1
|
Gao Y, Liu X, Jin Y, Wu J, Li S, Li Y, Chen B, Zhang Y, Wei L, Li W, Li R, Lin C, Reddy ASN, Jaiswal P, Gu L. Drought induces epitranscriptome and proteome changes in stem-differentiating xylem of Populus trichocarpa. PLANT PHYSIOLOGY 2022; 190:459-479. [PMID: 35670753 PMCID: PMC9434199 DOI: 10.1093/plphys/kiac272] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/11/2022] [Indexed: 05/25/2023]
Abstract
Understanding gene expression and regulation requires insights into RNA transcription, processing, modification, and translation. However, the relationship between the epitranscriptome and the proteome under drought stress remains undetermined in poplar (Populus trichocarpa). In this study, we used Nanopore direct RNA sequencing and tandem mass tag-based proteomic analysis to examine epitranscriptomic and proteomic regulation induced by drought treatment in stem-differentiating xylem (SDX). Our results revealed a decreased full-length read ratio under drought treatment and, especially, a decreased association between transcriptome and proteome changes in response to drought. Epitranscriptome analysis of cellulose- and lignin-related genes revealed an increased N6-Methyladenosine (m6A) ratio, which was accompanied by decreased RNA abundance and translation, under drought stress. Interestingly, usage of the distal poly(A) site increased during drought stress. Finally, we found that transcripts of highly expressed genes tend to have shorter poly(A) tail length (PAL), and drought stress increased the percentage of transcripts with long PAL. These findings provide insights into the interplay among m6A, polyadenylation, PAL, and translation under drought stress in P. trichocarpa SDX.
Collapse
Affiliation(s)
| | | | - Yandong Jin
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ji Wu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yaxing Li
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Binqing Chen
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaxin Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Linxiao Wei
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ruili Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chentao Lin
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | | |
Collapse
|
2
|
Niazi AM, Krause M, Valen E. Transcript Isoform-Specific Estimation of Poly(A) Tail Length by Nanopore Sequencing of Native RNA. Methods Mol Biol 2021; 2284:543-567. [PMID: 33835463 DOI: 10.1007/978-1-0716-1307-8_30] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The poly(A) tail is a homopolymeric stretch of adenosine at the 3'-end of mature RNA transcripts and its length plays an important role in nuclear export, stability, and translational regulation of mRNA. Existing techniques for genome-wide estimation of poly(A) tail length are based on short-read sequencing. These methods are limited because they sequence a synthetic DNA copy of mRNA instead of the native transcripts. Furthermore, they can identify only a short segment of the transcript proximal to the poly(A) tail which makes it difficult to assign the measured poly(A) length uniquely to a single transcript isoform. With the introduction of native RNA sequencing by Oxford Nanopore Technologies, it is now possible to sequence full-length native RNA. A single long read contains both the transcript and the associated poly(A) tail, thereby making transcriptome-wide isoform-specific poly(A) tail length assessment feasible. We developed tailfindr-an R-based package for estimating poly(A) tail length from Oxford Nanopore sequencing data. In this chapter, we describe in detail the pipeline for transcript isoform-specific poly(A) tail profiling based on native RNA Nanopore sequencing-from library preparation to downstream data analysis with tailfindr.
