated by CUT&RUN. Apparently, the intrinsic MSL2/CLAMP cooperativity is limited to a small selection of potential sites in vivo. This restriction must be due to components missing in our reconstitution, such as roX2 lncRNA.
Collapse
Affiliation(s)
- Nikolas Eggers
- Biomedical Center, Molecular Biology Division, LMU, Munich, Germany
| | | | - Silke Krause
- Biomedical Center, Molecular Biology Division, LMU, Munich, Germany
| | | | - Peter B Becker
- Biomedical Center, Molecular Biology Division, LMU, Munich, Germany
| |
Collapse
|
6
|
Tikhonova E, Mariasina S, Efimov S, Polshakov V, Maksimenko O, Georgiev P, Bonchuk A. Structural basis for interaction between CLAMP and MSL2 proteins involved in the specific recruitment of the dosage compensation complex in Drosophila. Nucleic Acids Res 2022; 50:6521-6531. [PMID: 35648444 PMCID: PMC9226498 DOI: 10.1093/nar/gkac455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 04/26/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
Transcriptional regulators select their targets from a large pool of similar genomic sites. The binding of the Drosophila dosage compensation complex (DCC) exclusively to the male X chromosome provides insight into binding site selectivity rules. Previous studies showed that the male-specific organizer of the complex, MSL2, and ubiquitous DNA-binding protein CLAMP directly interact and play an important role in the specificity of X chromosome binding. Here, we studied the highly specific interaction between the intrinsically disordered region of MSL2 and the N-terminal zinc-finger C2H2-type (C2H2) domain of CLAMP. We obtained the NMR structure of the CLAMP N-terminal C2H2 zinc finger, which has a classic C2H2 zinc-finger fold with a rather unusual distribution of residues typically used in DNA recognition. Substitutions of residues in this C2H2 domain had the same effect on the viability of males and females, suggesting that it plays a general role in CLAMP activity. The N-terminal C2H2 domain of CLAMP is highly conserved in insects. However, the MSL2 region involved in the interaction is conserved only within the Drosophila genus, suggesting that this interaction emerged during the evolution of a mechanism for the specific recruitment of the DCC on the male X chromosome in Drosophilidae.
Collapse
Affiliation(s)
- Evgeniya Tikhonova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Moscow 119334, Russia
| | - Sofia Mariasina
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sergey Efimov
- NMR Laboratory, Institute of Physics, Kazan Federal University, Kazan 420008, Russia
| | - Vladimir Polshakov
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Moscow 119334, Russia
| | - Artem Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology, Moscow 119334, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Moscow 119334, Russia
| |
Collapse
|
7
|
Maier MC, McInerney MRA, Graves JAM, Charchar FJ. Noncoding Genes on Sex Chromosomes and Their Function in Sex Determination, Dosage Compensation, Male Traits, and Diseases. Sex Dev 2021; 15:432-440. [PMID: 34794153 DOI: 10.1159/000519622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022] Open
Abstract
The mammalian Y chromosome has evolved in many species into a specialized chromosome that contributes to sex development among other male phenotypes. This function is well studied in terms of protein-coding genes. Less is known about the noncoding genome on the Y chromosome and its contribution to both sex development and other traits. Once considered junk genetic material, noncoding RNAs are now known to contribute to the regulation of gene expression and to play an important role in refining cellular functions. The prime examples are noncoding genes on the X chromosome, which mitigate the differential dosage of genes on sex chromosomes. Here, we discuss the evolution of noncoding RNAs on the Y chromosome and the emerging evidence of how micro, long, and circular noncoding RNAs transcribed from the Y chromosome contribute to sex differentiation. We briefly touch on emerging evidence that these noncoding RNAs also contribute to some other important clinical phenotypes in humans.
Collapse
Affiliation(s)
- Michelle C Maier
- Health Innovation & Transformation Centre, Federation University, Mt Helen, Victoria, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, Victoria, Australia
| | - Molly-Rose A McInerney
- Health Innovation & Transformation Centre, Federation University, Mt Helen, Victoria, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, Victoria, Australia
| | | | - Fadi J Charchar
- Health Innovation & Transformation Centre, Federation University, Mt Helen, Victoria, Australia.,Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Eggers N, Becker PB. Cell-free genomics reveal intrinsic, cooperative and competitive determinants of chromatin interactions. Nucleic Acids Res 2021; 49:7602-7617. [PMID: 34181732 PMCID: PMC8287947 DOI: 10.1093/nar/gkab558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Metazoan transcription factors distinguish their response elements from a large excess of similar sequences. We explored underlying principles of DNA shape read-out and factor cooperativity in chromatin using a unique experimental system. We reconstituted chromatin on Drosophila genomes in extracts of preblastoderm embryos, mimicking the naïve state of the zygotic genome prior to developmental transcription activation. We then compared the intrinsic binding specificities of three recombinant transcription factors, alone and in combination, with GA-rich recognition sequences genome-wide. For MSL2, all functional elements reside on the X chromosome, allowing to distinguish physiological elements from non-functional 'decoy' sites. The physiological binding profile of MSL2 is approximated through interaction with other factors: cooperativity with CLAMP and competition with GAF, which sculpts the profile by occluding non-functional sites. An extended DNA shape signature is differentially read out in chromatin. Our results reveal novel aspects of target selection in a complex chromatin environment.
Collapse
Affiliation(s)
- Nikolas Eggers
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-Universität, 82152 Planegg, Germany
| | - Peter B Becker
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-Universität, 82152 Planegg, Germany
| |
Collapse
|
9
|
Villa R, Jagtap PKA, Thomae AW, Campos Sparr A, Forné I, Hennig J, Straub T, Becker PB. Divergent evolution toward sex chromosome-specific gene regulation in Drosophila. Genes Dev 2021; 35:1055-1070. [PMID: 34140353 PMCID: PMC8247607 DOI: 10.1101/gad.348411.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
The dosage compensation complex (DCC) of Drosophila identifies its X-chromosomal binding sites with exquisite selectivity. The principles that assure this vital targeting are known from the D. melanogaster model: DCC-intrinsic specificity of DNA binding, cooperativity with the CLAMP protein, and noncoding roX2 RNA transcribed from the X chromosome. We found that in D. virilis, a species separated from melanogaster by 40 million years of evolution, all principles are active but contribute differently to X specificity. In melanogaster, the DCC subunit MSL2 evolved intrinsic DNA-binding selectivity for rare PionX sites, which mark the X chromosome. In virilis, PionX motifs are abundant and not X-enriched. Accordingly, MSL2 lacks specific recognition. Here, roX2 RNA plays a more instructive role, counteracting a nonproductive interaction of CLAMP and modulating DCC binding selectivity. Remarkably, roX2 triggers a stable chromatin binding mode characteristic of DCC. Evidently, X-specific regulation is achieved by divergent evolution of protein, DNA, and RNA components.
Collapse
Affiliation(s)
- Raffaella Villa
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Pravin Kumar Ankush Jagtap
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Andreas W Thomae
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Core Facility Bioimaging, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Aline Campos Sparr
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Ignasi Forné
- Protein Analysis Unit, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Tobias Straub
- Bioinformatics Unit, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Peter B Becker
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
10
|
Müller M, Schauer T, Krause S, Villa R, Thomae AW, Becker PB. Two-step mechanism for selective incorporation of lncRNA into a chromatin modifier. Nucleic Acids Res 2020; 48:7483-7501. [PMID: 32510132 PMCID: PMC7528653 DOI: 10.1093/nar/gkaa492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 02/04/2023] Open
Abstract
The MLE DExH helicase and the roX lncRNAs are essential components of the chromatin modifying Dosage Compensation Complex (DCC) in Drosophila. To explore the mechanism of ribonucleoprotein complex assembly, we developed vitRIP, an unbiased, transcriptome-wide in vitro assay that reveals RNA binding specificity. We found that MLE has intrinsic specificity for U-/A-rich sequences and tandem stem-loop structures and binds many RNAs beyond roX in vitro. The selectivity of the helicase for physiological substrates is further enhanced by the core DCC. Unwinding of roX2 by MLE induces a highly selective RNA binding surface in the unstructured C-terminus of the MSL2 subunit and triggers-specific association of MLE and roX2 with the core DCC. The exquisite selectivity of roX2 incorporation into the DCC thus originates from intimate cooperation between the helicase and the core DCC involving two distinct RNA selection principles and their mutual refinement.
