1
|
Mao L, Lu J, Hou Y, Nie T. Directly targeting PRDM16 in thermogenic adipose tissue to treat obesity and its related metabolic diseases. Front Endocrinol (Lausanne) 2024; 15:1458848. [PMID: 39351529 PMCID: PMC11439700 DOI: 10.3389/fendo.2024.1458848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Obesity is increasing globally and is closely associated with a range of metabolic disorders, including metabolic associated fatty liver disease, diabetes, and cardiovascular diseases. An effective strategy to combat obesity involves stimulating brown and beige adipocyte thermogenesis, which significantly enhances energy expenditure. Recent research has underscored the vital role of PRDM16 in the development and functionality of thermogenic adipocytes. Consequently, PRDM16 has been identified as a potential therapeutic target for obesity and its related metabolic disorders. This review comprehensively examines various studies that focus on combating obesity by directly targeting PRDM16 in adipose tissue.
Collapse
Affiliation(s)
- Liufeng Mao
- The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinli Lu
- The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yunliang Hou
- The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tao Nie
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
2
|
Dowker-Key PD, Jadi PK, Gill NB, Hubbard KN, Elshaarrawi A, Alfatlawy ND, Bettaieb A. A Closer Look into White Adipose Tissue Biology and the Molecular Regulation of Stem Cell Commitment and Differentiation. Genes (Basel) 2024; 15:1017. [PMID: 39202377 PMCID: PMC11353785 DOI: 10.3390/genes15081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
White adipose tissue (WAT) makes up about 20-25% of total body mass in healthy individuals and is crucial for regulating various metabolic processes, including energy metabolism, endocrine function, immunity, and reproduction. In adipose tissue research, "adipogenesis" is commonly used to refer to the process of adipocyte formation, spanning from stem cell commitment to the development of mature, functional adipocytes. Although, this term should encompass a wide range of processes beyond commitment and differentiation, to also include other stages of adipose tissue development such as hypertrophy, hyperplasia, angiogenesis, macrophage infiltration, polarization, etc.… collectively, referred to herein as the adipogenic cycle. The term "differentiation", conversely, should only be used to refer to the process by which committed stem cells progress through distinct phases of subsequent differentiation. Recognizing this distinction is essential for accurately interpreting research findings on the mechanisms and stages of adipose tissue development and function. In this review, we focus on the molecular regulation of white adipose tissue development, from commitment to terminal differentiation, and examine key functional aspects of WAT that are crucial for normal physiology and systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Presley D. Dowker-Key
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Praveen Kumar Jadi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Nicholas B. Gill
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Katelin N. Hubbard
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Ahmed Elshaarrawi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Naba D. Alfatlawy
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840, USA
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, USA
| |
Collapse
|
3
|
Hongfang G, Khan R, Raza SHA, Nurgulsim K, Suhail SM, Rahman A, Ahmed I, Ijaz A, Ahmad I, Linsen Z. Transcriptional regulation of adipogenic marker genes for the improvement of intramuscular fat in Qinchuan beef cattle. Anim Biotechnol 2020; 33:776-795. [PMID: 33151113 DOI: 10.1080/10495398.2020.1837847] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The intramuscular fat content plays a crucial role in meat quality traits. Increasing the degree of adipogenesis in beef cattle leads to an increase in the content of intramuscular fat. Adipogenesis a complex biochemical process which is under firm genetic control. Over the last three decades, the Qinchuan beef cattle have been extensively studied for the improvement of meat production and quality traits. In this study, we reviewed the literature regarding adipogenesis and intramuscular fat deposition. Then, we summarized the research conducted on the transcriptional regulation of key adipogenic marker genes, and also reviewed the roles of adipogenic marker genes in adipogenesis of Qinchuan beef cattle. This review will elaborate our understanding regarding transcriptional regulation which is a vital physiological process regulated by a cascade of transcription factors (TFs), key target marker genes, and regulatory proteins. This synergistic action of TFs and target genes ensures the accurate and diverse transmission of the genetic information for the accomplishment of central physiological processes. This information will provide an insight into the transcriptional regulation of the adipogenic marker genes and its role in bovine adipogenesis for the breed improvement programs especially for the trait of intramuscular fat deposition.