Collapse
Affiliation(s)
- Adnan M Niazi
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Maximilian Krause
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Ma XY, Zhang H, Feng JX, Hu JL, Yu B, Luo L, Cao YL, Liao S, Wang J, Gao S. Structures of mammalian GLD-2 proteins reveal molecular basis of their functional diversity in mRNA and microRNA processing. Nucleic Acids Res 2020; 48:8782-8795. [PMID: 32633758 PMCID: PMC7470959 DOI: 10.1093/nar/gkaa578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/20/2020] [Accepted: 07/03/2020] [Indexed: 11/12/2022] Open
Abstract
The stability and processing of cellular RNA transcripts are efficiently controlled via non-templated addition of single or multiple nucleotides, which is catalyzed by various nucleotidyltransferases including poly(A) polymerases (PAPs). Germline development defective 2 (GLD-2) is among the first reported cytoplasmic non-canonical PAPs that promotes the translation of germline-specific mRNAs by extending their short poly(A) tails in metazoan, such as Caenorhabditis elegans and Xenopus. On the other hand, the function of mammalian GLD-2 seems more diverse, which includes monoadenylation of certain microRNAs. To understand the structural basis that underlies the difference between mammalian and non-mammalian GLD-2 proteins, we determine crystal structures of two rodent GLD-2s. Different from C. elegans GLD-2, mammalian GLD-2 is an intrinsically robust PAP with an extensively positively charged surface. Rodent and C. elegans GLD-2s have a topological difference in the β-sheet region of the central domain. Whereas C. elegans GLD-2 prefers adenosine-rich RNA substrates, mammalian GLD-2 can work on RNA oligos with various sequences. Coincident with its activity on microRNAs, mammalian GLD-2 structurally resembles the mRNA and miRNA processor terminal uridylyltransferase 7 (TUT7). Our study reveals how GLD-2 structurally evolves to a more versatile nucleotidyltransferase, and provides important clues in understanding its biological function in mammals.
Collapse
Affiliation(s)
- Xiao-Yan Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Hong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Jian-Xiong Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Jia-Li Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Bing Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Li Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Yu-Lu Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Shuang Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Jichang Wang
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China.,Department of histology and embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510530, China
| |
Collapse
|
4
|
Bernardes WS, Menossi M. Plant 3' Regulatory Regions From mRNA-Encoding Genes and Their Uses to Modulate Expression. FRONTIERS IN PLANT SCIENCE 2020; 11:1252. [PMID: 32922424 PMCID: PMC7457121 DOI: 10.3389/fpls.2020.01252] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/29/2020] [Indexed: 05/08/2023]
Abstract
Molecular biotechnology has made it possible to explore the potential of plants for different purposes. The 3' regulatory regions have a great diversity of cis-regulatory elements directly involved in polyadenylation, stability, transport and mRNA translation, essential to achieve the desired levels of gene expression. A complex interaction between the cleavage and polyadenylation molecular complex and cis-elements determine the polyadenylation site, which may result in the choice of non-canonical sites, resulting in alternative polyadenylation events, involved in the regulation of more than 80% of the genes expressed in plants. In addition, after transcription, a wide array of RNA-binding proteins interacts with cis-acting elements located mainly in the 3' untranslated region, determining the fate of mRNAs in eukaryotic cells. Although a small number of 3' regulatory regions have been identified and validated so far, many studies have shown that plant 3' regulatory regions have a higher potential to regulate gene expression in plants compared to widely used 3' regulatory regions, such as NOS and OCS from Agrobacterium tumefaciens and 35S from cauliflower mosaic virus. In this review, we discuss the role of 3' regulatory regions in gene expression, and the superior potential that plant 3' regulatory regions have compared to NOS, OCS and 35S 3' regulatory regions.
Collapse
|
5
|
Bargi-Souza P, Goulart-Silva F, Nunes MT. Posttranscriptional actions of triiodothyronine on Tshb expression in TαT1 cells: New insights into molecular mechanisms of negative feedback. Mol Cell Endocrinol 2018; 478:45-52. [PMID: 30031103 DOI: 10.1016/j.mce.2018.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/10/2018] [Accepted: 07/13/2018] [Indexed: 11/28/2022]
Abstract
Rapid actions of triiodothyronine (T3) on thyrotropin (TSH) synthesis and secretion have been described in hypothyroid male rats. However, the molecular mechanisms remain unknown. TαT1 cells, a thyrotroph cell line, was used herein to characterize the possible non-genomic actions of T3 on the expression of alpha (Cga) and Tshb genes, and the posttranscriptional processing and translation of both transcripts. The involvement of αVβ3 integrin was also assessed. T3 quickly reduced Tshb mRNA content, poly(A) tail length and its association with ribosomes. The effect of T3 on Tshb gene expression was detected even in the presence of a transcription inhibitor. The decrease in Tshb mRNA content and polyadenylation depend on T3 interaction with αVβ3 integrin, while T3 reduced Cga mRNA content by transcriptional action. The translational rate of both transcripts was reduced by a mechanism, which does not depend on T3-αVβ3 integrin interaction. Results indicate that, in parallel with the inhibitory transcriptional action in Cga and Tshb gene expression, T3 rapidly triggers additional posttranscriptional mechanisms, reducing the TSH synthesis. These non-genomic actions partially depend on T3-αVβ3 integrin interaction at the plasma membrane of thyrotrophs and add new insights to the molecular mechanisms involved in T3 negative feedback loop.