Collapse
Affiliation(s)
- Marisa Müller
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Tamas Schauer
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Bioinformatics Unit, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Silke Krause
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Raffaella Villa
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Andreas W Thomae
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Core Facility Bioimaging at the Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Peter B Becker
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
11
|
Qin T, Li J, Zhang KQ. Structure, Regulation, and Function of Linear and Circular Long Non-Coding RNAs. Front Genet 2020; 11:150. [PMID: 32194627 PMCID: PMC7063684 DOI: 10.3389/fgene.2020.00150] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/10/2020] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), including linear lncRNAs and circular RNAs (circRNAs), exhibit a surprising range of structures. Linear lncRNAs and circRNAs are generated by different pathways. Linear lncRNAs perform functions that depend on their specific sequences, transcription, and DNA elements of their gene loci. In some cases, linear lncRNAs contain a short open reading frame encoding a peptide. circRNAs are covalently closed RNAs with tissue-specific and cell-specific expression patterns that have recently been extensively investigated. Pioneering work focusing on their biogenesis and functional characterization indicates that circRNAs regulate cell development via multiple mechanisms and play critical roles in the immune system. Furthermore, circRNAs in exosomes function on target cells. As with linear lncRNAs, specific circRNAs can also be translated. In this review, we summarize current understanding and highlight the diverse structure, regulation, and function of linear lncRNAs and circRNAs.
Collapse
Affiliation(s)
- Tao Qin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Juan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
12
|
Tikhonova E, Fedotova A, Bonchuk A, Mogila V, Larschan EN, Georgiev P, Maksimenko O. The simultaneous interaction of MSL2 with CLAMP and DNA provides redundancy in the initiation of dosage compensation in Drosophila males. Development 2019; 146:dev.179663. [PMID: 31320325 DOI: 10.1242/dev.179663] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
Abstract
The binding of the Drosophila male-specific lethal dosage compensation complex (DCC) exclusively to the male X chromosome provides an excellent model system to understand mechanisms of selective recruitment of protein complexes to chromatin. Previous studies showed that the male-specific organizer of the complex, MSL2, and the ubiquitous DNA-binding protein CLAMP are key players in the specificity of X chromosome binding. The CXC domain of MSL2 binds to genomic sites of DCC recruitment in vitro Another conserved domain of MSL2, named Clamp-binding domain (CBD) directly interacts with the N-terminal zinc-finger domain of CLAMP. Here, we found that inactivation of CBD or CXC individually only modestly affected recruitment of the DCC to the X chromosome in males. However, combination of these two genetic lesions within the same MSL2 mutant resulted in an increased loss of DCC recruitment to the X chromosome. Thus, proper MSL2 positioning requires an interaction with either CLAMP or DNA to initiate dosage compensation in Drosophila males.
Collapse
Affiliation(s)
- Evgeniya Tikhonova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Anna Fedotova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Artem Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Vladic Mogila
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Erica N Larschan
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Oksana Maksimenko
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
13
|
Lucchesi JC. Transcriptional modulation of entire chromosomes: dosage compensation. J Genet 2018; 97:357-364. [PMID: 29932054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dosage compensation is a regulatory system designed to equalize the transcription output of the genes of the sex chromosomes that are present in different doses in the sexes (X or Z chromosome, depending on the animal species involved). Different mechanisms of dosage compensation have evolved in different animal groups. In Drosophila males, a complex (male-specific lethal) associates with the X chromosome and enhances the activity of most X-linked genes by increasing the rate of RNAPII elongation. In Caenorhabditis, a complex (dosage compensation complex) that contains a number of proteins involved in condensing chromosomes decreases the level of transcription of both X chromosomes in the XX hermaphrodite. In mammals, dosage compensation is achieved by the inactivation, early during development, of most X-linked genes on one of the two X chromosomes in females. The mechanism involves the synthesis of an RNA (Tsix) that protects one of the two Xs from inactivation, and of another RNA (Xist) that coats the other X chromosome and recruits histone and DNA modifying enzymes. This review will focus on the current progress in understanding the dosage compensation mechanisms in the three taxa where it has been best studied at the molecular level: flies, round worms and mammals.
Collapse
Affiliation(s)
- John C Lucchesi
- Department of Biology, Emory University, Atlanta, GA 30322, USA. E-mail:
| |
Collapse
|
14
|
|
15
|
Samata M, Akhtar A. Dosage Compensation of the X Chromosome: A Complex Epigenetic Assignment Involving Chromatin Regulators and Long Noncoding RNAs. Annu Rev Biochem 2018; 87:323-350. [PMID: 29668306 DOI: 10.1146/annurev-biochem-062917-011816] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
X chromosome regulation represents a prime example of an epigenetic phenomenon where coordinated regulation of a whole chromosome is required. In flies, this is achieved by transcriptional upregulation of X chromosomal genes in males to equalize the gene dosage differences in females. Chromatin-bound proteins and long noncoding RNAs (lncRNAs) constituting a ribonucleoprotein complex known as the male-specific lethal (MSL) complex or the dosage compensation complex mediate this process. MSL complex members decorate the male X chromosome, and their absence leads to male lethality. The male X chromosome is also enriched with histone H4 lysine 16 acetylation (H4K16ac), indicating that the chromatin compaction status of the X chromosome also plays an important role in transcriptional activation. How the X chromosome is specifically targeted and how dosage compensation is mechanistically achieved are central questions for the field. Here, we review recent advances, which reveal a complex interplay among lncRNAs, the chromatin landscape, transcription, and chromosome conformation that fine-tune X chromosome gene expression.
Collapse
Affiliation(s)
- Maria Samata
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany; .,Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany;
| |
Collapse
|
16
|
Ilik IA, Maticzka D, Georgiev P, Gutierrez NM, Backofen R, Akhtar A. A mutually exclusive stem-loop arrangement in roX2 RNA is essential for X-chromosome regulation in Drosophila. Genes Dev 2017; 31:1973-1987. [PMID: 29066499 PMCID: PMC5710142 DOI: 10.1101/gad.304600.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/22/2017] [Indexed: 01/15/2023]
Abstract
Here, Ilik et al. investigated the molecular mechanism by which lncRNAs and RNA helicase MLE achieve X-chromosomal specificity and spreading of the dosage compensation complex along the male X chromosome. Using uvCLAP methodology, which provides information about RNA secondary structures in vivo, they identified the minimal functional unit of roX2 RNA, which contains two mutually exclusive stem–loops that exist in a peculiar structural arrangement: When one stem–loop is unwound by MLE, an alternate structure can form, likely trapping MLE in this perpetually structured region. The X chromosome provides an ideal model system to study the contribution of RNA–protein interactions in epigenetic regulation. In male flies, roX long noncoding RNAs (lncRNAs) harbor several redundant domains to interact with the ubiquitin ligase male-specific lethal 2 (MSL2) and the RNA helicase Maleless (MLE) for X-chromosomal regulation. However, how these interactions provide the mechanics of spreading remains unknown. By using the uvCLAP (UV cross-linking and affinity purification) methodology, which provides unprecedented information about RNA secondary structures in vivo, we identified the minimal functional unit of roX2 RNA. By using wild-type and various MLE mutant derivatives, including a catalytically inactive MLE derivative, MLEGET, we show that the minimal roX RNA contains two mutually exclusive stem–loops that exist in a peculiar structural arrangement: When one stem–loop is unwound by MLE, an alternate structure can form, likely trapping MLE in this perpetually structured region. We show that this functional unit is necessary for dosage compensation, as mutations that disrupt this formation lead to male lethality. Thus, we propose that roX2 lncRNA contains an MLE-dependent affinity switch to enable reversible interactions of the MSL complex to allow dosage compensation of the X chromosome.
