1
|
Awasthi S, Dobrolecki LE, Sallas C, Zhang X, Li Y, Khazaei S, Ghosh S, Jeter CR, Liu J, Mills GB, Westin SN, Lewis MT, Peng W, Sood AK, Yap TA, Yi SS, McGrail DJ, Sahni N. UBA1 inhibition sensitizes cancer cells to PARP inhibitors. Cell Rep Med 2024; 5:101834. [PMID: 39626673 PMCID: PMC11722100 DOI: 10.1016/j.xcrm.2024.101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/31/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024]
Abstract
Therapeutic strategies targeting the DNA damage response, such as poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi), have revolutionized cancer treatment in tumors deficient in homologous recombination (HR). However, overcoming innate and acquired resistance to PARPi remains a significant challenge. Here, we employ a genome-wide CRISPR knockout screen and discover that the depletion of ubiquitin-activating enzyme E1 (UBA1) enhances sensitivity to PARPi in HR-proficient ovarian cancer cells. We show that silencing or pharmacological inhibition of UBA1 sensitizes multiple cell lines and organoid models to PARPi. Mechanistic studies uncover that UBA1 inhibition not only impedes HR repair to sensitize cells to PARP inhibition but also increases PARylation, which may subsequently be targeted by PARP inhibition. In vivo experiments using patient-derived xenografts demonstrate that combining PARP and UBA1 inhibition provided significant survival benefit compared to individual therapies with no detectable signs of toxicity, establishing this combination approach as a promising strategy to extend PARPi benefit.
Collapse
Affiliation(s)
- Sharad Awasthi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Lacey E Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Christina Sallas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Xudong Zhang
- Department of Anatomic Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Li
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sima Khazaei
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sumanta Ghosh
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Collene R Jeter
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jinsong Liu
- Department of Anatomic Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon B Mills
- Division of Oncological Science, Knight Cancer Institute, Oregon Health and Sciences University, Portland, OR 97201, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Weiyi Peng
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S Stephen Yi
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Interdisciplinary Life Sciences Graduate Programs (ILSGP), College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA; Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, USA; Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
2
|
Fousek-Schuller VJ, Borgstahl GEO. The Intriguing Mystery of RPA Phosphorylation in DNA Double-Strand Break Repair. Genes (Basel) 2024; 15:167. [PMID: 38397158 PMCID: PMC10888239 DOI: 10.3390/genes15020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Human Replication Protein A (RPA) was historically discovered as one of the six components needed to reconstitute simian virus 40 DNA replication from purified components. RPA is now known to be involved in all DNA metabolism pathways that involve single-stranded DNA (ssDNA). Heterotrimeric RPA comprises several domains connected by flexible linkers and is heavily regulated by post-translational modifications (PTMs). The structure of RPA has been challenging to obtain. Various structural methods have been applied, but a complete understanding of RPA's flexible structure, its function, and how it is regulated by PTMs has yet to be obtained. This review will summarize recent literature concerning how RPA is phosphorylated in the cell cycle, the structural analysis of RPA, DNA and protein interactions involving RPA, and how PTMs regulate RPA activity and complex formation in double-strand break repair. There are many holes in our understanding of this research area. We will conclude with perspectives for future research on how RPA PTMs control double-strand break repair in the cell cycle.
Collapse
Affiliation(s)
| | - Gloria E. O. Borgstahl
- Eppley Institute for Research in Cancer & Allied Diseases, UNMC, Omaha, NE 68198-6805, USA
| |
Collapse
|
3
|
Wu Y, Fu W, Zang N, Zhou C. Structural characterization of human RPA70N association with DNA damage response proteins. eLife 2023; 12:e81639. [PMID: 37668474 PMCID: PMC10479964 DOI: 10.7554/elife.81639] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/09/2023] [Indexed: 09/06/2023] Open
Abstract
The heterotrimeric Replication protein A (RPA) is the ubiquitous eukaryotic single-stranded DNA (ssDNA) binding protein and participates in nearly all aspects of DNA metabolism, especially DNA damage response. The N-terminal OB domain of the RPA70 subunit (RPA70N) is a major protein-protein interaction element for RPA and binds to more than 20 partner proteins. Previous crystallography studies of RPA70N with p53, DNA2 and PrimPol fragments revealed that RPA70N binds to amphipathic peptides that mimic ssDNA. NMR chemical-shift studies also provided valuable information on the interaction of RPA70N residues with target sequences. However, it is still unclear how RPA70N recognizes and distinguishes such a diverse group of target proteins. Here, we present high-resolution crystal structures of RPA70N in complex with peptides from eight DNA damage response proteins. The structures show that, in addition to the ssDNA mimicry mode of interaction, RPA70N employs multiple ways to bind its partners. Our results advance the mechanistic understanding of RPA70N-mediated recruitment of DNA damage response proteins.