Collapse
Affiliation(s)
- Guo Hongfang
- Medical College of Xuchang University, Xuchang City, Henan Province, P. R. China
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China.,Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Kaster Nurgulsim
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Syed Muhammad Suhail
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Abdur Rahman
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Ijaz Ahmed
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Asim Ijaz
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Iftikhar Ahmad
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Zan Linsen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
4
|
Wang X, Khan R, Raza SHA, Li A, Zhang Y, Liang C, Yang W, Wu S, Zan L. Molecular characterization of ABHD5 gene promoter in intramuscular preadipocytes of Qinchuan cattle: Roles of Evi1 and C/EBPα. Gene 2019; 690:38-47. [DOI: 10.1016/j.gene.2018.12.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/13/2018] [Indexed: 01/21/2023]
|
5
|
Shapira SN, Lim HW, Rajakumari S, Sakers AP, Ishibashi J, Harms MJ, Won KJ, Seale P. EBF2 transcriptionally regulates brown adipogenesis via the histone reader DPF3 and the BAF chromatin remodeling complex. Genes Dev 2017; 31:660-673. [PMID: 28428261 PMCID: PMC5411707 DOI: 10.1101/gad.294405.116] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/23/2017] [Indexed: 12/25/2022]
Abstract
Shapira et al. show that EBF2 physically interacts with the chromatin remodeler BRG1 and the BAF chromatin remodeling complex in brown adipocytes. They identified the histone reader protein DPF3 as a brown fat-selective component of the BAF complex that was required for brown fat gene programming and mitochondrial function. The transcription factor early B-cell factor 2 (EBF2) is an essential mediator of brown adipocyte commitment and terminal differentiation. However, the mechanisms by which EBF2 regulates chromatin to activate brown fat-specific genes in adipocytes were unknown. ChIP-seq (chromatin immunoprecipitation [ChIP] followed by deep sequencing) analyses in brown adipose tissue showed that EBF2 binds and regulates the activity of lineage-specific enhancers. Mechanistically, EBF2 physically interacts with the chromatin remodeler BRG1 and the BAF chromatin remodeling complex in brown adipocytes. We identified the histone reader protein DPF3 as a brown fat-selective component of the BAF complex that was required for brown fat gene programming and mitochondrial function. Loss of DPF3 in brown adipocytes reduced chromatin accessibility at EBF2-bound enhancers and led to a decrease in basal and catecholamine-stimulated expression of brown fat-selective genes. Notably, Dpf3 is a direct transcriptional target of EBF2 in brown adipocytes, thereby establishing a regulatory module through which EBF2 activates and also recruits DPF3-anchored BAF complexes to chromatin. Together, these results reveal a novel mechanism by which EBF2 cooperates with a tissue-specific chromatin remodeling complex to activate brown fat identity genes.
Collapse
Affiliation(s)
- Suzanne N Shapira
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Cell and Developmental Biology, Smilow Center for Translational Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hee-Woong Lim
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Genetics, Smilow Center for Translational Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sona Rajakumari
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Cell and Developmental Biology, Smilow Center for Translational Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Alexander P Sakers
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Cell and Developmental Biology, Smilow Center for Translational Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jeff Ishibashi
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Cell and Developmental Biology, Smilow Center for Translational Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Matthew J Harms
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Cell and Developmental Biology, Smilow Center for Translational Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kyoung-Jae Won
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Genetics, Smilow Center for Translational Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Cell and Developmental Biology, Smilow Center for Translational Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
6
|
Minaguchi JA, Ogata S, Takahashi N, Hirose T, Ueda H, Takehana K. Remodeling of rat stromal-vascular cells to brite/beige adipocytes by prolyl-hydroxyproline. J Vet Med Sci 2017; 79:547-553. [PMID: 28123139 PMCID: PMC5383175 DOI: 10.1292/jvms.16-0163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to determine the effects of prolyl-hydroxyproline (Pro-Hyp) on the proliferation and differentiation of rat stromal-vascular cells
(SVCs) being cultured in a medium with (Pro-Hyp group) or without Pro-Hyp (control group). The results showed that there was no significant difference in
proliferation rate of SVCs, lipid droplet (LD) diameter or intracellular concentration of triglycerides between two groups. However, the diameter range of LDs
in the Pro-Hyp group tended to be smaller than that in the control group. Transmission electron microscopy showed a tendency for increase in the area of
mitochondria and decrease in the number of mitochondria in the Pro-Hyp-treated SVCs. The mRNA expression levels of white adipose tissue differentiation markers
(Cbp, Fabp and Serpina3k) were significantly lower, but those of the brown adipose tissue differentiation
markers (Dio2, Ucp1 and Ucp3) were significantly higher in the Pro-Hyp group than in the control group. Our
results suggested that Pro-Hyp can facilitate SVCs to differentiate into “brite/beige” adipocytes.