Collapse
Affiliation(s)
- Ibrahim Avsar Ilik
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Daniel Maticzka
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany
| | - Plamen Georgiev
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Noel Marie Gutierrez
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, 79104 Freiburg, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| |
Collapse
|
17
|
Long Y, Wang X, Youmans DT, Cech TR. How do lncRNAs regulate transcription? SCIENCE ADVANCES 2017; 3:eaao2110. [PMID: 28959731 PMCID: PMC5617379 DOI: 10.1126/sciadv.aao2110] [Citation(s) in RCA: 509] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/12/2017] [Indexed: 05/11/2023]
Abstract
It has recently become apparent that RNA, itself the product of transcription, is a major regulator of the transcriptional process. In particular, long noncoding RNAs (lncRNAs), which are so numerous in eukaryotes, function in many cases as transcriptional regulators. These RNAs function through binding to histone-modifying complexes, to DNA binding proteins (including transcription factors), and even to RNA polymerase II. In other cases, it is the act of lncRNA transcription rather than the lncRNA product that appears to be regulatory. We review recent progress in elucidating the molecular mechanisms by which lncRNAs modulate gene expression and future opportunities in this research field.
Collapse
Affiliation(s)
- Yicheng Long
- Department of Chemistry and Biochemistry, University of Colorado BioFrontiers Institute, and Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA
| | - Xueyin Wang
- Department of Chemistry and Biochemistry, University of Colorado BioFrontiers Institute, and Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA
| | - Daniel T. Youmans
- Department of Chemistry and Biochemistry, University of Colorado BioFrontiers Institute, and Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA
- Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| | - Thomas R. Cech
- Department of Chemistry and Biochemistry, University of Colorado BioFrontiers Institute, and Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA
- Corresponding author.
| |
Collapse
|
18
|
Villa R, Schauer T, Smialowski P, Straub T, Becker PB. PionX sites mark the X chromosome for dosage compensation. Nature 2016; 537:244-248. [PMID: 27580037 DOI: 10.1038/nature19338] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 07/27/2016] [Indexed: 11/09/2022]
Abstract
The rules defining which small fraction of related DNA sequences can be selectively bound by a transcription factor are poorly understood. One of the most challenging tasks in DNA recognition is posed by dosage compensation systems that require the distinction between sex chromosomes and autosomes. In Drosophila melanogaster, the male-specific lethal dosage compensation complex (MSL-DCC) doubles the level of transcription from the single male X chromosome, but the nature of this selectivity is not known. Previous efforts to identify X-chromosome-specific target sequences were unsuccessful as the identified MSL recognition elements lacked discriminative power. Therefore, additional determinants such as co-factors, chromatin features, RNA and chromosome conformation have been proposed to refine targeting further. Here, using an in vitro genome-wide DNA binding assay, we show that recognition of the X chromosome is an intrinsic feature of the MSL-DCC. MSL2, the male-specific organizer of the complex, uses two distinct DNA interaction surfaces-the CXC and proline/basic-residue-rich domains-to identify complex DNA elements on the X chromosome. Specificity is provided by the CXC domain, which binds a novel motif defined by DNA sequence and shape. This motif characterizes a subclass of MSL2-binding sites, which we name PionX (pioneering sites on the X) as they appeared early during the recent evolution of an X chromosome in D. miranda and are the first chromosomal sites to be bound during de novo MSL-DCC assembly. Our data provide the first, to our knowledge, documented molecular mechanism through which the dosage compensation machinery distinguishes the X chromosome from an autosome. They highlight fundamental principles in the recognition of complex DNA elements by protein that will have a strong impact on many aspects of chromosome biology.
Collapse
Affiliation(s)
- Raffaella Villa
- Division of Molecular Biology, Biomedical Center and Center for Integrated Protein Science Munich, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| | - Tamas Schauer
- Division of Molecular Biology, Biomedical Center and Center for Integrated Protein Science Munich, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| | - Pawel Smialowski
- Bioinformatics Unit, Biomedical Center, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| | - Tobias Straub
- Bioinformatics Unit, Biomedical Center, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| | - Peter B Becker
- Division of Molecular Biology, Biomedical Center and Center for Integrated Protein Science Munich, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
19
|
Gallach M. 1.688 g/cm3satellite-related repeats: a missing link to dosage compensation and speciation. Mol Ecol 2015. [DOI: 10.1111/mec.13335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Miguel Gallach
- Center for Integrative Bioinformatics Vienna (CIBIV); Max F Perutz Laboratories; University of Vienna and Medical University of Vienna; Campus Vienna Biocenter 5 A-1030 Vienna Austria
| |
Collapse
|
20
|
Zheng S, Villa R, Wang J, Feng Y, Wang J, Becker PB, Ye K. Structural basis of X chromosome DNA recognition by the MSL2 CXC domain during Drosophila dosage compensation. Genes Dev 2015; 28:2652-62. [PMID: 25452275 PMCID: PMC4248295 DOI: 10.1101/gad.250936.114] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The male-specific lethal dosage compensation complex (MSL-DCC) selectively assembles on the X chromosome in Drosophila and activates gene transcription by twofold through histone acetylation. An MSL recognition element (MRE) sequence motif nucleates the initial MSL association. Here, Zheng et al. identified the CXC domain of MSL2 specifically recognizing the MRE motif and determined its crystal structure bound to specific and nonspecific DNAs. Specific DNA-binding mutants of MSL2 are impaired in MRE binding and X chromosome localization in vivo. The male-specific lethal dosage compensation complex (MSL-DCC) selectively assembles on the X chromosome in Drosophila males and activates gene transcription by twofold through histone acetylation. An MSL recognition element (MRE) sequence motif nucleates the initial MSL association, but how it is recognized remains unknown. Here, we identified the CXC domain of MSL2 specifically recognizing the MRE motif and determined its crystal structure bound to specific and nonspecific DNAs. The CXC domain primarily contacts one strand of DNA duplex and employs a single arginine to directly read out dinucleotide sequences from the minor groove. The arginine is flexible when bound to nonspecific sequences. The core region of the MRE motif harbors two binding sites on opposite strands that can cooperatively recruit a CXC dimer. Specific DNA-binding mutants of MSL2 are impaired in MRE binding and X chromosome localization in vivo. Our results reveal multiple dynamic DNA-binding modes of the CXC domain that target the MSL-DCC to X chromosomes.
Collapse
Affiliation(s)
- Sanduo Zheng
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Raffaella Villa
- Molecular Biology Unit, Adolf Butenandt Institute, Center for Integrated Protein Science, Ludwig-Maximilians University, 80336 Munich, Germany
| | - Jia Wang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Yingang Feng
- Qingdao Engineering Laboratory of Single Cell Oil, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shangdong 266101, China
| | | | - Peter B Becker
- Molecular Biology Unit, Adolf Butenandt Institute, Center for Integrated Protein Science, Ludwig-Maximilians University, 80336 Munich, Germany
| | - Keqiong Ye
- National Institute of Biological Sciences, Beijing 102206, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
21
|
Militti C, Maenner S, Becker PB, Gebauer F. UNR facilitates the interaction of MLE with the lncRNA roX2 during Drosophila dosage compensation. Nat Commun 2014; 5:4762. [PMID: 25158899 DOI: 10.1038/ncomms5762] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/21/2014] [Indexed: 12/30/2022] Open
Abstract
Dosage compensation is a regulatory process that balances the expression of X-chromosomal genes between males (XY) and females (XX). In Drosophila, this requires non-coding RNAs and RNA-binding proteins (RBPs) whose specific functions remain elusive. Here we show that the Drosophila RBP UNR promotes the targeting of the activating male-specific-lethal complex to the X-chromosome by facilitating the interaction of two crucial subunits: the RNA helicase MLE and the long non-coding RNA roX2.