Collapse
Affiliation(s)
- Yeyao Wu
- School of Public Health & Sir Run Run Shaw Hospital, Zhejiang University School of MedicineZhejiangChina
| | - Wangmi Fu
- School of Public Health & Sir Run Run Shaw Hospital, Zhejiang University School of MedicineZhejiangChina
| | - Ning Zang
- School of Public Health & Sir Run Run Shaw Hospital, Zhejiang University School of MedicineZhejiangChina
| | - Chun Zhou
- School of Public Health & Sir Run Run Shaw Hospital, Zhejiang University School of MedicineZhejiangChina
| |
Collapse
|
4
|
Dueva R, Iliakis G. Replication protein A: a multifunctional protein with roles in DNA replication, repair and beyond. NAR Cancer 2020; 2:zcaa022. [PMID: 34316690 PMCID: PMC8210275 DOI: 10.1093/narcan/zcaa022] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Single-stranded DNA (ssDNA) forms continuously during DNA replication and is an important intermediate during recombination-mediated repair of damaged DNA. Replication protein A (RPA) is the major eukaryotic ssDNA-binding protein. As such, RPA protects the transiently formed ssDNA from nucleolytic degradation and serves as a physical platform for the recruitment of DNA damage response factors. Prominent and well-studied RPA-interacting partners are the tumor suppressor protein p53, the RAD51 recombinase and the ATR-interacting proteins ATRIP and ETAA1. RPA interactions are also documented with the helicases BLM, WRN and SMARCAL1/HARP, as well as the nucleotide excision repair proteins XPA, XPG and XPF–ERCC1. Besides its well-studied roles in DNA replication (restart) and repair, accumulating evidence shows that RPA is engaged in DNA activities in a broader biological context, including nucleosome assembly on nascent chromatin, regulation of gene expression, telomere maintenance and numerous other aspects of nucleic acid metabolism. In addition, novel RPA inhibitors show promising effects in cancer treatment, as single agents or in combination with chemotherapeutics. Since the biochemical properties of RPA and its roles in DNA repair have been extensively reviewed, here we focus on recent discoveries describing several non-canonical functions.
Collapse
Affiliation(s)
- Rositsa Dueva
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| |
Collapse
|
5
|
Large-scale contractions of Friedreich's ataxia GAA repeats in yeast occur during DNA replication due to their triplex-forming ability. Proc Natl Acad Sci U S A 2020; 117:1628-1637. [PMID: 31911468 PMCID: PMC6983365 DOI: 10.1073/pnas.1913416117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Expansions of GAA repeats cause a severe hereditary neurodegenerative disease, Friedreich’s ataxia. In this study, we characterized the mechanisms of GAA repeat contractions in a yeast experimental system. These mechanisms might, in the long run, aid development of a therapy for this currently incurable disease. We show that GAA repeats contract during DNA replication, which can explain the high level of somatic instability of this repeat in patient tissues. We also provided evidence that a triple-stranded DNA structure is at the heart of GAA repeat instability. This discovery highlights the role of triplex DNA in genome instability and human disease. Friedreich’s ataxia (FRDA) is a human hereditary disease caused by the presence of expanded (GAA)n repeats in the first intron of the FXN gene [V. Campuzano et al., Science 271, 1423–1427 (1996)]. In somatic tissues of FRDA patients, (GAA)n repeat tracts are highly unstable, with contractions more common than expansions [R. Sharma et al., Hum. Mol. Genet. 11, 2175–2187 (2002)]. Here we describe an experimental system to characterize GAA repeat contractions in yeast and to conduct a genetic analysis of this process. We found that large-scale contraction is a one-step process, resulting in a median loss of ∼60 triplet repeats. Our genetic analysis revealed that contractions occur during DNA replication, rather than by various DNA repair pathways. Repeats contract in the course of lagging-strand synthesis: The processivity subunit of DNA polymerase δ, Pol32, and the catalytic domain of Rev1, a translesion polymerase, act together in the same pathway to counteract contractions. Accumulation of single-stranded DNA (ssDNA) in the lagging-strand template greatly increases the probability that (GAA)n repeats contract, which in turn promotes repeat instability in rfa1, rad27, and dna2 mutants. Finally, by comparing contraction rates for homopurine-homopyrimidine repeats differing in their mirror symmetry, we found that contractions depend on a repeat’s triplex-forming ability. We propose that accumulation of ssDNA in the lagging-strand template fosters the formation of a triplex between the nascent and fold-back template strands of the repeat. Occasional jumps of DNA polymerase through this triplex hurdle, result in repeat contractions in the nascent lagging strand.
