1
|
Que Y, Yue X, Yang N, Xu Z, Tang S, Wang C, Lv W, Xu L, Talbot NJ, Wang Z. Leucine biosynthesis is required for infection-related morphogenesis and pathogenicity in the rice blast fungus Magnaporthe oryzae. Curr Genet 2019; 66:155-171. [PMID: 31263943 DOI: 10.1007/s00294-019-01009-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 11/29/2022]
Abstract
The rice blast fungus Magnaporthe oryzae causes one of the most devastating crop diseases world-wide and new control strategies for blast disease are urgently required. We have used insertional mutagenesis in M. oryzae to define biological processes that are critical for blast disease. Here, we report the identification of LEU2A by T-DNA mutagenesis, which putatively encodes 3-isopropylmalate dehydrogenase (3-IPMDH) required for leucine biosynthesis, implicating that synthesis of this amino acid is required for fungal pathogenesis. M. oryzae contains a further predicted 3-IPMDH gene (LEU2B), two 2-isopropylmalate synthase (2-IPMS) genes (LEU4 and LEU9) and an isopropylmalate isomerase (IPMI) gene (LEU1). Targeted gene deletion mutants of LEU1, LEU2A or LEU4 are leucine auxotrophs, and severely defective in pathogenicity. All phenotypes associated with mutants lacking LEU1, LEU2A or LEU4 could be overcome by adding exogenous leucine. The expression levels of LEU1, LEU2A or LEU4 genes were significantly down-regulated by deletion of the transcription factor gene LEU3, an ortholog of Saccharomyces cerevisiae LEU3. We also functionally characterized leucine biosynthesis genes in the wheat pathogen Fusarium graminearum and found that FgLEU1, FgLEU3 and FgLEU4 are essential for wheat head blight disease, suggesting that leucine biosynthesis in filamentous fungal pathogens may be a conserved factor for fungal pathogenicity and, therefore, a potential target for disease control.
Collapse
Affiliation(s)
- Yawei Que
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiaofeng Yue
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Nan Yang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zhe Xu
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Shuai Tang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Chunyan Wang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Wuyun Lv
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Lin Xu
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Nicholas J Talbot
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Zhengyi Wang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
2
|
McNeil JB, Storms RK, Friesen JD, Smith M. Efficient expression of the Escherichia coli leuB gene in yeast. Curr Genet 1985; 9:653-60. [PMID: 3916734 DOI: 10.1007/bf00449818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Efficient expression of the Escherichia coli leuB (beta-isopropylmalate dehydrogenase) gene occurred in yeast after in vitro DNase digestion and religation of plasmid bound leuB and the yeast HIS3 DNA which placed the 5' end of the yeast HIS3 gene immediately adjacent to the coding region of the E. coli leuB gene. Two structurally distinct classes of gene fusions were constructed, each involved portions of the yeast HIS3 gene which contributed DNA sequences responsible for leuB expression in yeast. The first class involved fusion of the HIS3 coding region to bacterial DNA resulting in the production of a fusion protein with beta-isopropylmalate dehydrogenase activity. The second class consisted of bacterial DNA, including the leuB coding region, fused to the HIS3 promotor region with the absence of any portion of the HIS3 coding region. In both constructions the HIS3 promotor region is required for transcription, however, translation of the class two fusion is initiated at a bacterial DNA coded AUG, and the 5' end of the mRNA coded by the leuB gene mapped predominantly at bacterial DNA sequences. The DNA sequence responsible for the 5' end of the HIS3 mRNAs remain in the class two gene fusions but this did not preclude the initiation of transcription at bacterial DNA sequences. The pattern of mRNA initiation at bacterial DNA suggests that DNA sequences at, or adjacent to, the site of transcription initiation are involved in the determination of the sites of initiation, and perhaps the frequency at which initiation occurs.
Collapse
Affiliation(s)
- J B McNeil
- Department of Biology, York University, Downsview, Ontario, Canada
| | | | | | | |
Collapse
|
3
|
DesGroseillers L, Barrette M, Jolicoeur P. Physical mapping of the paralysis-inducing determinant of a wild mouse ecotropic neurotropic retrovirus. J Virol 1984; 52:356-63. [PMID: 6092665 PMCID: PMC254534 DOI: 10.1128/jvi.52.2.356-363.1984] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We have recently shown that a molecularly cloned ecotropic retrovirus, initially isolated from the brain of a paralyzed wild mouse, retained the ability to induce hind limb paralysis when inoculated into susceptible mice (Jolicoeur et al., J. Virol. 45:1159-1163, 1983). To map the viral DNA sequences encoding the determinant of paralysis, we constructed chimeric viral DNA genomes in vitro between parental cloned infectious viral DNA genomes from this neurotropic murine leukemia virus (MuLV) and from nonneurotropic amphotropic 4070-A MuLV. Infectious chimeric MuLVs, recovered after microinjection of NIH 3T3 cells with these recombinant DNAs, were inoculated into newborn SIM.S and SWR/J mice to test the paralysis-inducing potential. We found that the 3.9-kilobase-pair SalI-ClaI fragment of the neurotropic MuLV comprising the 3' end of pol and all env sequences was sufficient to confer the paralysis-inducing potential to chimeric viruses. Therefore, this region of the neurotropic MuLV genome most likely harbors the primary determinant of paralysis.