Collapse
Affiliation(s)
- Cristina Militti
- 1] Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), Dr Aiguader 88, Barcelona 08003, Spain [2] Universitat Pompeu Fabra (UPF), Dr Aiguader 88, Barcelona 08003, Spain [3]
| | - Sylvain Maenner
- 1] Adolf-Butenandt-Institute and Center for Integrated Protein Science, Ludwig-Maximilians University, Munich D-80336, Germany [2]
| | - Peter B Becker
- Adolf-Butenandt-Institute and Center for Integrated Protein Science, Ludwig-Maximilians University, Munich D-80336, Germany
| | - Fátima Gebauer
- 1] Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), Dr Aiguader 88, Barcelona 08003, Spain [2] Universitat Pompeu Fabra (UPF), Dr Aiguader 88, Barcelona 08003, Spain
| |
Collapse
|
22
|
Soruco MML, Larschan E. A new player in X identification: the CLAMP protein is a key factor in Drosophila dosage compensation. Chromosome Res 2014; 22:505-15. [PMID: 25102930 DOI: 10.1007/s10577-014-9438-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/29/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Abstract
Dosage compensation adjusts the expression levels of genes on one or both targeted sex chromosomes in heterogametic species. This process results in the normalized transcriptional output of important and essential gene families encoded on multiple chromosomes. The mechanisms of dosage compensation have been studied in many model organisms, including Drosophila melanogaster (fly), Caenorhabditis elegans (worm), and Mus musculus (mouse). Although the mechanisms of dosage compensations differ among these species, all of these processes rely on the initial discrimination of the X chromosome from autosomes. Recently, a new paradigm for how the X chromosome is targeted for regulation was identified in Drosophila. This mechanism involves a newly identified zinc finger protein, CLAMP. Here, we review important factors involved in dosage compensation across species with special focus on the fly. Understanding how the newly identified CLAMP protein is involved in X targeting in the fly could provide key insights into how the X chromosome is initially identified across species.
Collapse
Affiliation(s)
- Marcela M L Soruco
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | | |
Collapse
|
23
|
Chery J, Larschan E. X-marks the spot: X-chromosome identification during dosage compensation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:234-40. [PMID: 24406325 DOI: 10.1016/j.bbagrm.2013.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 12/29/2013] [Accepted: 12/30/2013] [Indexed: 12/11/2022]
Abstract
Dosage compensation is the essential process that equalizes the dosage of X-linked genes between the sexes in heterogametic species. Because all of the genes along the length of a single chromosome are co-regulated, dosage compensation serves as a model system for understanding how domains of coordinate gene regulation are established. Dosage compensation has been best studied in mammals, flies and worms. Although dosage compensation systems are seemingly diverse across species, there are key shared principles of nucleation and spreading that are critical for accurate targeting of the dosage compensation complex to the X-chromosome(s). We will highlight the mechanisms by which long non-coding RNAs function together with DNA sequence elements to tether dosage compensation complexes to the X-chromosome. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.
Collapse
Affiliation(s)
- Jessica Chery
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Erica Larschan
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA.
| |
Collapse
|
24
|
Straub T, Zabel A, Gilfillan GD, Feller C, Becker PB. Different chromatin interfaces of the Drosophila dosage compensation complex revealed by high-shear ChIP-seq. Genome Res 2012; 23:473-85. [PMID: 23233545 PMCID: PMC3589536 DOI: 10.1101/gr.146407.112] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transcriptional enhancement of X-linked genes to compensate for the sex chromosome monosomy in Drosophila males is brought about by a ribonucleoprotein assembly called Male-Specific-Lethal or Dosage Compensation Complex (MSL-DCC). This machinery is formed in male flies and specifically associates with active genes on the X chromosome. After assembly at dedicated high-affinity "entry" sites (HAS) on the X chromosome, the complex distributes to the nearby active chromatin. High-resolution, genome-wide mapping of the MSL-DCC subunits by chromatin immunoprecipitation (ChIP) on oligonucleotide tiling arrays suggests a rather homogenous spreading of the intact complex onto transcribed chromatin. Coupling ChIP to deep sequencing (ChIP-seq) promises to map the chromosomal interactions of the DCC with improved resolution. We present ChIP-seq binding profiles for all complex subunits, including the first description of the RNA helicase MLE binding pattern. Exploiting the preferential representation of direct chromatin contacts upon high-energy shearing, we report a surprising functional and topological separation of MSL protein contacts at three classes of chromosomal binding sites. Furthermore, precise determination of DNA fragment lengths by paired-end ChIP-seq allows decrypting of the local complex architecture. Primary contacts of MSL-2 and MLE define HAS for the DCC. In contrast, association of the DCC with actively transcribed gene bodies is mediated by MSL-3 binding to nucleosomes. We identify robust MSL-1/MOF binding at a fraction of active promoters genome-wide. Correlation analyses suggest that this association reflects a function outside dosage compensation. Our comprehensive analysis provides a new level of information on different interaction modes of a multiprotein complex at distinct regions within the genome.
Collapse
Affiliation(s)
- Tobias Straub
- Adolf-Butenandt-Institute and Center for Integrated Protein Science, Ludwig-Maximilians-University, D-80336 Munich, Germany.
| | | | | | | | | |
Collapse
|
25
|
[Research advance of dosage compensation and MSL complex]. YI CHUAN = HEREDITAS 2012; 34:533-44. [PMID: 22659425 DOI: 10.3724/sp.j.1005.2012.00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dosage compensation effect, which exists widely in eukaryotes with sexual reproduction, is an essential biological process that equalizes the level of gene expression between genders based on sex determination. In Drosophila, the male-specific lethal (MSL) complex mediates dosage compensation by acetylating histone H4 lysine K16 on nucleosome of some specific sites on the male X chromosome, globally upregulates twofold expression of active X-linked genes from the single X chromosome, and makes up for the shortage that the male has only one single X chromosome in male Drosophila. Up to date, the structure of basic components of MSL complex, which consists of at least five protein subunits and two non-coding RNAs, has already been revealed, and the interaction sites among these components have also been generally identified. Furthermore, abundant researches on recognition mechanism of the complex have been published. In contrast, many studies have revealed that mammalian dosage compensation functions by silencing gene expression from one of the two X chromosomes in females. The main components of mammalian MSL complex have already been identified, but the knowledge of their function is limited. Up to now, research of MSLs in teleosts is scarcely studied. This review summarizes the similarities and differences among dosage compensation mechanisms of nematodes, fruit flies and mammals, introduces the recent research advances in MSL complex, as well as molecular mechanism of dosage compensation in fruit fly, and finally addresses some problems to be resolved. Meanwhile, the diversity of msl3 gene in fishes is found by synteny analysis. This information might provide insightful directions for future research on the mechanisms of dosage compensation in various species.
Collapse
|
26
|
Lim CK, Kelley RL. Autoregulation of the Drosophila Noncoding roX1 RNA Gene. PLoS Genet 2012; 8:e1002564. [PMID: 22438819 PMCID: PMC3305356 DOI: 10.1371/journal.pgen.1002564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 01/15/2012] [Indexed: 01/17/2023] Open
Abstract
Most genes along the male single X chromosome in Drosophila are hypertranscribed about two-fold relative to each of the two female X chromosomes. This is accomplished by the MSL (male-specific lethal) complex that acetylates histone H4 at lysine 16. The MSL complex contains two large noncoding RNAs, roX1 (RNA on X) and roX2, that help target chromatin modifying enzymes to the X. The roX RNAs are functionally redundant but differ in size, sequence, and transcriptional control. We wanted to find out how roX1 production is regulated. Ectopic DC can be induced in wild-type (roX1(+) roX2(+)) females if we provide a heterologous source of MSL2. However, in the absence of roX2, we found that roX1 expression failed to come on reliably. Using an in situ hybridization probe that is specific only to endogenous roX1, we found that expression was restored if we introduced either roX2 or a truncated but functional version of roX1. This shows that pre-existing roX RNA is required to positively autoregulate roX1 expression. We also observed massive cis spreading of the MSL complex from the site of roX1 transcription at its endogenous location on the X chromosome. We propose that retention of newly assembled MSL complex around the roX gene is needed to drive sustained transcription and that spreading into flanking chromatin contributes to the X chromosome targeting specificity. Finally, we found that the gene encoding the key male-limited protein subunit, msl2, is transcribed predominantly during DNA replication. This suggests that new MSL complex is made as the chromatin template doubles. We offer a model describing how the production of roX1 and msl2, two key components of the MSL complex, are coordinated to meet the dosage compensation demands of the male cell.