Collapse
|
6
|
Wang QM, Yang YT, Wang YR, Gao B, Xi XG, Hou XM. Human replication protein A induces dynamic changes in single-stranded DNA and RNA structures. J Biol Chem 2019; 294:13915-13927. [PMID: 31350334 DOI: 10.1074/jbc.ra119.009737] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/25/2019] [Indexed: 01/05/2023] Open
Abstract
Replication protein A (RPA) is the major eukaryotic ssDNA-binding protein and has essential roles in genome maintenance. RPA binds to ssDNA through multiple modes, and recent studies have suggested that the RPA-ssDNA interaction is dynamic. However, how RPA alternates between different binding modes and modifies ssDNA structures in this dynamic interaction remains unknown. Here, we used single-molecule FRET to systematically investigate the interaction between human RPA and ssDNA. We show that RPA can adopt different types of binding complexes with ssDNAs of different lengths, leading to the straightening or bending of the ssDNAs, depending on both the length and structure of the ssDNA substrate and the RPA concentration. Importantly, we noted that some of the complexes are highly dynamic, whereas others appear relatively static. On the basis of the above observations, we propose a model explaining how RPA dynamically engages with ssDNA. Of note, fluorescence anisotropy indicated that RPA can also associate with RNA but with a lower binding affinity than with ssDNA. At the single-molecule level, we observed that RPA is undergoing rapid and repetitive associations with and dissociation from the RNA. This study may provide new insights into the rich dynamics of RPA binding to ssDNA and RNA.
Collapse
Affiliation(s)
- Qing-Man Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan-Tao Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi-Ran Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xu-Guang Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.,Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, CNRS, 61 Avenue du Président Wilson, 94235 Cachan, France
| | - Xi-Miao Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
7
|
Mattoo AR, Joun A, Jessup JM. Repurposing of mTOR Complex Inhibitors Attenuates MCL-1 and Sensitizes to PARP Inhibition. Mol Cancer Res 2018; 17:42-53. [DOI: 10.1158/1541-7786.mcr-18-0650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/09/2018] [Accepted: 08/30/2018] [Indexed: 11/16/2022]
|
8
|
Gross A, Katz SG. Non-apoptotic functions of BCL-2 family proteins. Cell Death Differ 2017; 24:1348-1358. [PMID: 28234359 PMCID: PMC5520452 DOI: 10.1038/cdd.2017.22] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 02/06/2023] Open
Abstract
The BCL-2 family proteins are major regulators of the apoptosis process, but the mechanisms by which they regulate this process are only partially understood. It is now well documented that these proteins play additional non-apoptotic roles that are likely to be related to their apoptotic roles and to provide important clues to cracking their mechanisms of action. It seems that these non-apoptotic roles are largely related to the activation of cellular survival pathways designated to maintain or regain cellular survival, but, if unsuccessful, will switch over into a pro-apoptotic mode. These non-apoptotic roles span a wide range of processes that include the regulation of mitochondrial physiology (metabolism, electron transport chain, morphology, permeability transition), endoplasmic reticulum physiology (calcium homeostasis, unfolded protein response (UPR)), nuclear processes (cell cycle, DNA damage response (DDR)), whole-cell metabolism (glucose and lipid), and autophagy. Here we review all these different non-apoptotic roles, make an attempt to link them to the apoptotic roles, and present many open questions for future research directions in this fascinating field.