Collapse
Affiliation(s)
- Jun A Minaguchi
- Laboratory of Microanatomy, School of Veterinary Medicine, Rakuno Gakuen University, 582, Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Plikus MV, Guerrero-Juarez CF, Ito M, Li YR, Dedhia PH, Zheng Y, Shao M, Gay DL, Ramos R, Hsi TC, Oh JW, Wang X, Ramirez A, Konopelski SE, Elzein A, Wang A, Supapannachart RJ, Lee HL, Lim CH, Nace A, Guo A, Treffeisen E, Andl T, Ramirez RN, Murad R, Offermanns S, Metzger D, Chambon P, Widgerow AD, Tuan TL, Mortazavi A, Gupta RK, Hamilton BA, Millar SE, Seale P, Pear WS, Lazar MA, Cotsarelis G. Regeneration of fat cells from myofibroblasts during wound healing. Science 2017; 355:748-752. [PMID: 28059714 DOI: 10.1126/science.aai8792] [Citation(s) in RCA: 423] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022]
Abstract
Although regeneration through the reprogramming of one cell lineage to another occurs in fish and amphibians, it has not been observed in mammals. We discovered in the mouse that during wound healing, adipocytes regenerate from myofibroblasts, a cell type thought to be differentiated and nonadipogenic. Myofibroblast reprogramming required neogenic hair follicles, which triggered bone morphogenetic protein (BMP) signaling and then activation of adipocyte transcription factors expressed during development. Overexpression of the BMP antagonist Noggin in hair follicles or deletion of the BMP receptor in myofibroblasts prevented adipocyte formation. Adipocytes formed from human keloid fibroblasts either when treated with BMP or when placed with human hair follicles in vitro. Thus, we identify the myofibroblast as a plastic cell type that may be manipulated to treat scars in humans.
Collapse
Affiliation(s)
- Maksim V Plikus
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA. .,Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Christian F Guerrero-Juarez
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Mayumi Ito
- The Ronald O. Perelman Department of Dermatology, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Yun Rose Li
- The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Priya H Dedhia
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ying Zheng
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mengle Shao
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Denise L Gay
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,INSERM U967, Commissariat à L'énergie Atomique et aux Énergies Alternatives, Institut de Radiobiologie Cellulaire et Moléculaire 92265 Fontenay-aux-Roses Cedex, France
| | - Raul Ramos
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Tsai-Ching Hsi
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Ji Won Oh
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA.,Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Xiaojie Wang
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Amanda Ramirez
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Sara E Konopelski
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Arijh Elzein
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Anne Wang
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rarinthip June Supapannachart
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hye-Lim Lee
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Chae Ho Lim
- The Ronald O. Perelman Department of Dermatology, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Arben Nace
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amy Guo
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elsa Treffeisen
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 328116, USA
| | - Ricardo N Ramirez
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Rabi Murad
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Daniel Metzger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch 67404, France
| | - Pierre Chambon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Institut d'Etudes Avancées de l'Université de Strasbourg, Collège de France, Illkirch 67404, France
| | - Alan D Widgerow
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, Irvine, CA 92868, USA
| | - Tai-Lan Tuan
- The Saban Research Institute of Children's Hospital Los Angeles and Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bruce A Hamilton
- Departments of Medicine and Cellular and Molecular Medicine, Moores Cancer Center and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sarah E Millar
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick Seale
- The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Warren S Pear
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George Cotsarelis
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Inagaki T, Sakai J, Kajimura S. Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nat Rev Mol Cell Biol 2016; 17:480-95. [PMID: 27251423 DOI: 10.1038/nrm.2016.62] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
White adipocytes store excess energy in the form of triglycerides, whereas brown and beige adipocytes dissipate energy in the form of heat. This thermogenic function relies on the activation of brown and beige adipocyte-specific gene programmes that are coordinately regulated by adipose-selective chromatin architectures and by a set of unique transcriptional and epigenetic regulators. A number of transcriptional and epigenetic regulators are also required for promoting beige adipocyte biogenesis in response to various environmental stimuli. A better understanding of the molecular mechanisms governing the generation and function of brown and beige adipocytes is necessary to allow us to control adipose cell fate and stimulate thermogenesis. This may provide a therapeutic approach for the treatment of obesity and obesity-associated diseases, such as type 2 diabetes.
