1
|
Yang L, Yu J. A comparative analysis of divergently-paired genes (DPGs) among Drosophila and vertebrate genomes. BMC Evol Biol 2009; 9:55. [PMID: 19284596 PMCID: PMC2670823 DOI: 10.1186/1471-2148-9-55] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 03/11/2009] [Indexed: 11/14/2022] Open
Abstract
Background Divergently-paired genes (DPGs) are defined as two adjacent genes that are transcribed toward the opposite direction (or from different DNA strands) and shared their transcription start sites (TSSs) less than 1,000 base pairs apart. DPGs are products of a common organizational feature among eukaryotic genes yet to be surveyed across divergent genomes over well-defined evolutionary distances since mutations in the sequence between a pair of DPGs may result in alternations in shared promoters and thus affect the function of both genes. By sharing promoters, the gene pairs take the advantage of co-regulation albeit bearing doubled mutational burdens in maintaining their normal functions. Results Drosophila melanogaster has a significant fraction (31.6% of all genes) of DPGs which are remarkably conserved relative to its gene density as compared to other eukaryotes. Our survey and comparative analysis revealed different evolutionary patterns among DPGs between insect and vertebrate lineages. The conservation of DPGs in D. melanogaster is of significance as they are mostly housekeeping genes characterized by the absence of TATA box in their promoter sequences. The combination of Initiator and Downstream Promoter Element may play an important role in regulating DPGs in D. melanogaster, providing an excellent niche for studying the molecular details for transcription regulations. Conclusion DPGs appear to have arisen independently among different evolutionary lineages, such as the insect and vertebrate lineages, and exhibit variable degrees of conservation. Such architectural organizations, including convergently-paired genes (CPGs) may associate with transcriptional regulation and have significant functional relevance.
Collapse
Affiliation(s)
- Liang Yang
- James D, Watson Institute of Genome Sciences, College of Life Sciences, Zhejiang University, Hangzhou, PR China.
| | | |
Collapse
|
2
|
Wang Q, Wan L, Li D, Zhu L, Qian M, Deng M. Searching for bidirectional promoters in Arabidopsis thaliana. BMC Bioinformatics 2009; 10 Suppl 1:S29. [PMID: 19208129 PMCID: PMC2648788 DOI: 10.1186/1471-2105-10-s1-s29] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background A "bidirectional gene pair" is defined as two adjacent genes which are located on opposite strands of DNA with transcription start sites (TSSs) not more than 1000 base pairs apart and the intergenic region between two TSSs is commonly designated as a putative "bidirectional promoter". Individual examples of bidirectional gene pairs have been reported for years, as well as a few genome-wide analyses have been studied in mammalian and human genomes. However, no genome-wide analysis of bidirectional genes for plants has been done. Furthermore, the exact mechanism of this gene organization is still less understood. Results We conducted comprehensive analysis of bidirectional gene pairs through the whole Arabidopsis thaliana genome and identified 2471 bidirectional gene pairs. The analysis shows that bidirectional genes are often coexpressed and tend to be involved in the same biological function. Furthermore, bidirectional gene pairs associated with similar functions seem to have stronger expression correlation. We pay more attention to the regulatory analysis on the intergenic regions between bidirectional genes. Using a hierarchical stochastic language model (HSL) (which is developed by ourselves), we can identify intergenic regions enriched of regulatory elements which are essential for the initiation of transcription. Finally, we picked 27 functionally associated bidirectional gene pairs with their intergenic regions enriched of regulatory elements and hypothesized them to be regulated by bidirectional promoters, some of which have the same orthologs in ancient organisms. More than half of these bidirectional gene pairs are further supported by sharing similar functional categories as these of handful experimental verified bidirectional genes. Conclusion Bidirectional gene pairs are concluded also prevalent in plant genome. Promoter analyses of the intergenic regions between bidirectional genes could be a new way to study the bidirectional gene structure, which may provide a important clue for further analysis. Such a method could be applied to other genomes.