Collapse
|
4
|
Miyajima A, Nakayama N, Miyajima I, Arai N, Okayama H, Arai K. Analysis of full-length cDNA clones carrying GAL1 of Saccharomyces cerevisiae: a model system for cDNA expression. Nucleic Acids Res 1984; 12:6397-414. [PMID: 6206472 PMCID: PMC320085 DOI: 10.1093/nar/12.16.6397] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A cDNA cloning vector that allows expression in Saccharomyces cerevisiae has been developed using the plasmid primer approach described by Okayama and Berg [Mol. Cell. Biol. 2:161-170(1982)]. The vector contains ARS1 and TRP1 for plasmid maintenance in yeast and the ADC1 or GAL1 promoter and the TRP5 terminator for expression of the cloned cDNA. Using this system, several recombinants with nearly full-length GAL1 cDNA inserts in a cDNA library made with galactose-induced yeast mRNA were identified. By measurement of galactokinase mRNA and its protein, the expression of GAL1 cDNA was shown to be under the control of the promoter placed upstream of the cDNA insert. Nucleotide sequence analysis revealed that the 3'-ends of the GAL1 cDNA inserts were not unique, indicating that polyA tails were added to GAL1 transcripts at multiple sites in the GAL1 gene. Genetic complementation of appropriate yeast mutants permitted the isolation of clones containing the coding sequences for GAL1, HIS3, and LEU2 from the same cDNA library.
Collapse
|
5
|
Expression of plasmid R388-encoded type II dihydrofolate reductase as a dominant selective marker in Saccharomyces cerevisiae. Mol Cell Biol 1984. [PMID: 6325876 DOI: 10.1128/mcb.4.3.407] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The R388 plasmid-encoded drug-resistant type II dihydrofolate reductase gene (R . dhfr) was expressed in Saccharomyces cerevisiae by fusing the R . dhfr coding sequence to the yeast TRP5 promoter. Yeast cells harboring these recombinant plasmids grew in media with 10 micrograms of methotrexate per ml and 5 mg of sulfanilamide per ml, a condition which inhibits the growth of wild-type cells. Addition of a 390-base-pair fragment from the 3'-noncoding region of TRP5 downstream from R . dhfr increased expression. Presumably, the added segment promoted termination or polyadenylation or both of the R . dhfr transcript. The activity of the plasmid-encoded dihydrofolate reductase and the copy number of the R . dhfr plasmid in cells grown in drug-selective media were higher by one order of magnitude than those grown in nutrition-selective media. Plasmid copy number, as well as the plasmid-encoded enzyme level, decreased when cells were selected for prototrophy. In drug-selective media, the plasmid-encoded enzyme level and the content of R . dhfr transcripts were nearly constant in cells harboring R . dhfr plasmids containing different yeast promoters. In contrast, the plasmid copy number and beta-lactamase activity encoded in cis by plasmids were much higher when R . dhfr was associated with the weak TRP5 promoter than when it was fused to the strong ADC1 promoter. These results indicate that plasmid copy number, i.e., gene dosage of R . dhfr, correlates inversely with the strength of the promoter associated with R . dhfr, and cells with a higher plasmid copy number were enriched in drug-selective media. The transformation efficiency of R . dhfr fused to the ADC1 promoter was almost the same on drug-selective plates as on nutrition-selective plates, indicating that R . dhfr is suitable as a dominant selective transformation marker in S. cerevisiae.
Collapse
|
6
|
Abstract
Wild-type strains of Saccharomyces cerevisiae exhibit mitotic recombination between the chimeric plasmid TLC-1 and the endogenous 2mu circle that involves sequence homologies between the two plasmids that are not acted on by the 2mu circle site-specific recombination system. This generalized recombination can be detected because it separates the LEU2 and CAN1 markers of TLC-1 from each other through the formation of a plasmid containing only the S. cerevisiae LEU2 region and the 2mu circle. This derivative plasmid is maintained more stably during vegetative growth than TLC-1, and strains which carry it frequently lose the endogenous 2mu circle. Therefore, TLC-1 can provide a convenient selection for [cir0] cells. Formation of this new plasmid is greatly reduced, but not eliminated, in strains containing the rad52-1 mutation. This indicates that generalized mitotic recombination between plasmid sequences utilizes functions required for chromosomal recombination in S. cerevisiae.