Collapse
Affiliation(s)
- Takeshi Inagaki
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan 153-8904.,The Translational Systems Biology and Medicine Initiative (TSBMI), Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan 113-8655
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan 153-8904.,The Translational Systems Biology and Medicine Initiative (TSBMI), Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan 113-8655
| | - Shingo Kajimura
- UCSF Diabetes Center and Department of Cell and Tissue Biology, University of California, San Francisco, California 94143-0669, USA
| |
Collapse
|
9
|
An Q, Wu D, Ma Y, Zhou B, Liu Q. Suppression of Evi1 promotes the osteogenic differentiation and inhibits the adipogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro. Int J Mol Med 2015; 36:1615-22. [PMID: 26497332 DOI: 10.3892/ijmm.2015.2385] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 10/14/2015] [Indexed: 11/05/2022] Open
Abstract
Osteoporosis (OP) is considered a complex disease with a strong genetic impact, mainly affecting post-menopausal women and is also a common cause of fracture. Elucidating the molecular mechanisms that regulate the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) is crucial to developing treatment strategies to combat OP. In the present study, we found that ectopic viral integration site‑1 (Evi1) was highly expressed during the process of adipogenesis of rat BMSCs. Notably, Evi1 levels markedly increased on day 3 of adipogenic differentiation following the addition of adipogenic induction supplements. In addition, we interfered with the expression of the Evi1 gene in the adipogenesis of BMSCs by supplementing adenoviral plasmids and measured the expression levels of bone sialoprotein (BSP), osteocalcin (OCN), osteopontin (OPN), peroxisome proliferator‑activated receptor γ2 (PPARγ2) and lipoprotein lipase (LPL) by RT-qPCR and western blot analysis. The mRNA and protein levels of osteogenic and adipogenic markers in the BMSCs were up‑ and downregulated, respectively following the silencing of siEvi1. Our experimental results substantiate that the suppression of Evi1 in BMSCs by RNA interference inhibits adipogenic differentiation, while it promotes osteogenic differentiation. The results from our study demonstrated that the Evi1 gene may be targeted as a therapeutic strategy for promoting bone formation.
Collapse
Affiliation(s)
- Qijun An
- Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Dou Wu
- Department of Orthopaedics, Shanxi Dayi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi 030032, P.R. China
| | - Yuehong Ma
- Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Biao Zhou
- Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Qiang Liu
- Department of Orthopaedics, Shanxi Dayi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi 030032, P.R. China
| |
Collapse
|
10
|
Choi EK, Cho YJ, Yang HJ, Kim KS, Lee IS, Jang JC, Kim KH, Bang JH, Kim Y, Kim SH, Cho YH, Yoon NY, Jang YP, Song MY, Jang HJ. Coix seed extract attenuates the high-fat induced mouse obesity via PPARγ and C/EBPα a downregulation. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-015-0020-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Watanabe M, Takahashi H, Saeki Y, Ozaki T, Itoh S, Suzuki M, Mizushima W, Tanaka K, Hatakeyama S. The E3 ubiquitin ligase TRIM23 regulates adipocyte differentiation via stabilization of the adipogenic activator PPARγ. eLife 2015; 4:e05615. [PMID: 25905670 PMCID: PMC4426667 DOI: 10.7554/elife.05615] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 04/21/2015] [Indexed: 12/19/2022] Open
Abstract
Adipocyte differentiation is a strictly controlled process regulated by a series of transcriptional activators. Adipogenic signals activate early adipogenic activators and facilitate the transient formation of early enhanceosomes at target genes. These enhancer regions are subsequently inherited by late enhanceosomes. PPARγ is one of the late adipogenic activators and is known as a master regulator of adipogenesis. However, the factors that regulate PPARγ expression remain to be elucidated. Here, we show that a novel ubiquitin E3 ligase, tripartite motif protein 23 (TRIM23), stabilizes PPARγ protein and mediates atypical polyubiquitin conjugation. TRIM23 knockdown caused a marked decrease in PPARγ protein abundance during preadipocyte differentiation, resulting in a severe defect in late adipogenic differentiation, whereas it did not affect the