Collapse
Affiliation(s)
- Paula Bargi-Souza
- Department of Physiology and Biophysics of the Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, CEP 05508-000, Brazil
| | - Francemilson Goulart-Silva
- Department of Physiology and Biophysics of the Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, CEP 05508-000, Brazil
| | - Maria Tereza Nunes
- Department of Physiology and Biophysics of the Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, CEP 05508-000, Brazil.
| |
Collapse
|
6
|
Moore KS, von Lindern M. RNA Binding Proteins and Regulation of mRNA Translation in Erythropoiesis. Front Physiol 2018; 9:910. [PMID: 30087616 PMCID: PMC6066521 DOI: 10.3389/fphys.2018.00910] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022] Open
Abstract
Control of gene expression in erythropoiesis has to respond to signals that may emerge from intracellular processes or environmental factors. Control of mRNA translation allows for relatively rapid modulation of protein synthesis from the existing transcriptome. For instance, the protein synthesis rate needs to be reduced when reactive oxygen species or unfolded proteins accumulate in the cells, but also when iron supply is low or when growth factors are lacking in the environment. In addition, regulation of mRNA translation can be important as an additional layer of control on top of gene transcription, in which RNA binding proteins (RBPs) can modify translation of a set of transcripts to the cell’s actual protein requirement. The 5′ and 3′ untranslated regions of mRNA (5′UTR, 3′UTR) contain binding sites for general and sequence specific translation factors. They also contain secondary structures that may hamper scanning of the 5′UTR by translation complexes or may help to recruit translation factors. In addition, the term 5′UTR is not fully correct because many transcripts contain small open reading frames in their 5′UTR that are translated and contribute to regulation of mRNA translation. It is becoming increasingly clear that the transcriptome only partly predicts the proteome. The aim of this review is (i) to summarize how the availability of general translation initiation factors can selectively regulate transcripts because the 5′UTR contains secondary structures or short translated sequences, (ii) to discuss mechanisms that control the length of the mRNA poly(A) tail in relation to mRNA translation, and (iii) to give examples of sequence specific RBPs and their targets. We focused on transcripts and RBPs required for erythropoiesis. Whereas differentiation of erythroblasts to erythrocytes is orchestrated by erythroid transcription factors, the production of erythrocytes needs to respond to the availability of growth factors and nutrients, particularly the availability of iron.