Collapse
Affiliation(s)
- Atan Gross
- Department of Biological Regulation, Weizmann Institute of Science, 100 Herzel Street, Rehovot, Israel,Department of Biological Regulation, Weizmann Institute of Science, 100 Herzel Street, Rehovot 76100, Israel. Tel: +972 8 9343656; Fax: +972 8 934 4116; E-mail:
| | - Samuel G Katz
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, Brady Memorial Laboratory 127A, New Haven, CT 06520, USA,Department of Pathology, Yale University School of Medicine, 310 Cedar Street, Brady Memorial Laboratory 127A, New Haven CT 06520, USA. Tel: +203 785 2757; E-mail:
| |
Collapse
|
9
|
Modi P, Balakrishnan K, Yang Q, Wierda WG, Keating MJ, Gandhi V. Idelalisib and bendamustine combination is synergistic and increases DNA damage response in chronic lymphocytic leukemia cells. Oncotarget 2017; 8:16259-16274. [PMID: 28187444 PMCID: PMC5369961 DOI: 10.18632/oncotarget.15180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 01/25/2017] [Indexed: 11/25/2022] Open
Abstract
Idelalisib is a targeted agent that potently inhibits PI3Kδ which is exclusively expressed in hematological cells. Bendamustine is a well-tolerated cytotoxic alkylating agent which has been extensively used for treatment of chronic lymphocytic leukemia (CLL). Both these agents are FDA-approved for CLL. To increase the potency of idelalisib and bendamustine, we tested their combination in primary CLL lymphocytes. While each compound alone produced a moderate response, combination at several concentrations resulted in synergistic cytotoxicity. Idelalisib enhanced the bendamustine-mediated DNA damage/repair response, indicated by the phosphorylation of ATM, Chk2, and p53. Each drug alone activated γH2AX but combination treatment further increased the expression of this DNA damage marker. Compared with the control, idelalisib treatment decreased global RNA synthesis, resulting in a decline of early-response and short-lived MCL1 transcripts. In concert, there was a decline in total Mcl-1 protein in CLL lymphocytes. Isogenic mouse embryonic fibroblasts lacking MCL1 had higher sensitivity to bendamustine alone or in combination compared to MCL1 proficient cells. Collectively, these data indicate that bendamustine and idelalisib combination therapy should be investigated for treating patients with CLL.
Collapse
Affiliation(s)
- Prexy Modi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kumudha Balakrishnan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qingshan Yang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
10
|
Oeck S, Malewicz NM, Hurst S, Al-Refae K, Krysztofiak A, Jendrossek V. The Focinator v2-0 - Graphical Interface, Four Channels, Colocalization Analysis and Cell Phase Identification. Radiat Res 2017; 188:114-120. [PMID: 28492345 DOI: 10.1667/rr14746.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The quantitative analysis of foci plays an important role in various cell biological methods. In the fields of radiation biology and experimental oncology, the effect of ionizing radiation, chemotherapy or molecularly targeted drugs on DNA damage induction and repair is frequently performed by the analysis of protein clusters or phosphorylated proteins recruited to so called repair foci at DNA damage sites, involving for example γ-H2A.X, 53BP1 or RAD51. We recently developed "The Focinator" as a reliable and fast tool for automated quantitative and qualitative analysis of nuclei and DNA damage foci. The refined software is now even more user-friendly due to a graphical interface and further features. Thus, we included an R-script-based mode for automated image opening, file naming, progress monitoring and an error report. Consequently, the evaluation no longer required the attendance of the operator after initial parameter definition. Moreover, the Focinator v2-0 is now able to perform multi-channel analysis of four channels and evaluation of protein-protein colocalization by comparison of up to three foci channels. This enables for example the quantification of foci in cells of a specific cell cycle phase.
Collapse
Affiliation(s)
- Sebastian Oeck
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122 Essen, Germany
| | - Nathalie M Malewicz
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122 Essen, Germany
| | - Sebastian Hurst
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122 Essen, Germany
| | - Klaudia Al-Refae
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122 Essen, Germany
| | - Adam Krysztofiak
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122 Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122 Essen, Germany
| |
Collapse
|
11
|
MCL-1 Depletion Impairs DNA Double-Strand Break Repair and Reinitiation of Stalled DNA Replication Forks. Mol Cell Biol 2017; 37:MCB.00535-16. [PMID: 27821478 DOI: 10.1128/mcb.00535-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/24/2016] [Indexed: 12/31/2022] Open
Abstract
Myeloid cell leukemia 1 (MCL-1) is a prosurvival BCL-2 protein family member highly expressed in hematopoietic stem cells (HSCs) and regulated by growth factor signals that manifest antiapoptotic activity. Here we report that depletion of MCL-1 but not its isoform MCL-1S increases genomic instability and cell sensitivity to ionizing radiation (IR)-induced death. MCL-1 association with genomic DNA increased postirradiation, and the protein colocalized with 53BP1 foci. Postirradiation, MCL-1-depleted cells exhibited decreased γ-H2AX foci, decreased phosphorylation of ATR, and higher levels of residual 53BP1 and RIF1 foci, suggesting that DNA double-strand break (DSB) repair by homologous recombination (HR) was compromised. Consistent with this model, MCL-1-depleted cells had a reduced frequency of IR-induced BRCA1, RPA, and Rad51 focus formation, decreased DNA end resection, and decreased HR repair in the DR-GFP DSB repair model. Similarly, after HU induction of stalled replication forks in MCL-1-depleted cells, there was a decreased ability to subsequently restart DNA synthesis, which is normally dependent upon HR-mediated resolution of collapsed forks. Therefore, the present data support a model whereby MCL-1 depletion increases 53BP1 and RIF1 colocalization at DSBs, which inhibits BRCA1 recruitment, and sensitizes cells to DSBs from IR or stalled replication forks that require HR for repair.