formation of early enhanceosomes. Our results suggest that TRIM23 plays a critical role in the switching from early to late adipogenic enhanceosomes by stabilizing PPARγ protein possibly via atypical polyubiquitin conjugation. DOI:http://dx.doi.org/10.7554/eLife.05615.001 The world is facing a global epidemic of obesity, which also increases the risk for diabetes and heart disease. Obesity is caused when excess fat is stored in fat cells, and overweight individuals have larger fat cells compared to healthy weight people. Therefore understanding how fat cells are created in the body can provide new ways to combat obesity. Fat cells, also known as adipocytes, arise from precursor cells via a process called adipogenesis. This requires the activity of proteins called transcription factors that bind to DNA and switch on the expression of genes. PPARγ is an important transcription factor that drives the expression of the genes that are needed to convert a precursor cell to a mature adipocyte. For adipogenesis to proceed, cells have to maintain the appropriate levels of PPARγ. If the amount of PPARγ bound to DNA is too low, then it is unable to activate gene expression. However, the mechanisms by which cells maintain the correct levels of PPARγ activity remain poorly understood. Watanabe et al. analyzed this process in mouse cells and identified a protein called TRIM23 that is produced in precursor cells. Cells in which the levels of TRIM23 were artificially lowered failed to mature into fat cells; this suggests that this protein is necessary for adipogenesis. Furthermore, in the absence of TRIM23, the amount of PPARγ that occupied regions of DNA was also markedly reduced. A direct consequence of this was a decline in the expression of several genes that are required for the later steps in the adipogenesis process. Watanabe et al. next analyzed the mechanism through which TRIM23 had an effect on the levels of PPARγ. It is known from previous work that TRIM23 belongs to a family of enzymes that attach a small molecular tag called ubiquitin onto other proteins. This ubiquitin tag typically marks these proteins for rapid destruction by a large molecular machine called the proteasome. Watanabe et al. found that TRIM23 also modified PPARγ with ubiquitin, but that it did so in an unusual manner that instead prevented the proteasome from recognizing PPARγ and destroying it. As such, TRIM23 stabilizes the levels of PPARγ in cells. By providing new insights into how adipogenesis is regulated, these findings suggest that TRIM23 may be a potential therapeutic target in the treatment of diabetes and disorders related to obesity. DOI:http://dx.doi.org/10.7554/eLife.05615.002
Collapse
Affiliation(s)
- Masashi Watanabe
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hidehisa Takahashi
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yasushi Saeki
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takashi Ozaki
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shihori Itoh
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masanobu Suzuki
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Wataru Mizushima
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
12
|
Ishibashi J, Seale P. Functions of Prdm16 in thermogenic fat cells. Temperature (Austin) 2015; 2:65-72. [PMID: 27227007 PMCID: PMC4843880 DOI: 10.4161/23328940.2014.974444] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/06/2014] [Indexed: 12/04/2022] Open
Abstract
The PR-domain containing 16 (Prdm16) protein is a powerful inducer of the thermogenic phenotype in fat cells. In both developmental (brown) and induced (beige) thermogenic adipose tissue, Prdm16 has a critical role in maintaining proper tissue structure and function. It has roles throughout the course of differentiation, beginning with lineage determination activity in precursor cells, and continuing with coactivator functions that enable and maintain thermogenic gene expression. These abilities are primarily mediated by interactions with other adipogenic factors, suggesting that Prdm16 acts to coordinate the overall brown adipose phenotype. Mouse models have confirmed that thermogenic adipose depends upon Prdm16, and that this type of fat tissue provides substantial metabolic protection against the harmful effects of a high fat/high energy diet. Activation of Prdm16, therefore, holds promise for stimulating thermogenesis in fat cells to reduce human obesity and its complications.