Collapse
Affiliation(s)
- Quan Wang
- Center for Theoretical Biology, Peking University, Beijing100871, PR China.
| | | | | | | | | | | |
Collapse
|
3
|
Lipovich L, King MC. Abundant novel transcriptional units and unconventional gene pairs on human chromosome 22. Genome Res 2005; 16:45-54. [PMID: 16344557 PMCID: PMC1356128 DOI: 10.1101/gr.3883606] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Novel transcriptional units (TUs) are EST-supported transcribed features not corresponding to known genes. Unconventional gene pairs (UGPs) are pairs of genes and/or TUs sharing exon-to-exon cis-antisense overlaps or putative bidirectional promoters. Computational TU and UGP discovery followed by manual curation was performed in the entire published 34.9-Mb human chromosome 22 euchromatic sequence. Novel TUs (n = 517) were as abundant as known genes (n = 492) and typically did not have nonprimate DNA and protein homologies. One hundred seventy-one (33%) of TUs, but only 13 (3%) of genes, both lacked nonprimate conservation and localized to gaps in the human-mouse BLASTZ alignment. Novel TUs were richer in exonic primate-specific interspersed repetitive elements (P = 0.001) and were more likely to rely on splice junctions provided by them, than were known genes: 19% of spliced TUs, versus 5% of spliced genes, had a splice site within a primate-specific repeat. Hence, novel TUs and known genes may represent different portions of the transcriptome. Two hundred nine (21%) of chromosome 22 transcripts participated in 77 cis-antisense and 42 promoter-sharing UGPs. Transcripts involved simultaneously in both UGP types were more common than was expected (P = 0.01). UGPs were nonrandomly distributed along the sequence: 89 (75%) clustered in distinct regions, the sum of which equaled 4.4 Mb (<13% of the chromosome). Eighty (67%) of the UGPs possessed significant locus structure differences between primates and rodents. Since some TUs may be functional noncoding transcripts and since the cis-regulatory potential of UGPs is well recognized, TUs and UGPs specific to the primate lineage may contribute to the genomic basis for primate-specific phenotypes.
Collapse
Affiliation(s)
- Leonard Lipovich
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195-7730, USA.
| | | |
Collapse
|
4
|
Fry CJ, Slansky JE, Farnham PJ. Position-dependent transcriptional regulation of the murine dihydrofolate reductase promoter by the E2F transactivation domain. Mol Cell Biol 1997; 17:1966-76. [PMID: 9121444 PMCID: PMC232043 DOI: 10.1128/mcb.17.4.1966] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Activity of the dihydrofolate reductase (dhfr) promoter increases at the G1-S-phase boundary of the cell cycle. Mutations that abolish protein binding to an E2F element in the dhfr promoter also abolish the G1-S-phase increase in dhfr transcription, indicating that transcriptional regulation is mediated by the E2F family of proteins. To investigate the mechanism by which E2F regulates dhfr transcription, we moved the E2F element upstream and downstream of its natural position in the promoter. We found that the E2F element confers growth regulation to the dhfr promoter only when it is proximal to the transcription start site. Using a heterologous E2F element, we showed that position-dependent regulation is a property that is promoter specific, not E2F element specific. We demonstrated that E2F-mediated growth regulation of dhfr transcription requires activation of the dhfr promoter in S phase and that the C-terminal activation domains of E2F1, E2F4, and E2F5, when fused to the Gal4 DNA binding domain, are sufficient to specify position-dependent activation. To further investigate the role of activation in dhfr regulation, we tested other transactivation domains for their ability to activate the dhfr promoter. We found that the N-terminal transactivation domain of VP16 cannot activate the dhfr promoter. We propose that, unlike other E2F-regulated promoters, robust transcription from the dhfr promoter requires an E2F transactivation domain close to the transcription start site.