Collapse
|
12
|
Ma CJ, Gibb B, Kwon Y, Sung P, Greene EC. Protein dynamics of human RPA and RAD51 on ssDNA during assembly and disassembly of the RAD51 filament. Nucleic Acids Res 2016; 45:749-761. [PMID: 27903895 PMCID: PMC5314761 DOI: 10.1093/nar/gkw1125] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 12/31/2022] Open
Abstract
Homologous recombination (HR) is a crucial pathway for double-stranded DNA break (DSB) repair. During the early stages of HR, the newly generated DSB ends are processed to yield long single-stranded DNA (ssDNA) overhangs, which are quickly bound by replication protein A (RPA). RPA is then replaced by the DNA recombinase Rad51, which forms extended helical filaments on the ssDNA. The resulting nucleoprotein filament, known as the presynaptic complex, is responsible for pairing the ssDNA with homologous double-stranded DNA (dsDNA), which serves as the template to guide DSB repair. Here, we use single-molecule imaging to visualize the interplay between human RPA (hRPA) and human RAD51 during presynaptic complex assembly and disassembly. We demonstrate that ssDNA-bound hRPA can undergo facilitated exchange, enabling hRPA to undergo rapid exchange between free and ssDNA-bound states only when free hRPA is present in solution. Our results also indicate that the presence of free hRPA inhibits RAD51 filament nucleation, but has a lesser impact upon filament elongation. This finding suggests that hRPA exerts important regulatory influence over RAD51 and may in turn affect the properties of the assembled RAD51 filament. These experiments provide an important basis for further investigations into the regulation of human presynaptic complex assembly.
Collapse
Affiliation(s)
- Chu Jian Ma
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Bryan Gibb
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - YoungHo Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
13
|
Sugitani N, Chazin WJ. Characteristics and concepts of dynamic hub proteins in DNA processing machinery from studies of RPA. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 117:206-211. [PMID: 25542993 DOI: 10.1016/j.pbiomolbio.2014.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 11/26/2022]
Abstract
DNA replication, damage response and repair require the coordinated action of multi-domain proteins operating within dynamic multi-protein machines that act upon the DNA substrate. These modular proteins contain flexible linkers of various lengths, which enable changes in the spatial distribution of the globular domains (architecture) that harbor their essential biochemical functions. This mobile architecture is uniquely suited to follow the evolving substrate landscape present over the course of the specific process performed by the multi-protein machinery. A fundamental advance in understanding of protein machinery is the realization of the pervasive role of dynamics. Not only is the machine undergoing dynamic transformations, but the proteins themselves are flexible and constantly adapting to the progression through the steps of the overall process. Within this dynamic context the activity of the constituent proteins must be coordinated, a role typically played by hub proteins. A number of important characteristics of modular proteins and concepts about the operation of dynamic machinery have been discerned. These provide the underlying basis for the action of the machinery that reads DNA, and responds to and repairs DNA damage. Here, we introduce a number of key characteristics and concepts, including the modularity of the proteins, linkage of weak binding sites, direct competition between sites, and allostery, using the well recognized hub protein replication protein A (RPA).
Collapse
Affiliation(s)
- Norie Sugitani
- Center for Structural Biology and Departments of Biochemistry and Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Walter J Chazin
- Center for Structural Biology and Departments of Biochemistry and Chemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
14
|
Maréchal A, Zou L. RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response. Cell Res 2014; 25:9-23. [PMID: 25403473 DOI: 10.1038/cr.2014.147] [Citation(s) in RCA: 347] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Replication Protein A (RPA) complex is an essential regulator of eukaryotic DNA metabolism. RPA avidly binds to single-stranded DNA (ssDNA) through multiple oligonucleotide/oligosaccharide-binding folds and coordinates the recruitment and exchange of genome maintenance factors to regulate DNA replication, recombination and repair. The RPA-ssDNA platform also constitutes a key physiological signal which activates the master ATR kinase to protect and repair stalled or collapsed replication forks during replication stress. In recent years, the RPA complex has emerged as a key target and an important regulator of post-translational modifications in response to DNA damage, which is critical for its genome guardian functions. Phosphorylation and SUMOylation of the RPA complex, and more recently RPA-regulated ubiquitination, have all been shown to control specific aspects of DNA damage signaling and repair by modulating the interactions between RPA and its partners. Here, we review our current understanding of the critical functions of the RPA-ssDNA platform in the maintenance of genome stability and its regulation through an elaborate network of covalent modifications.