Collapse
Affiliation(s)
- Jeff Ishibashi
- Institute for Diabetes, Obesity, & Metabolism; Department of Cell and Developmental Biology; Department of Genetics; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| | - Patrick Seale
- Institute for Diabetes, Obesity, & Metabolism; Department of Cell and Developmental Biology; Department of Genetics; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| |
Collapse
|
13
|
Gubelmann C, Schwalie PC, Raghav SK, Röder E, Delessa T, Kiehlmann E, Waszak SM, Corsinotti A, Udin G, Holcombe W, Rudofsky G, Trono D, Wolfrum C, Deplancke B. Identification of the transcription factor ZEB1 as a central component of the adipogenic gene regulatory network. eLife 2014; 3:e03346. [PMID: 25163748 PMCID: PMC4359378 DOI: 10.7554/elife.03346] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/24/2014] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is a key determinant of whole body metabolism and energy homeostasis. Unraveling the regulatory mechanisms underlying adipogenesis is therefore highly relevant from a biomedical perspective. Our current understanding of fat cell differentiation is centered on the transcriptional cascades driven by the C/EBP protein family and the master regulator PPARγ. To elucidate further components of the adipogenic gene regulatory network, we performed a large-scale transcription factor (TF) screen overexpressing 734 TFs in mouse pre-adipocytes and probed their effect on differentiation. We identified 22 novel pro-adipogenic TFs and characterized the top ranking TF, ZEB1, as being essential for adipogenesis both in vitro and in vivo. Moreover, its expression levels correlate with fat cell differentiation potential in humans. Genomic profiling further revealed that this TF directly targets and controls the expression of most early and late adipogenic regulators, identifying ZEB1 as a central transcriptional component of fat cell differentiation. DOI:http://dx.doi.org/10.7554/eLife.03346.001 The growing rates of obesity and related metabolic diseases are a major public health concern worldwide. People who are overweight or obese are at increased risk for a range of diseases including diabetes and heart disease, which may reduce their quality of life and shorten their lifespans. Obese people have more, larger fat cells than individuals of healthy weight, and so understanding how the body creates fat cells may provide new insights into ways to prevent or treat obesity. Fat cells arise from a population of stem cells that can also give rise to bone cells and cartilage. Some of the proteins—called transcription factors—that work together to turn on the expression of genes needed for a stem cell to become a fat cell have been identified. However, the exact regulatory processes that cause an unspecialized cell to develop into a fat cell remain unclear. Gubelmann et al. set out to identify more of the transcription factors that cause stem cells to become fat cells. A high-throughput, automated process was used to test the effect of over-expressing each of 734 transcription factors in mouse cells that are primed to become fat cells. Twenty-six transcription factors were found to increase the number of these primed cells that became mature fat cells—most of which had not previously been shown to affect how fat cells develop. The most powerful driver of fat cell development was ZEB1: a transcription factor that has previously been implicated in many other biological processes. Most notably, ZEB1 was linked to a transition during development that allows cells to migrate to the correct location in the embryo, but also to a mechanism that allows cancerous cells to spread to new tissues. Using studies of mouse cells and live mice, computational analyses, and biopsies from obese patients, Gubelmann et al. show that ZEB1 regulates numerous other transcription factors that promote the development of fat cells. These include factors that initially set an unspecialized cell on the path to becoming a fat cell and those that guide the changes that occur as the fat cell matures. Further studies will be required to show whether the ZEB1 protein itself is needed to prime stem cells to start becoming fat cells. DOI:http://dx.doi.org/10.7554/eLife.03346.002
Collapse
Affiliation(s)
- Carine Gubelmann
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Petra C Schwalie
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sunil K Raghav
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Eva Röder
- Institute of Food Nutrition and Health, Eidgenössische Technische Hochschule Zürich, Schwerzenbach, Switzerland
| | - Tenagne Delessa
- Institute of Food Nutrition and Health, Eidgenössische Technische Hochschule Zürich, Schwerzenbach, Switzerland
| | - Elke Kiehlmann
- Institute of Food Nutrition and Health, Eidgenössische Technische Hochschule Zürich, Schwerzenbach, Switzerland
| | - Sebastian M Waszak
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Andrea Corsinotti
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gilles Udin
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Wiebke Holcombe
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Gottfried Rudofsky
- Ärztlicher Leiter Endokrinologie, Diabetologie und Klinische Ernährung Kantonsspital Olten, Olten, Switzerland
| | - Didier Trono
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christian Wolfrum
- Institute of Food Nutrition and Health, Eidgenössische Technische Hochschule Zürich, Schwerzenbach, Switzerland
| | - Bart Deplancke
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
14
|
Li Y, Li F, Lin B, Kong X, Tang Y, Yin Y. Myokine IL-15 regulates the crosstalk of co-cultured porcine skeletal muscle satellite cells and preadipocytes. Mol Biol Rep 2014; 41:7543-53. [PMID: 25098601 DOI: 10.1007/s11033-014-3646-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/25/2014] [Indexed: 11/25/2022]
Abstract
The present study was carried out to preliminarily reveal the underlying mechanisms of the co-culture system between porcine muscle satellite cells (SCs) and stromal-vascular cells (SVs). The two cell types were co-cultured to assess both proliferation and differentiation. Desmin and Pref-1 immunofluorescence staining technique were taken to identify the two types of isolated cells. The expression of specific marker genes Myogenin was up-regulated in SCs (P < 0.05) and the differentiation of SCs could be promoted when co-cultured with preadipocytes compared with the single-cultured control, while expression of c/EBPβ in SVs was down-regulated (P < 0.05) and the differentiation of preadipocytes could be inhibited. Furthermore, secretion of myokine IL-15 was markedly increased, as well as its gene and protein expression levels in co-culture supernatants. However, the secretion of adipokine leptin was significantly decreased. These findings demonstrate that myokines like IL-15 could facilitate the SCs' differentiation while inhibit the SVs differentiation, and act as an important regulator of co-culture between muscle cells and adipocytes.