Collapse
|
7
|
Miyajima A, Miyajima I, Arai K, Arai N. Expression of plasmid R388-encoded type II dihydrofolate reductase as a dominant selective marker in Saccharomyces cerevisiae. Mol Cell Biol 1984; 4:407-14. [PMID: 6325876 PMCID: PMC368717 DOI: 10.1128/mcb.4.3.407-414.1984] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The R388 plasmid-encoded drug-resistant type II dihydrofolate reductase gene (R . dhfr) was expressed in Saccharomyces cerevisiae by fusing the R . dhfr coding sequence to the yeast TRP5 promoter. Yeast cells harboring these recombinant plasmids grew in media with 10 micrograms of methotrexate per ml and 5 mg of sulfanilamide per ml, a condition which inhibits the growth of wild-type cells. Addition of a 390-base-pair fragment from the 3'-noncoding region of TRP5 downstream from R . dhfr increased expression. Presumably, the added segment promoted termination or polyadenylation or both of the R . dhfr transcript. The activity of the plasmid-encoded dihydrofolate reductase and the copy number of the R . dhfr plasmid in cells grown in drug-selective media were higher by one order of magnitude than those grown in nutrition-selective media. Plasmid copy number, as well as the plasmid-encoded enzyme level, decreased when cells were selected for prototrophy. In drug-selective media, the plasmid-encoded enzyme level and the content of R . dhfr transcripts were nearly constant in cells harboring R . dhfr plasmids containing different yeast promoters. In contrast, the plasmid copy number and beta-lactamase activity encoded in cis by plasmids were much higher when R . dhfr was associated with the weak TRP5 promoter than when it was fused to the strong ADC1 promoter. These results indicate that plasmid copy number, i.e., gene dosage of R . dhfr, correlates inversely with the strength of the promoter associated with R . dhfr, and cells with a higher plasmid copy number were enriched in drug-selective media. The transformation efficiency of R . dhfr fused to the ADC1 promoter was almost the same on drug-selective plates as on nutrition-selective plates, indicating that R . dhfr is suitable as a dominant selective transformation marker in S. cerevisiae.
Collapse
|
8
|
Whiteway MS, Ahmed A. Recombinational instability of a chimeric plasmid in Saccharomyces cerevisiae. Mol Cell Biol 1984; 4:195-8. [PMID: 6366510 PMCID: PMC368675 DOI: 10.1128/mcb.4.1.195-198.1984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Wild-type strains of Saccharomyces cerevisiae exhibit mitotic recombination between the chimeric plasmid TLC-1 and the endogenous 2mu circle that involves sequence homologies between the two plasmids that are not acted on by the 2mu circle site-specific recombination system. This generalized recombination can be detected because it separates the LEU2 and CAN1 markers of TLC-1 from each other through the formation of a plasmid containing only the S. cerevisiae LEU2 region and the 2mu circle. This derivative plasmid is maintained more stably during vegetative growth than TLC-1, and strains which carry it frequently lose the endogenous 2mu circle. Therefore, TLC-1 can provide a convenient selection for [cir0] cells. Formation of this new plasmid is greatly reduced, but not eliminated, in strains containing the rad52-1 mutation. This indicates that generalized mitotic recombination between plasmid sequences utilizes functions required for chromosomal recombination in S. cerevisiae.
Collapse
|
9
|
DesGroseillers L, Rassart E, Jolicoeur P. Thymotropism of murine leukemia virus is conferred by its long terminal repeat. Proc Natl Acad Sci U S A 1983; 80:4203-7. [PMID: 6308605 PMCID: PMC384005 DOI: 10.1073/pnas.80.14.4203] [Citation(s) in RCA: 173] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Several murine leukemia viruses (MuLV) replicate efficiently in the thymus (T+) of the mouse, whereas others are unable to replicate (T-) in this organ. To map the region of the viral genome harboring the sequences responsible for this thymotropic phenotype, we constructed viral DNA recombinants in vitro between cloned infectious viral DNAs from T- BALB/c N-tropic MuLV and from T+ BALB/c B-tropic MuLV or AKR Gross passage A MuLV. (N- and B-tropic refer to the Fv-1 host range of MuLV.) Infectious recombinant MuLVs, recovered from murine cells microinjected with these recombinant DNAs, were injected into newborn mice to test their ability to replicate in the thymus. We found that the long terminal repeat from the T+ BALB/c B-tropic or AKR Gross passage A MuLV genome was sufficient to allow replication of recombinant MuLVs in the thymus. Our sequence data suggested that the U3 tandem direct repeat was responsible for this effect. These results suggest a new role for the U3 long terminal repeat in the replication of MuLV in specific differentiated target cells.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cloning, Molecular
- DNA Replication
- DNA Restriction Enzymes
- DNA, Recombinant/metabolism
- DNA, Viral/genetics
- Genes, Viral
- Leukemia Virus, Murine/genetics
- Leukemia, Experimental/microbiology
- Lymphocytes/microbiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred Strains
- Repetitive Sequences, Nucleic Acid
- Thymus Gland/microbiology
- Virus Replication
Collapse
|
10
|
Kiss GB, Pearlman RE, Cornish KV, Friesen JD, Chan VL. The herpes simplex virus thymidine kinase gene is not transcribed in Saccharomyces cerevisiae. J Bacteriol 1982; 149:542-7. [PMID: 6276360 PMCID: PMC216540 DOI: 10.1128/jb.149.2.542-547.1982] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The herpes simplex virus thymidine kinase gene has been cloned into a chimeric yeast plasmid cloning vehicle and transformed into appropriate yeast strains. Plasmids carrying the herpes simplex virus thymidine kinase gene can be propagated as autonomously replicating plasmids, but no RNA specific to the thymidine kinase coding sequence was detected.
Collapse
|