Collapse
Affiliation(s)
- Alexandre Maréchal
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lee Zou
- 1] Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA [2] Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
15
|
Goda AE, Erikson RL, Sakai T, Ahn JS, Kim BY. Preclinical evaluation of bortezomib/dipyridamole novel combination as a potential therapeutic modality for hematologic malignancies. Mol Oncol 2014; 9:309-22. [PMID: 25245324 DOI: 10.1016/j.molonc.2014.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 10/24/2022] Open
Abstract
Novel combinations aiming at maximizing the efficacy of bortezomib are highly valued in the clinic. Therefore the current study investigated the outcomes of combining bortezomib with dipyridamole, a well-known antiplatelet. The co-treatment exerted a synergistic lethality in a panel of human leukemia/lymphoma cell lines of different origin. Mechanistically, dipyridamole did not modulate the proteasome inhibitory activity of bortezomib. However, dipyridamole triggered an endoplasmic reticulum (ER) stress, and co-treatment with bortezomib resulted in higher levels of ER stress than either monotherapies. Relieving ER stress with the protein translation inhibitor, cycloheximide suppressed cell death. Moreover, the enhanced ER stress by the co-treatment was associated with an aggravation of reactive oxygen species (ROS) generation and glutathione (GSH) depletion. Replenishing GSH pools significantly scavenged ROS and rescued the cells. Importantly, the cytotoxicity of the co-treatment was executed mainly via the mitochondrial apoptotic pathway with an efficient suppression of the key anti-apoptotic regulators, Mcl-1, Bcl-xl, Bcl-2 and XIAP, driving the independence of the co-treatment-induced apoptosis of a single apoptotic trigger. Furthermore, the intrinsic potential of bortezomib to inhibit important pro-survival pathways was enhanced by dipyridamole in a GSH/ROS-dependent manner. Interestingly, dipyridamole abrogated JAK2 phosphorylation indirectly and selectively in cancer cells, and the co-treatment-induced cytotoxicity was preserved in a model of stromal-mediated chemoresistance. In nude mice, the antitumor activity of the co-treatment surpassed that of bortezomib monotherapy despite that synergy was lacking. In summary, findings of the present study provided a preclinical rationale which warrants further clinical evaluation of bortezomib/dipyridamole novel combination in hematologic malignancies.
Collapse
Affiliation(s)
- Ahmed E Goda
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 685-2 Ochang, Cheongwon 363-883, Republic of Korea; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Raymond L Erikson
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 685-2 Ochang, Cheongwon 363-883, Republic of Korea; Department of Molecular and Cellular Biology, Harvard University, Cambridge, USA
| | - Toshiyuki Sakai
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jong-Seog Ahn
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Republic of Korea
| | - Bo-Yeon Kim
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 685-2 Ochang, Cheongwon 363-883, Republic of Korea.
| |
Collapse
|
16
|
Chen R, Wold MS. Replication protein A: single-stranded DNA's first responder: dynamic DNA-interactions allow replication protein A to direct single-strand DNA intermediates into different pathways for synthesis or repair. Bioessays 2014; 36:1156-61. [PMID: 25171654 DOI: 10.1002/bies.201400107] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Replication protein A (RPA), the major single-stranded DNA-binding protein in eukaryotic cells, is required for processing of single-stranded DNA (ssDNA) intermediates found in replication, repair, and recombination. Recent studies have shown that RPA binding to ssDNA is highly dynamic and that more than high-affinity binding is needed for function. Analysis of DNA binding mutants identified forms of RPA with reduced affinity for ssDNA that are fully active, and other mutants with higher affinity that are inactive. Single molecule studies showed that while RPA binds ssDNA with high affinity, the RPA complex can rapidly diffuse along ssDNA and be displaced by other proteins that act on ssDNA. Finally, dynamic DNA binding allows RPA to prevent error-prone repair of double-stranded breaks and promote error-free repair. Together, these findings suggest a new paradigm where RPA acts as a first responder at sites with ssDNA, thereby actively coordinating DNA repair and DNA synthesis.