Collapse
Affiliation(s)
- Yinghui Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, No. 644 Yuanda Road, Furong District, Changsha Hunan, 410125, China
| | | | | | | | | | | |
Collapse
|
15
|
Harms MJ, Ishibashi J, Wang W, Lim HW, Goyama S, Sato T, Kurokawa M, Won KJ, Seale P. Prdm16 is required for the maintenance of brown adipocyte identity and function in adult mice. Cell Metab 2014; 19:593-604. [PMID: 24703692 PMCID: PMC4012340 DOI: 10.1016/j.cmet.2014.03.007] [Citation(s) in RCA: 303] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/08/2013] [Accepted: 02/26/2014] [Indexed: 12/22/2022]
Abstract
Prdm16 is a transcription factor that regulates the thermogenic gene program in brown and beige adipocytes. However, whether Prdm16 is required for the development or physiological function of brown adipose tissue (BAT) in vivo has been unclear. By analyzing mice that selectively lacked Prdm16 in the brown adipose lineage, we found that Prdm16 was dispensable for embryonic BAT development. However, Prdm16 was required in young mice to suppress the expression of white-fat-selective genes in BAT through recruitment of the histone methyltransferase Ehmt1. Additionally, Prdm16 deficiency caused a severe adult-onset decline in the thermogenic character of interscapular BAT. This resulted in BAT dysfunction and cold sensitivity but did not predispose the animals to obesity. Interestingly, the loss of brown fat identity due to ablation of Prdm16 was accelerated by concurrent deletion of the closely related Prdm3 gene. Together, these results show that Prdm16 and Prdm3 control postnatal BAT identity and function.
Collapse
Affiliation(s)
- Matthew J Harms
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Jeff Ishibashi
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Wenshan Wang
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Hee-Woong Lim
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Susumu Goyama
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomohiko Sato
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kyoung-Jae Won
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Mueller E. Understanding the variegation of fat: novel regulators of adipocyte differentiation and fat tissue biology. Biochim Biophys Acta Mol Basis Dis 2013; 1842:352-7. [PMID: 23735215 DOI: 10.1016/j.bbadis.2013.05.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 01/06/2023]
Abstract
The differentiation of uncommitted cells into specialized adipocytes occurs through a cascade of transcriptional events culminating in the induction and activation of the nuclear receptor PPARγ, the central coordinator of fat cell function. Since the discovery of PPARγ, two decades ago, our views of how this molecule is activated have been significantly refined. Beyond the cell, we also now know that diverse signals and regulators control PPARγ function in a fat-depot specific manner. The goal of this article is to review the latest in our understanding of the early and late transcriptional events that regulate adipocyte development and their potential impact on energy storage and expenditure in different fat depots. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
Affiliation(s)
- Elisabetta Mueller
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Rajakumari S, Wu J, Ishibashi J, Lim HW, Giang AH, Won KJ, Reed RR, Seale P. EBF2 determines and maintains brown adipocyte identity. Cell Metab 2013; 17:562-74. [PMID: 23499423 PMCID: PMC3622114 DOI: 10.1016/j.cmet.2013.01.015] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/03/2013] [Accepted: 01/23/2013] [Indexed: 11/24/2022]
Abstract
The master transcription factor Pparγ regulates the general differentiation program of both brown and white adipocytes. However, it has been unclear whether Pparγ also controls fat lineage-specific characteristics. Here, we show that early B cell factor-2 (Ebf2) regulates Pparγ binding activity to determine brown versus white adipocyte identity. The Ebf DNA-binding motif was highly enriched within brown adipose-specific Pparγ binding sites that we identified by genome-wide ChIP-Seq. Of the Ebf isoforms, Ebf2 was selectively expressed in brown relative to white adipocytes and was bound at brown adipose-specific Pparγ target genes. When expressed in myoblasts or white preadipose cells, Ebf2 recruited Pparγ to its brown-selective binding sites and reprogrammed cells to a brown fat fate. Brown adipose cells and tissue from Ebf2-deficient mice displayed a loss of brown-specific characteristics and thermogenic capacity. Together, these results identify Ebf2 as a key transcriptional regulator of brown fat cell fate and function.