Collapse
Affiliation(s)
- C J Fry
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison 53706, USA
| | | | | |
Collapse
|
5
|
Wells J, Held P, Illenye S, Heintz NH. Protein-DNA interactions at the major and minor promoters of the divergently transcribed dhfr and rep3 genes during the Chinese hamster ovary cell cycle. Mol Cell Biol 1996; 16:634-47. [PMID: 8552092 PMCID: PMC231043 DOI: 10.1128/mcb.16.2.634] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In mammals, two TATA-less bidirectional promoters regulate expression of the divergently transcribed dihydrofolate reductase (dhfr) and rep3 genes. In CHOC 400 cells, dhfr mRNA levels increase about fourfold during the G1-to-S phase transition of the cell cycle, whereas the levels of rep3 transcripts vary less than twofold during this time. To assess the role of DNA-binding proteins in transcriptional regulation of the dhfr and rep3 genes, the major and minor dhfr-rep3 promoter regions were analyzed by high-resolution genomic footprinting during the cell cycle. At the major dhfr promoter, prominent DNase I footprints over four upstream Sp1 binding sites did not vary throughout G1 and entry into the S phase. Genomic footprinting revealed that a protein is constitutively bound to the overlapping E2F sites throughout the G1-to-S phase transition, an interaction that is most evident on the transcribed template strand. On the nontranscribed strand, multiple changes in the DNase I cleavage pattern are observed during transit through G1 and entry into the S phase. By using gel mobility shift assays and a series of sequence-specific probes, two different species of E2F were shown to interact with the dhfr promoter during the cell cycle. The DNA binding activity of one E2F species, which preferentially recognizes the sequence TTTGGCGC, did not vary significantly during the cell cycle. The DNA binding activity of the second E2F species, which preferentially recognizes the sequence TTTCGCGC, increased during the G1-to-S phase transition. Together, these results indicate that Sp1 and the species of E2F that binds TTTGGCGC participate in the formation of a basal transcription complex, while the species of E2F that binds TTTCGCGC regulates dhfr gene expression during the G1-to-S phase transition. At the minor promoter, DNase I footprints at a consensus c-Myc binding site and three Sp1 binding sites showed little variation during the G1-to-S phase transition. In addition to protein binding at sequences known to be involved in the regulation of transcription, genomic footprinting of the entire promoter region also showed that a protein factor is constitutively bound to the first intron of the rep3 gene.
Collapse
Affiliation(s)
- J Wells
- Program in Cell and Molecular Biology, University of Vermont College of Medicine, Burlington 05405, USA
| | | | | | | |
Collapse
|
6
|
Stapleton G, Somma MP, Lavia P. Cell type-specific interactions of transcription factors with a housekeeping promoter in vivo. Nucleic Acids Res 1993; 21:2465-71. [PMID: 8389443 PMCID: PMC309548 DOI: 10.1093/nar/21.10.2465] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Mammalian housekeeping promoters represent a class of regulatory elements different from those of tissues-specific genes, lacking a TATA box and associated with CG-rich DNA. We have compared the organization of the housekeeping Htf9 promoter in different cell types by genomic footprinting. The sites of in vivo occupancy clearly reflected local combinations of tissue-specific and ubiquitous binding factors. The flexibility of the Htf9 promoter in acting as the target of cell-specific combinations of factors may ensure ubiquitous expression of the Htf9-associated genes.
Collapse
Affiliation(s)
- G Stapleton
- AFRC Centre for Genome Research, University of Edinburgh, UK
| | | | | |
Collapse
|
7
|
New L, Liu K, Crouse GF. The yeast gene MSH3 defines a new class of eukaryotic MutS homologues. MOLECULAR & GENERAL GENETICS : MGG 1993; 239:97-108. [PMID: 8510668 DOI: 10.1007/bf00281607] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have identified a gene in Saccharomyces cerevisiae, MSH3, whose predicted protein product shares extensive sequence similarity with bacterial proteins involved in DNA mismatch repair as well as with the predicted protein product of the Rep-3 gene of mouse. MSH3 was obtained by performing a polymerase chain reaction on yeast genomic DNA using degenerate oligonucleotide primers designed to anneal with the most conserved regions of a gene that would be homologous to Rep-3 and Salmonella typhimurium mutS. MSH3 seems to play some role in DNA mismatch repair, inasmuch as its inactivation results in an increase in reversion rates of two different mutations and also causes an increase in postmeiotic segregation. However, the effect of MSH3 disruption on reversion rates and postmeiotic segregation appears to be much less than that of previously characterized yeast DNA mismatch repair genes. Alignment of the MSH3 sequence with all of the known MutS homologues suggests that its primary function may be different from the role of MutS in repair of replication errors. MSH3 appears to be more closely related to the mouse Rep-3 gene and other similar eukaryotic mutS homologues than to the yeast gene MSH2 and other mutS homologues that are involved in replication repair. We suggest that the primary function of MSH3 may be more closely related to one of the other known functions of mutS, such as its role in preventing recombination between non-identical sequences.