Collapse
Affiliation(s)
- Chiat Koo Lim
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
27
|
Conrad T, Akhtar A. Dosage compensation in Drosophila melanogaster: epigenetic fine-tuning of chromosome-wide transcription. Nat Rev Genet 2012; 13:123-34. [PMID: 22251873 DOI: 10.1038/nrg3124] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dosage compensation is an epigenetic mechanism that normalizes gene expression from unequal copy numbers of sex chromosomes. Different organisms have evolved alternative molecular solutions to this task. In Drosophila melanogaster, transcription of the single male X chromosome is upregulated by twofold in a process orchestrated by the dosage compensation complex. Despite this conceptual simplicity, dosage compensation involves multiple coordinated steps to recognize and activate the entire X chromosome. We are only beginning to understand the intriguing interplay between multiple levels of local and long-range chromatin regulation required for the fine-tuned transcriptional activation of a heterogeneous gene population. This Review highlights the known facts and open questions of dosage compensation in D. melanogaster.
Collapse
Affiliation(s)
- Thomas Conrad
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg im Breisgau, Germany
| | | |
Collapse
|
28
|
Maenner S, Müller M, Becker PB. Roles of long, non-coding RNA in chromosome-wide transcription regulation: lessons from two dosage compensation systems. Biochimie 2012; 94:1490-8. [PMID: 22239950 DOI: 10.1016/j.biochi.2011.12.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 12/31/2011] [Indexed: 11/17/2022]
Abstract
A large part of higher eukaryotic genomes is transcribed into RNAs lacking any significant open reading frame. This "non-coding part" has been shown to actively contribute to regulating gene expression, but the mechanisms are largely unknown. Particularly instructive examples are provided by the dosage compensation systems, which assure that the single X chromosome in male cells and the two X chromosomes in female cells give rise to similar amounts of gene product. Although this is achieved by very different strategies in mammals and fruit flies, long, non-coding RNAs (lncRNAs) are involved in both cases. Here we summarize recent progress towards unraveling the mechanisms, by which the Xist and roX RNAs mediate the selective association of regulators with individual target chromosomes, to initiate dosage compensation in mammals and fruit flies, respectively.
Collapse
Affiliation(s)
- Sylvain Maenner
- Adolf-Butenandt-Institute and Center for Integrated Protein Science (CIPSM), Ludwig Maximilian University Munich, Schillerstrasse 44, 80336 München, Germany.
| | | | | |
Collapse
|
29
|
Transcription modulation chromosome-wide: universal features and principles of dosage compensation in worms and flies. Curr Opin Genet Dev 2011; 21:147-53. [PMID: 21316939 DOI: 10.1016/j.gde.2011.01.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 01/18/2011] [Indexed: 11/22/2022]
Abstract
Dosage compensation processes in flies and worms provide a unique opportunity to study common regulatory principles of thousands of genes. Technological advancement in the recent years has allowed for the comprehensive description of key aspects such as the targeting of the regulatory factors, the emerging chromatin structure changes and the ensuing subtle transcriptional alterations. With plenty of data at hand the challenge remains to integrate the findings into coherent models that appreciate the global nature of the underlying principles leaving the experimental anecdotes behind while avoiding the numerical burlesque.
Collapse
|
30
|
Morra R, Yokoyama R, Ling H, Lucchesi JC. Role of the ATPase/helicase maleless (MLE) in the assembly, targeting, spreading and function of the male-specific lethal (MSL) complex of Drosophila. Epigenetics Chromatin 2011; 4:6. [PMID: 21486482 PMCID: PMC3096584 DOI: 10.1186/1756-8935-4-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 04/12/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The male-specific lethal (MSL) complex of Drosophila remodels the chromatin of the X chromosome in males to enhance the level of transcription of most X-linked genes, and thereby achieve dosage compensation. The core complex consists of five proteins and one of two non-coding RNAs. One of the proteins, MOF (males absent on the first), is a histone acetyltransferase that specifically acetylates histone H4 at lysine 16. Another protein, maleless (MLE), is an ATP-dependent helicase with the ability to unwind DNA/RNA or RNA/RNA substrates in vitro. Recently, we showed that the ATPase activity of MLE is sufficient for the hypertranscription of genes adjacent to a high-affinity site by MSL complexes located at that site. The helicase activity is required for the spreading of the complex to the hundreds of positions along the X chromosome, where it is normally found. In this study, to further understand the role of MLE in the function of the MSL complex, we analyzed its relationship to the other complex components by creating a series of deletions or mutations in its putative functional domains, and testing their effect on the distribution and function of the complex in vivo. RESULTS The presence of the RB2 RNA-binding domain is necessary for the association of the MSL3 protein with the other complex subunits. In its absence, the activity of the MOF subunit was compromised, and the complex failed to acetylate histone H4 at lysine 16. Deletion of the RB1 RNA-binding domain resulted in complexes that maintained substantial acetylation activity but failed to spread beyond the high-affinity sites. Flies bearing this mutation exhibited low levels of roX RNAs, indicating that these RNAs failed to associate with the proteins of the complex and were degraded, or that MLE contributes to their synthesis. Deletion of the glycine-rich C-terminal region, which contains a nuclear localization sequence, caused a substantial level of retention of the other MSL proteins in the cytoplasm. These data suggest that the MSL proteins assemble into complexes or subcomplexes before entering the nucleus. CONCLUSIONS This study provides insights into the role that MLE plays in the function of the MSL complex through its association with roX RNAs and the other MSL subunits, and suggests a hypothesis to explain the role of MLE in the synthesis of these RNAs.
Collapse
Affiliation(s)
- Rosa Morra
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
31
|
Koya SK, Meller VH. roX RNAs and Genome Regulation in Drosophila Melanogaster. LONG NON-CODING RNAS 2011; 51:147-60. [DOI: 10.1007/978-3-642-16502-3_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Wang X, Song X, Glass CK, Rosenfeld MG. The long arm of long noncoding RNAs: roles as sensors regulating gene transcriptional programs. Cold Spring Harb Perspect Biol 2011; 3:a003756. [PMID: 20573714 DOI: 10.1101/cshperspect.a003756] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A major surprise arising from genome-wide analyses has been the observation that the majority of the genome is transcribed, generating noncoding RNAs (ncRNAs). It is still an open question whether some or all of these ncRNAs constitute functional networks regulating gene transcriptional programs. However, in light of recent discoveries and given the diversity and flexibility of long ncRNAs and their abilities to nucleate molecular complexes and to form spatially compact arrays of complexes, it becomes likely that many or most ncRNAs act as sensors and integrators of a wide variety of regulated transcriptional responses and probably epigenetic events. Because many RNA-binding proteins, on binding RNAs, show distinct allosteric conformational alterations, we suggest that a ncRNA/RNA-binding protein-based strategy, perhaps in concert with several other mechanistic strategies, serves to integrate transcriptional, as well as RNA processing, regulatory programs.