Collapse
Affiliation(s)
- Ran Chen
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
17
|
Abstract
In eukaryotic cells, maintenance of genomic stability relies on the coordinated action of a network of cellular processes, including DNA replication, DNA repair, cell-cycle progression, and others. The DNA damage response (DDR) signaling pathway orchestrated by the ATM and ATR kinases is the central regulator of this network in response to DNA damage. Both ATM and ATR are activated by DNA damage and DNA replication stress, but their DNA-damage specificities are distinct and their functions are not redundant. Furthermore, ATM and ATR often work together to signal DNA damage and regulate downstream processes. Here, we will discuss the recent findings and current models of how ATM and ATR sense DNA damage, how they are activated by DNA damage, and how they function in concert to regulate the DDR.
Collapse
Affiliation(s)
- Alexandre Maréchal
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|
18
|
Biswas S, Shi Q, Wernick A, Aiello A, Zinkel SS. The loss of the BH3-only Bcl-2 family member Bid delays T-cell leukemogenesis in Atm-/- mice. Cell Death Differ 2013; 20:869-77. [PMID: 23470523 DOI: 10.1038/cdd.2013.16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Multicellular organisms maintain genomic integrity and resist tumorigenesis through a tightly regulated DNA damage response (DDR) that prevents propagation of deleterious mutations either through DNA repair or programmed cell death. An impaired DDR leads to tumorigenesis that is accelerated when programmed cell death is prevented. Loss of the ATM (ataxia telangiectasia mutated)-mediated DDR in mice results in T-cell leukemia driven by accumulation of DNA damage accrued during normal T-cell development. Pro-apoptotic BH3-only Bid is a substrate of Atm, and Bid phosphorylation is required for proper cell cycle checkpoint control and regulation of hematopoietic function. In this report, we demonstrate that, surprisingly, loss of Bid increases the latency of leukemogenesis in Atm-/- mice. Bid-/-Atm-/- mice display impaired checkpoint control and increased cell death of DN3 thymocytes. Loss of Bid thus inhibits T-cell tumorigenesis by increasing clearance of damaged cells, and preventing propagation of deleterious mutations.
Collapse
Affiliation(s)
- S Biswas
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
BCL-2 family proteins are the regulators of apoptosis, but also have other functions. This family of interacting partners includes inhibitors and inducers of cell death. Together they regulate and mediate the process by which mitochondria contribute to cell death known as the intrinsic apoptosis pathway. This pathway is required for normal embryonic development and for preventing cancer. However, before apoptosis is induced, BCL-2 proteins have critical roles in normal cell physiology related to neuronal activity, autophagy, calcium handling, mitochondrial dynamics and energetics, and other processes of normal healthy cells. The relative importance of these physiological functions compared to their apoptosis functions in overall organismal physiology is difficult to decipher. Apoptotic and noncanonical functions of these proteins may be intertwined to link cell growth to cell death. Disentanglement of these functions may require delineation of biochemical activities inherent to the characteristic three-dimensional shape shared by distantly related viral and cellular BCL-2 family members.
Collapse
|
20
|
Zinkel SS, Yin XM, Gross A. Rejuvenating Bi(d)ology. Oncogene 2012; 32:3213-3219. [PMID: 23069655 DOI: 10.1038/onc.2012.454] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 12/25/2022]
Abstract
The BH3-only Bid protein is a critical sentinel of cellular stress in the liver and the hematopoietic system. Bid's initial 'claim to fame' came from its ability-as a caspase-truncated product-to trigger the mitochondrial apoptotic program following death receptor activation. Today we know that Bid can response to multiple types of proteases, which are activated under different conditions such as T-cell activation, ischemical reperfusion injury and lysosomal injury. Activation of the mitochondrial apoptotic program by Bid-via its recently identified receptor mitochondrial carrier homolog 2-involves multiple mechanisms, including release of cytochrome c and second mitochondria-derived activator of caspase (Smac), alteration of mitochondrial cristae organization, generation of reactive oxygen species and engagement of the permeability transition pore. Bid is also emerging-in its full-length form-as a pivotal sentinel of DNA damage in the bone marrow regulated by the ataxia telangiectasia mutated (ATM)/ataxia telangiectasia and Rad3-related (ATR) kinases. The ATM/ATR-Bid pathway is critically involved in preserving the quiescence and survival of hematopoietic stem cells both in the absence and presence of external stress, and a large part of this review will be dedicated to recent advances in this area of research.