Collapse
Affiliation(s)
- L New
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | | | | |
Collapse
|
8
|
Housekeeping Na,K-ATPase alpha 1 subunit gene promoter is composed of multiple cis elements to which common and cell type-specific factors bind. Mol Cell Biol 1992. [PMID: 1324413 DOI: 10.1128/mcb.12.9.4046] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Na,K-ATPase alpha 1 subunit gene (ATP1A1) is one of the housekeeping genes involved in homeostasis of Na+ and K+ in all animal cells. We identified and characterized the cis-acting elements that regulate the expression of ATP1A1. The region between -155 and -49 was determined as a positive regulatory region in five cultured cell lines of different tissue origins (MDCK, B103, L6, 3Y1, and HepG2). The region was divided into three subregions: from -120 to -106 (including the Sp1 binding site), from -102 to -61, and from -58 to -49 (including an Sp1 consensus sequence). Cell type-specific factors binding to the middle subregion (from -102 to -61) were detected by gel retardation analysis, using nuclear extracts prepared from MDCK and B103 cells. Two gel retardation complexes were formed in the B103 nuclear extract, and three were formed in the MDCK nuclear extract. DNA binding regions of these factors were located at -88 to -69 and differed from each other in DNase I footprinting experiments. These factors also showed different binding characteristics in gel retardation competition and methylation interference experiments. The identified cis element was named the ATP1A1 regulatory element. The core sequence of this element is found in several other genes involved in cellular energy metabolism, suggesting that the sequence is a common regulatory element responsive to the state of energy metabolism.
Collapse
|
9
|
Suzuki-Yagawa Y, Kawakami K, Nagano K. Housekeeping Na,K-ATPase alpha 1 subunit gene promoter is composed of multiple cis elements to which common and cell type-specific factors bind. Mol Cell Biol 1992; 12:4046-55. [PMID: 1324413 PMCID: PMC360297 DOI: 10.1128/mcb.12.9.4046-4055.1992] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Na,K-ATPase alpha 1 subunit gene (ATP1A1) is one of the housekeeping genes involved in homeostasis of Na+ and K+ in all animal cells. We identified and characterized the cis-acting elements that regulate the expression of ATP1A1. The region between -155 and -49 was determined as a positive regulatory region in five cultured cell lines of different tissue origins (MDCK, B103, L6, 3Y1, and HepG2). The region was divided into three subregions: from -120 to -106 (including the Sp1 binding site), from -102 to -61, and from -58 to -49 (including an Sp1 consensus sequence). Cell type-specific factors binding to the middle subregion (from -102 to -61) were detected by gel retardation analysis, using nuclear extracts prepared from MDCK and B103 cells. Two gel retardation complexes were formed in the B103 nuclear extract, and three were formed in the MDCK nuclear extract. DNA binding regions of these factors were located at -88 to -69 and differed from each other in DNase I footprinting experiments. These factors also showed different binding characteristics in gel retardation competition and methylation interference experiments. The identified cis element was named the ATP1A1 regulatory element. The core sequence of this element is found in several other genes involved in cellular energy metabolism, suggesting that the sequence is a common regulatory element responsive to the state of energy metabolism.
Collapse
|
10
|
Somma MP, Gambino I, Lavia P. Transcription factors binding to the mouse HTF9 housekeeping promoter differ between cell types. Nucleic Acids Res 1991; 19:4451-8. [PMID: 1886769 PMCID: PMC328633 DOI: 10.1093/nar/19.16.4451] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The mouse CpG island HTF9 harbours a bidirectional promoter shared by two housekeeping genes that are arranged head-to-head. We have previously identified several protein binding-elements across the CpG island, yet a short region around the initiation region was found to be capable of bidirectional transcription in transient expression assays, suggesting that the multiple elements of the HTF9 promoter are functionally redundant. We have now compared the binding activities in nuclear extracts from different cell types. Two protein-binding elements of HTF9 interact with widely distributed factors. A potentially strong Sp1 binding site was also identified, however Sp1 appeared to bind efficiently to its target sequence with extracts prepared from proliferating cultured cells, but not from adult organs. On the other hand, the CCAAT box upstream of one gene (HTF9-A) interacted with a liver-enriched factor, whereas no binding was detected with cultured fibroblasts extracts. Consistently, deletion of the CCAAT box affected transient expression from the HTF9-A promoter in hepatocyte, but not in fibroblast, cultures. Our results suggest that ubiquitous expression of housekeeping promoters results from the activation of alternative elements in different cell types.
Collapse
Affiliation(s)
- M P Somma
- Centro di Genetica Evoluzionistica del CNR, Rome, Italy
| | | | | |
Collapse
|