Collapse
Affiliation(s)
- Sona Rajakumari
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
The shortest isoform of C/EBPβ, liver inhibitory protein (LIP), collaborates with Evi1 to induce AML in a mouse BMT model. Blood 2013; 121:4142-55. [PMID: 23547050 DOI: 10.1182/blood-2011-07-368654] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ecotropic viral integration site 1 (Evi1) is one of the master regulators in the development of acute myeloid leukemia (AML) and myelodysplastic syndrome. High expression of Evi1 is found in 10% of patients with AML and indicates a poor outcome. Several recent studies have indicated that Evi1 requires collaborative factors to induce AML. Therefore, the search for candidate factors that collaborate with Evi1 in leukemogenesis is one of the key issues in uncovering the mechanism of Evi1-related leukemia. Previously, we succeeded in making a mouse model of Evi1-related leukemia using a bone marrow transplantation (BMT) system. In the Evi1-induced leukemic cells, we identified frequent retroviral integrations near the CCAAT/enhancer-binding protein β (C/EBPβ) gene and overexpression of its protein. These findings imply that C/EBPβ is a candidate gene that collaborates with Evi1 in leukemogenesis. Cotransduction of Evi1 and the shortest isoform of C/EBPβ, liver inhibitory protein (LIP), induced AML with short latencies in a mouse BMT model. Overexpression of LIP alone also induced AML with longer latencies. However, excision of all 3 isoforms of C/EBPβ (LAP*/LAP/LIP) did not inhibit the development of Evi1-induced leukemia. Therefore, isoform-specific intervention that targets LIP is required when we consider C/EBPβ as a therapeutic target.
Collapse
|
19
|
Eeckhoute J, Oger F, Staels B, Lefebvre P. Coordinated Regulation of PPARγ Expression and Activity through Control of Chromatin Structure in Adipogenesis and Obesity. PPAR Res 2012; 2012:164140. [PMID: 22991504 PMCID: PMC3444001 DOI: 10.1155/2012/164140] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 07/10/2012] [Indexed: 12/14/2022] Open
Abstract
The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is required for differentiation and function of mature adipocytes. Its expression is induced during adipogenesis where it plays a key role in establishing the transcriptome of terminally differentiated white fat cells. Here, we review findings indicating that PPARγ expression and activity are intricately regulated through control of chromatin structure. Hierarchical and combinatorial activation of transcription factors, noncoding RNAs, and chromatin remodelers allows for temporally controlled expression of PPARγ and its target genes through sequential chromatin remodelling. In obesity, these regulatory pathways may be altered and lead to modified PPARγ activity.
Collapse
Affiliation(s)
- Jérôme Eeckhoute
- Université Lille Nord de France, 59000 Lille, France
- Inserm, U1011, 59000 Lille, France
- UDSL, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| | - Frédérik Oger
- Université Lille Nord de France, 59000 Lille, France
- Inserm, U1011, 59000 Lille, France
- UDSL, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| | - Bart Staels
- Université Lille Nord de France, 59000 Lille, France
- Inserm, U1011, 59000 Lille, France
- UDSL, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| | - Philippe Lefebvre
- Université Lille Nord de France, 59000 Lille, France
- Inserm, U1011, 59000 Lille, France
- UDSL, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| |
Collapse
|