Collapse
Affiliation(s)
- Xiangting Wang
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego School of Medicine, La Jolla, California 92093-0651, USA
| | | | | | | |
Collapse
|
33
|
Schiemann AH, Li F, Weake VM, Belikoff EJ, Klemmer KC, Moore SA, Scott MJ. Sex-biased transcription enhancement by a 5' tethered Gal4-MOF histone acetyltransferase fusion protein in Drosophila. BMC Mol Biol 2010; 11:80. [PMID: 21062452 PMCID: PMC2988783 DOI: 10.1186/1471-2199-11-80] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 11/09/2010] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND In male Drosophila melanogaster, the male specific lethal (MSL) complex is somehow responsible for a two-fold increase in transcription of most X-linked genes, which are enriched for histone H4 acetylated at lysine 16 (H4K16ac). This acetylation requires MOF, a histone acetyltransferase that is a component of the MSL complex. MOF also associates with the non-specific lethal or NSL complex. The MSL complex is bound within active genes on the male X chromosome with a 3' bias. In contrast, the NSL complex is enriched at promoter regions of many autosomal and X-linked genes in both sexes. In this study we have investigated the role of MOF as a transcriptional activator. RESULTS MOF was fused to the DNA binding domain of Gal4 and targeted to the promoter region of UAS-reporter genes in Drosophila. We found that expression of a UAS-red fluorescent protein (DsRed) reporter gene was strongly induced by Gal4-MOF. However, DsRed RNA levels were about seven times higher in female than male larvae. Immunostaining of polytene chromosomes showed that Gal4-MOF co-localized with MSL1 to many sites on the X chromosome in male but not female nuclei. However, in female nuclei that express MSL2, Gal4-MOF co-localized with MSL1 to many sites on polytene chromosomes but DsRed expression was reduced. Mutation of conserved active site residues in MOF (Glu714 and Cys680) reduced HAT activity in vitro and UAS-DsRed activation in Drosophila. In the presence of Gal4-MOF, H4K16ac levels were enriched over UAS-lacZ and UAS-arm-lacZ reporter genes. The latter utilizes the constitutive promoter from the arm gene to drive lacZ expression. In contrast to the strong induction of UAS-DsRed expression, UAS-arm-lacZ expression increased by about 2-fold in both sexes. CONCLUSIONS Targeting MOF to reporter genes led to transcription enhancement and acetylation of histone H4 at lysine 16. Histone acetyltransferase activity was required for the full transcriptional response. Incorporation of Gal4-MOF into the MSL complex in males led to a lower transcription enhancement of UAS-DsRed but not UAS-arm-lacZ genes. We discuss how association of Gal4-MOF with the MSL or NSL proteins could explain our results.
Collapse
Affiliation(s)
- Anja H Schiemann
- Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | | | | | | | | | |
Collapse
|
34
|
Schiemann AH, Weake VM, Li F, Laverty C, Belikoff EJ, Scott MJ. The importance of location and orientation of male specific lethal complex binding sites of differing affinities on reporter gene dosage compensation in Drosophila. Biochem Biophys Res Commun 2010; 402:699-704. [PMID: 20977887 DOI: 10.1016/j.bbrc.2010.10.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 10/20/2010] [Indexed: 01/24/2023]
Abstract
The male specific lethal (MSL) complex is required for X chromosome dosage compensation in Drosophila. The complex binds to most actively transcribed X-linked genes in males and upregulates expression. High resolution chromatin immunoprecipitation assays have identified over one hundred high affinity binding sites on the X chromosome. One of the first high affinity sites discovered is at cytological location 18D11. The MSL complex binds weakly to a single copy of a 510bp fragment from 18D11 but strongly to a tetramer of the fragment. Here we have investigated the effect of insertion of sites of differing affinities, either upstream or within the transcribed gene, on complex binding and transcription upregulation. Insertion of four copies of the 18D11 fragment upstream or at the 3' end of a reporter gene led to strong MSL complex binding and increased expression in males. In contrast, the MSL complex did not bind consistently to autosomal transgenes that contained a single copy of the 18D11 site upstream of the gene promoter. However, MSL complex binding was observed in all lines if the single 18D11 fragment was inserted into the 3' end of the reporter gene in either orientation. This is consistent with previous studies that showed gene transcription facilitates MSL complex binding. Surprisingly, transcription elevation in males was only observed if the 18D11 fragment was in the forward orientation and only in some lines. Our results suggest that MSL complex binding to weaker sites and transcription enhancement is influenced by gene transcription, binding site orientation and the local chromatin environment. In contrast, strong binding sites do not need to be transcribed to recruit sufficient complex to cause transcription elevation of nearby genes.
Collapse
Affiliation(s)
- Anja H Schiemann
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand.
| | | | | | | | | | | |
Collapse
|
35
|
Dementyeva E, Zakian S. Dosage compensation of sex chromosome genes in eukaryotes. Acta Naturae 2010; 2:36-43. [PMID: 22649662 PMCID: PMC3347590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sex chromosome evolution is accompanied by significant divergence in morphology and gene content and results in most genes of one of the sex chromosomes being present in two dosages in one sex and in one dosage in the other. To eliminate the difference in the expression levels of these genes between sexes and to restore equal expression levels of the genes between sex chromosomes and autosomes, mechanisms of dosage compensation have appeared. Studies of three classical objects,Drosophila melanogaster,Caenorhabditis elegans, and mammals, have shown that dosage compensation of X-linked genes can be achieved through completely different chromosome-wide mechanisms. New data on sex chromosome gene expression demonstrating that many sex chromosome genes can be expressed at different levels in males and females were recently obtained from birds and butterflies. In this review, dosage compensation mechanisms inD. melanogaster,C. elegans, and mammals are considered and the data on sex chromosome gene expression in birds and butterflies, and their influence on our view of dosage compensation, are discussed.
Collapse
Affiliation(s)
- E.V. Dementyeva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences
| | - S.M. Zakian
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences
- Research Center of Clinical and Experimental Medicine, Siberian Branch, Russian Academy of Medical Sciences
| |
Collapse
|
36
|
Gladstein N, McKeon MN, Horabin JI. Requirement of male-specific dosage compensation in Drosophila females--implications of early X chromosome gene expression. PLoS Genet 2010; 6:e1001041. [PMID: 20686653 PMCID: PMC2912388 DOI: 10.1371/journal.pgen.1001041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 06/24/2010] [Indexed: 11/18/2022] Open
Abstract
Dosage compensation equates between the sexes the gene dose of sex chromosomes that carry substantially different gene content. In Drosophila, the single male X chromosome is hypertranscribed by approximately two-fold to effect this correction. The key genes are male lethal and appear not to be required in females, or affect their viability. Here, we show these male lethals do in fact have a role in females, and they participate in the very process which will eventually shut down their function—female determination. We find the male dosage compensation complex is required for upregulating transcription of the sex determination master switch, Sex-lethal, an X-linked gene which is specifically activated in females in response to their two X chromosomes. The levels of some X-linked genes are also affected, and some of these genes are used in the process of counting the number of X chromosomes early in development. Our data suggest that before the female state is set, the ground state is male and female X chromosome expression is elevated. Females thus utilize the male dosage compensation process to amplify the signal which determines their fate. When substantially different, sex chromosomes present the challenge of not only gene dose inequity between the sexes, in the heterogametic sex where one chromosome (frequently the Y) carries few genes, but also an inequity relative to the autosomes which are diploid. Dosage compensation refers to the process which equates gene dose between the sexes. Recent results, however, indicate that the mammalian X chromosome avoids monosomy and has a level of expression that is two-fold relative to the autosomes. Hyperactive X chromosome expression in Caenorhabditis elegans has also been suggested, and dosage compensation in the hermaphrodite appears to lower expression of the X chromosomes to match autosome levels. We find that, before the female state is set in Drosophila, the X chromosomes may also express their genes at the two-fold male level and that this level of expression is used to female advantage to consolidate their sex determination. Together, the results suggest that elevated X chromosome expression may be the norm, and that the various dosage compensation processes different organisms utilize reflect a mechanism to counteract an initial hyperactive X chromosome state.