Collapse
Affiliation(s)
- S S Zinkel
- Departments of Medicine, Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - X M Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Gross
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
21
|
Bid protects the mouse hematopoietic system following hydroxyurea-induced replicative stress. Cell Death Differ 2012; 19:1602-12. [PMID: 22522598 DOI: 10.1038/cdd.2012.38] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hematopoietic stem cells (HSCs) possess long-term self-renewal capacity and multipotent differentiative capacity, to maintain the hematopoietic system. Long-term hematopoietic homeostasis requires effective control of genotoxic damage to maintain HSC function and prevent propagation of deleterious mutations. Here we investigate the role of the BH3-only Bcl-2 family member Bid in the response of murine hematopoietic cells to long-term replicative stress induced by hydroxyurea (HU). The PI3-like serine/threonine kinase, ATR, initiates the DNA damage response (DDR) to replicative stress. The pro-apoptotic Bcl-2 family member, Bid, facilitates this response to replicative stress in hematopoietic cells, but the in vivo role of this DDR function of Bid has not been defined. Surprisingly, we demonstrate that long-term HU treatment expands wild-type myeloid progenitor cells (MPCs) and HSC-enriched Lin(-)Sca1(+)Kit(+) (LSK) cells to maintain bone marrow function as measured by long-term competitive repopulating ability. Bid-/- MPCs demonstrate increased sensitivity to HU and are depleted. Bid-/- LSK cells demonstrate increased mobilization manifest by increased Bromodeoxyuridine (BrdU) incorporation. Bid-/- MPCs and LSK cells are relatively depleted, however, and bone marrow from Bid-/- mice demonstrates decreased long-term competitive repopulating ability in both primary and secondary transplants. We thus describe a survival function of Bid in hematopoiesis in the setting of chronic replicative stress.
Collapse
|
22
|
Prakash A, Borgstahl GEO. The structure and function of replication protein A in DNA replication. Subcell Biochem 2012; 62:171-96. [PMID: 22918586 DOI: 10.1007/978-94-007-4572-8_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In all organisms from bacteria and archaea to eukarya, single-stranded DNA binding proteins play an essential role in most, if not all, nuclear metabolism involving single-stranded DNA (ssDNA). Replication protein A (RPA), the major eukaryotic ssDNA binding protein, has two important roles in DNA metabolism: (1) in binding ssDNA to protect it and to keep it unfolded, and (2) in coordinating the assembly and disassembly of numerous proteins and protein complexes during processes such as DNA replication. Since its discovery as a vital player in the process of replication, RPAs roles in recombination and DNA repair quickly became evident. This chapter summarizes the current understanding of RPA's roles in replication by reviewing the available structural data, DNA-binding properties, interactions with various replication proteins, and interactions with DNA repair proteins when DNA replication is stalled.
Collapse
Affiliation(s)
- Aishwarya Prakash
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Given Medical Building, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | | |
Collapse
|
23
|
Recolin B, Van der Laan S, Maiorano D. Role of replication protein A as sensor in activation of the S-phase checkpoint in Xenopus egg extracts. Nucleic Acids Res 2011; 40:3431-42. [PMID: 22187152 PMCID: PMC3333866 DOI: 10.1093/nar/gkr1241] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Uncoupling between DNA polymerases and helicase activities at replication forks, induced by diverse DNA lesions or replication inhibitors, generate long stretches of primed single-stranded DNA that is implicated in activation of the S-phase checkpoint. It is currently unclear whether nucleation of the essential replication factor RPA onto this substrate stimulates the ATR-dependent checkpoint response independently of its role in DNA synthesis. Using Xenopus egg extracts to investigate the role of RPA recruitment at uncoupled forks in checkpoint activation we have surprisingly found that in conditions in which DNA synthesis occurs, RPA accumulation at forks stalled by either replication stress or UV irradiation is dispensable for Chk1 phosphorylation. In contrast, when both replication fork uncoupling and RPA hyperloading are suppressed, Chk1 phosphorylation is inhibited. Moreover, we show that extracts containing reduced levels of RPA accumulate ssDNA and induce spontaneous, caffeine-sensitive, Chk1 phosphorylation in S-phase. These results strongly suggest that disturbance of enzymatic activities of replication forks, rather than RPA hyperloading at stalled forks, is a critical determinant of ATR activation.
Collapse
Affiliation(s)
- Bénédicte Recolin
- Genome Surveillance and Stability Laboratory, CNRS-UPR1142, Institute of Human Genetics, 141 rue de la Cardonille, Montpellier 34396 Cedex 5, France
| | | | | |
Collapse
|