Collapse
Affiliation(s)
- Natalie Gladstein
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Meghan N. McKeon
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Jamila I. Horabin
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
37
|
Prabhakaran M, Kelley RL. A new strategy for isolating genes controlling dosage compensation in Drosophila using a simple epigenetic mosaic eye phenotype. BMC Biol 2010; 8:80. [PMID: 20537125 PMCID: PMC2893135 DOI: 10.1186/1741-7007-8-80] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 06/10/2010] [Indexed: 12/18/2022] Open
Abstract
Background The Drosophila Male Specific Lethal (MSL) complex contains chromatin modifying enzymes and non-coding roX RNA. It paints the male X at hundreds of bands where it acetylates histone H4 at lysine 16. This epigenetic mark increases expression from the single male X chromosome approximately twofold above what gene-specific factors produce from each female X chromosome. This equalises X-linked gene expression between the sexes. Previous screens for components of dosage compensation relied on a distinctive male-specific lethal phenotype. Results Here, we report a new strategy relying upon an unusual male-specific mosaic eye pigmentation phenotype produced when the MSL complex acts upon autosomal roX1 transgenes. Screening the second chromosome identified at least five loci, two of which are previously described components of the MSL complex. We focused our analysis on the modifier alleles of MSL1 and MLE (for 'maleless'). The MSL1 lesions are not simple nulls, but rather alter the PEHE domain that recruits the MSL3 chromodomain and MOF ('males absent on first') histone acetyltransferase subunits to the complex. These mutants are compromised in their ability to recruit MSL3 and MOF, dosage compensate the X, and support long distance spreading from roX1 transgenes. Yet, paradoxically, they were isolated because they somehow increase MSL complex activity immediately around roX1 transgenes in combination with wild-type MSL1 subunits. Conclusions We propose that these diverse phenotypes arise from perturbations in assembly of MSL subunits onto nascent roX transcripts. This strategy is a promising alternative route for identifying previously unknown components of the dosage compensation pathway and novel alleles of known MSL proteins.
Collapse
|
38
|
Abstract
In higher eukaryotes, histone acetyltransferase MOF (male absent on the first) is the major enzyme that acetylates histone H4 lysine 16, a prevalent mark associated with chromatin decondensation. Recent studies show that MOF resides in two different but evolutionarily conserved complexes, MSL and MOF-MSL1v1. Although these two MOF complexes have indistinguishable activity on histone H4 K16, they differ dramatically in acetylating non-histone substrate p53. The regulation of MOF activity in these complexes remains elusive. Given the evolution conservation of MOF and the importance of H4 K16 acetylation in maintaining higher order chromatin structures, understanding the function and regulation of MOF bears great significance. Here, we discussed the key differences in two MOF complexes that may shed light on the regulation of their distinct acetyltransferase activities. We also discussed coordinated functions of two MOF complexes with different histone methyltransferase complexes in transcription regulation.
Collapse
|
39
|
Fauth T, Müller-Planitz F, König C, Straub T, Becker PB. The DNA binding CXC domain of MSL2 is required for faithful targeting the Dosage Compensation Complex to the X chromosome. Nucleic Acids Res 2010; 38:3209-21. [PMID: 20139418 PMCID: PMC2879509 DOI: 10.1093/nar/gkq026] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dosage compensation in Drosophila melanogaster involves the selective targeting of the male X chromosome by the dosage compensation complex (DCC) and the coordinate, ∼2-fold activation of most genes. The principles that allow the DCC to distinguish the X chromosome from the autosomes are not understood. Targeting presumably involves DNA sequence elements whose combination or enrichment mark the X chromosome. DNA sequences that characterize ‘chromosomal entry sites’ or ‘high-affinity sites’ may serve such a function. However, to date no DNA binding domain that could interpret sequence information has been identified within the subunits of the DCC. Early genetic studies suggested that MSL1 and MSL2 serve to recognize high-affinity sites (HAS) in vivo, but a direct interaction of these DCC subunits with DNA has not been studied. We now show that recombinant MSL2, through its CXC domain, directly binds DNA with low nanomolar affinity. The DNA binding of MSL2 or of an MSL2–MSL1 complex does not discriminate between different sequences in vitro, but in a reporter gene assay in vivo, suggesting the existence of an unknown selectivity cofactor. Reporter gene assays and localization of GFP-fusion proteins confirm the important contribution of the CXC domain for DCC targeting in vivo.
Collapse
Affiliation(s)
- Torsten Fauth
- Adolf-Butenandt-Institute and Centre for Integrated Protein Science, Ludwig-Maximilians-University, 80336 Munich, Germany
| | | | | | | | | |
Collapse
|
40
|
DNA binding of centromere protein C (CENPC) is stabilized by single-stranded RNA. PLoS Genet 2010; 6:e1000835. [PMID: 20140237 PMCID: PMC2816676 DOI: 10.1371/journal.pgen.1000835] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 01/04/2010] [Indexed: 11/19/2022] Open
Abstract
Centromeres are the attachment points between the genome and the cytoskeleton: centromeres bind to kinetochores, which in turn bind to spindles and move chromosomes. Paradoxically, the DNA sequence of centromeres has little or no role in perpetuating kinetochores. As such they are striking examples of genetic information being transmitted in a manner that is independent of DNA sequence (epigenetically). It has been found that RNA transcribed from centromeres remains bound within the kinetochore region, and this local population of RNA is thought to be part of the epigenetic marking system. Here we carried out a genetic and biochemical study of maize CENPC, a key inner kinetochore protein. We show that DNA binding is conferred by a localized region 122 amino acids long, and that the DNA-binding reaction is exquisitely sensitive to single-stranded RNA. Long, single-stranded nucleic acids strongly promote the binding of CENPC to DNA, and the types of RNAs that stabilize DNA binding match in size and character the RNAs present on kinetochores in vivo. Removal or replacement of the binding module with HIV integrase binding domain causes a partial delocalization of CENPC in vivo. The data suggest that centromeric RNA helps to recruit CENPC to the inner kinetochore by altering its DNA binding characteristics. Here we address the issue of how genetic information is passed from one generation to the next without the involvement of specific DNA sequences. This type of inheritance is referred to as epigenetics. Centromeric sequences are highly variable and in many cases are not sufficient for centromere function. Rather, secondary features of the DNA, such as methylation or associated RNA molecules may serve to recruit key centromere binding proteins. Prior data from several species have established that single-stranded RNAs are surprisingly abundant on centromeric chromatin. Here we identified the DNA-binding domain of a key centromere binding protein in maize (CENPC) and showed that it requires single-stranded RNA to effectively bind DNA in vitro. When the DNA/RNA binding domain was deleted, the accuracy of CENPC targeting to centromeres was reduced but not abolished. The results bolster the view that centromere-bound RNA is one component of the epigenetic determination process that assures centromeres are stably inherited. In addition, our data suggest a general mechanism for how RNA can influence the binding of chromatin proteins to DNA.
Collapse
|
41
|
Abstract
In Drosophila, dosage compensation of the single male X chromosome involves upregulation of expression of X linked genes. Dosage compensation complex or the male specific lethal (MSL) complex is intimately involved in this regulation. The MSL complex members decorate the male X chromosome by binding on hundreds of sites along the X chromosome. Recent genome wide analysis has brought new light into X chromosomal regulation. It is becoming increasingly clear that although the X chromosome achieves male specific regulation via the MSL complex members, a number of general factors also impinge on this regulation. Future studies integrating these aspects promise to shed more light into this epigenetic phenomenon.
Collapse
|
42
|
Vicoso B, Bachtrog D. Progress and prospects toward our understanding of the evolution of dosage compensation. Chromosome Res 2009; 17:585-602. [PMID: 19626444 PMCID: PMC2758192 DOI: 10.1007/s10577-009-9053-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In many eukaryotic organisms, gender is determined by a pair of heteromorphic sex chromosomes. Degeneration of the non-recombining Y chromosome is a general facet of sex chromosome evolution. Selective pressure to restore expression levels of X-linked genes relative to autosomes accompanies Y-chromosome degeneration, thus driving the evolution of dosage compensation mechanisms. This review focuses on evolutionary aspects of dosage compensation, in light of recent advances in comparative and functional genomics that have substantially increased our understanding of the molecular mechanisms of dosage compensation and how it evolved. We review processes involved in sex chromosome evolution, and discuss the dynamic interaction between Y degeneration and the acquisition of dosage compensation. We compare mechanisms of dosage compensation and the origin of dosage compensation genes between different taxa and comment on sex chromosomes that apparently lack compensation mechanisms. Finally, we discuss how dosage compensation systems can also influence the evolution of well-established sex chromosomes.
Collapse
Affiliation(s)
- Beatriz Vicoso
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | | |
Collapse
|
43
|
Vermaak D, Bayes JJ, Malik HS. A surrogate approach to study the evolution of noncoding DNA elements that organize eukaryotic genomes. J Hered 2009; 100:624-36. [PMID: 19635763 DOI: 10.1093/jhered/esp063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Comparative genomics provides a facile way to address issues of evolutionary constraint acting on different elements of the genome. However, several important DNA elements have not reaped the benefits of this new approach. Some have proved intractable to current day sequencing technology. These include centromeric and heterochromatic DNA, which are essential for chromosome segregation as well as gene regulation, but the highly repetitive nature of the DNA sequences in these regions make them difficult to assemble into longer contigs. Other sequences, like dosage compensation X chromosomal sites, origins of DNA replication, or heterochromatic sequences that encode piwi-associated RNAs, have proved difficult to study because they do not have recognizable DNA features that allow them to be described functionally or computationally. We have employed an alternate approach to the direct study of these DNA elements. By using proteins that specifically bind these noncoding DNAs as surrogates, we can indirectly assay the evolutionary constraints acting on these important DNA elements. We review the impact that such "surrogate strategies" have had on our understanding of the evolutionary constraints shaping centromeres, origins of DNA replication, and dosage compensation X chromosomal sites. These have begun to reveal that in contrast to the view that such structural DNA elements are either highly constrained (under purifying selection) or free to drift (under neutral evolution), some of them may instead be shaped by adaptive evolution and genetic conflicts (these are not mutually exclusive). These insights also help to explain why the same elements (e.g., centromeres and replication origins), which are so complex in some eukaryotic genomes, can be simple and well defined in other where similar conflicts do not exist.
Collapse
Affiliation(s)
- Danielle Vermaak
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | |
Collapse
|
44
|
Gelbart ME, Kuroda MI. Drosophila dosage compensation: a complex voyage to the X chromosome. Development 2009; 136:1399-410. [PMID: 19363150 DOI: 10.1242/dev.029645] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dosage compensation is the crucial process that equalizes gene expression from the X chromosome between males (XY) and females (XX). In Drosophila, the male-specific lethal (MSL) ribonucleoprotein complex mediates dosage compensation by upregulating transcription from the single male X chromosome approximately twofold. A key challenge is to understand how the MSL complex distinguishes the X chromosome from autosomes. Recent studies suggest that this occurs through a multi-step targeting mechanism that involves DNA sequence elements and epigenetic marks associated with transcription. This review will discuss the relative contributions of sequence elements and transcriptional marks to the complete pattern of MSL complex binding.
Collapse
Affiliation(s)
- Marnie E Gelbart
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
45
|
Sexual development in Lucilia cuprina (Diptera, Calliphoridae) is controlled by the transformer gene. Genetics 2009; 182:785-98. [PMID: 19433631 DOI: 10.1534/genetics.109.100982] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insects use an amazing variety of genetic systems to control sexual development. A Y-linked male determining gene (M) controls sex in the Australian sheep blowfly Lucilia cuprina, an important pest insect. In this study, we isolated the L. cuprina transformer (Lctra) and transformer2 (Lctra2) genes, which are potential targets of M. The LCTRA and LCTRA2 proteins are significantly more similar to homologs from tephritid insects than Drosophila. The Lctra transcript is alternatively spliced such that only females make a full-length protein and the presence of six TRA/TRA2 binding sites in the female first intron suggest that Lctra splicing is autoregulated as in tephritids. LCTRA is essential for female development as RNAi knockdown of Lctra mRNA leads to the development of male genitalia in XX adults. Analysis of Lctra expression during development shows that early and midstage male and female embryos express the female form of Lctra and males express only the male form by the first instar larval stage. Our results suggest that an autoregulatory loop sustains female development and that expression of M inhibits Lctra autoregulation, switching its splicing to the male form. The conservation of tra function and regulation in a Calliphorid insect shows that this sex determination system is not confined to Tephritidae. Isolation of these genes is an important step toward the development of a strain of L. cuprina suitable for a genetic control program.
Collapse
|
46
|
Pierre W, Morra R, Lucchesi J, Yedvobnick B. A male-specific effect of dominant-negative Fos. Dev Dyn 2008; 237:3361-72. [PMID: 18924113 DOI: 10.1002/dvdy.21751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The transcription factor Fos contains a basic DNA binding domain combined with a leucine zipper (bZip). Expression of a truncated form of Fos in Drosophila that contains only the bZip region (Fos bZip) elicits phenotypes resembling fos mutations. These effects presumably derive from competition between wild-type and truncated forms for dimerization partners, with the truncation acting in a dominant-negative manner. We found that expression of Fos bZip elicits male-specific phenotypes. Moreover, genetic interactions occur between Fos bZip and mutations in loci encoding the X chromosome dosage compensation complex. Fos bZip effects are correlated with aberrant male X chromosome structure and depressed signaling through the X-linked Notch locus. Unexpectedly, the male-specific effects are not reproduced with Fos RNAi, suggesting that Fos bZip can be neomorphic in nature. These results provide insight into how mutations in bZip proteins can exhibit gain of function activity.
Collapse
Affiliation(s)
- Wooly Pierre
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
47
|
Spierer A, Begeot F, Spierer P, Delattre M. SU(VAR)3-7 links heterochromatin and dosage compensation in Drosophila. PLoS Genet 2008; 4:e1000066. [PMID: 18451980 PMCID: PMC2320979 DOI: 10.1371/journal.pgen.1000066] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 04/04/2008] [Indexed: 01/03/2023] Open
Abstract
In Drosophila, dosage compensation augments X chromosome-linked transcription in males relative to females. This process is achieved by the Dosage Compensation Complex (DCC), which associates specifically with the male X chromosome. We previously found that the morphology of this chromosome is sensitive to the amounts of the heterochromatin-associated protein SU(VAR)3-7. In this study, we examine the impact of change in levels of SU(VAR)3-7 on dosage compensation. We first demonstrate that the DCC makes the X chromosome a preferential target for heterochromatic markers. In addition, reduced or increased amounts of SU(VAR)3-7 result in redistribution of the DCC proteins MSL1 and MSL2, and of Histone 4 acetylation of lysine 16, indicating that a wild-type dose of SU(VAR)3-7 is required for X-restricted DCC targeting. SU(VAR)3-7 is also involved in the dosage compensated expression of the X-linked white gene. Finally, we show that absence of maternally provided SU(VAR)3-7 renders dosage compensation toxic in males, and that global amounts of heterochromatin affect viability of ectopic MSL2-expressing females. Taken together, these results bring to light a link between heterochromatin and dosage compensation. In Drosophila, females have two X chromosomes and males only one. The difference in the dose of X-associated genes is compensated by male-specific protein machinery, the Dosage Compensation Complex (DCC), which augments the activity of genes of the single male X. We report that the specific targeting of the DCC on the male X chromosome depends critically on the correct dose of the SU(VAR)3-7 protein. This protein was previously known to associate with condensed and silenced regions of the chromosomes called heterochromatin by contrast with the active form of chromatin called euchromatin. Loss of SU(VAR)3-7 in males causes displacement of the DCC to heterochromatin and bloating of the X chromosome. In contrast, excess of SU(VAR)3-7 leads to a delocalization of the DCC to other chromosomes and to massive shrinking of the X chromosome. We show that SU(VAR)3-7 is involved in the dosage compensated expression of the X-linked white gene and in the viability of dosage compensated flies. Altogether, these results bring to light a link between silencing mechanisms of heterochromatin and mechanisms controlling the balance of sex-chromosome activity (dosage compensation). This opens new perspectives on how complexes that control the global chromosome organisation impact the fine tuning of gene expression.
Collapse
Affiliation(s)
- Anne Spierer
- NCCR “Frontiers in Genetics”, Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland
| | - Flora Begeot
- NCCR “Frontiers in Genetics”, Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland
| | - Pierre Spierer
- NCCR “Frontiers in Genetics”, Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland
- * E-mail:
| | - Marion Delattre
- NCCR “Frontiers in Genetics”, Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|