Collapse
Affiliation(s)
- Kat S Moore
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
7
|
Chung CZ, Seidl LE, Mann MR, Heinemann IU. Tipping the balance of RNA stability by 3' editing of the transcriptome. Biochim Biophys Acta Gen Subj 2017; 1861:2971-2979. [PMID: 28483641 DOI: 10.1016/j.bbagen.2017.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/02/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND The regulation of active microRNAs (miRNAs) and maturation of messenger RNAs (mRNAs) that are competent for translation is a crucial point in the control of all cellular processes, with established roles in development and differentiation. Terminal nucleotidyltransferases (TNTases) are potent regulators of RNA metabolism. TNTases promote the addition of single or multiple nucleotides to an RNA transcript that can rapidly alter transcript stability. The well-known polyadenylation promotes transcript stability while the newly discovered but ubiquitious 3'-end polyuridylation marks RNA for degradation. Monoadenylation and uridylation are essential control mechanisms balancing mRNA and miRNA homeostasis. SCOPE OF REVIEW This review discusses the multiple functions of non-canonical TNTases, focusing on their substrate range, biological functions, and evolution. TNTases directly control mRNA and miRNA levels, with diverse roles in transcriptome stabilization, maturation, silencing, or degradation. We will summarize the current state of knowledge on non-canonical nucleotidyltransferases and their function in regulating miRNA and mRNA metabolism. We will review the discovery of uridylation as an RNA degradation pathway and discuss the evolution of nucleotidyltransferases along with their use in RNA labeling and future applications as therapeutic targets. MAJOR CONCLUSIONS The biochemically and evolutionarily highly related adenylyl- and uridylyltransferases play antagonizing roles in the cell. In general, RNA adenylation promotes stability, while uridylation marks RNA for degradation. Uridylyltransferases evolved from adenylyltransferases in multiple independent evolutionary events by the insertion of a histidine residue into the active site, altering nucleotide, but not RNA specificity. GENERAL SIGNIFICANCE Understanding the mechanisms regulating RNA stability in the cell and controlling the transcriptome is essential for efforts aiming to influence cellular fate. Selectively enhancing or reducing RNA stability allows for alterations in the transcriptome, proteome, and downstream cellular processes. Genetic, biochemical, and clinical data suggest TNTases are potent targets for chemotherapeutics and have been exploited for RNA labeling applications. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Christina Z Chung
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Lauren E Seidl
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Mitchell R Mann
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
8
|
Charlesworth A, Meijer HA, de Moor CH. Specificity factors in cytoplasmic polyadenylation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 4:437-61. [PMID: 23776146 PMCID: PMC3736149 DOI: 10.1002/wrna.1171] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 12/12/2022]
Abstract
Poly(A) tail elongation after export of an messenger RNA (mRNA) to the cytoplasm is called cytoplasmic polyadenylation. It was first discovered in oocytes and embryos, where it has roles in meiosis and development. In recent years, however, has been implicated in many other processes, including synaptic plasticity and mitosis. This review aims to introduce cytoplasmic polyadenylation with an emphasis on the factors and elements mediating this process for different mRNAs and in different animal species. We will discuss the RNA sequence elements mediating cytoplasmic polyadenylation in the 3' untranslated regions of mRNAs, including the CPE, MBE, TCS, eCPE, and C-CPE. In addition to describing the role of general polyadenylation factors, we discuss the specific RNA binding protein families associated with cytoplasmic polyadenylation elements, including CPEB (CPEB1, CPEB2, CPEB3, and CPEB4), Pumilio (PUM2), Musashi (MSI1, MSI2), zygote arrest (ZAR2), ELAV like proteins (ELAVL1, HuR), poly(C) binding proteins (PCBP2, αCP2, hnRNP-E2), and Bicaudal C (BICC1). Some emerging themes in cytoplasmic polyadenylation will be highlighted. To facilitate understanding for those working in different organisms and fields, particularly those who are analyzing high throughput data, HUGO gene nomenclature for the human orthologs is used throughout. Where human orthologs have not been clearly identified, reference is made to protein families identified in man.
Collapse
Affiliation(s)
- Amanda Charlesworth
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | | | | |
Collapse
|
9
|
Neilson JR, Sandberg R. Heterogeneity in mammalian RNA 3' end formation. Exp Cell Res 2010; 316:1357-64. [PMID: 20211174 PMCID: PMC2866830 DOI: 10.1016/j.yexcr.2010.02.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 02/28/2010] [Indexed: 11/19/2022]
Abstract
Precisely directed cleavage and polyadenylation of mRNA is a fundamental part of eukaryotic gene expression. Yet, 3' end heterogeneity has been documented for thousands of mammalian genes, and usage of one cleavage and polyadenylation signal over another has been shown to impact gene expression in many cases. Building upon the rich biochemical and genetic understanding of the 3' end formation, recent genomic studies have begun to suggest that widespread changes in mRNA cleavage and polyadenylation may be a part of large, dynamic gene regulatory programs. In this review, we begin with a modest overview of the studies that defined the mechanisms of mammalian 3' end formation, and then discuss how recent genomic studies intersect with these more traditional approaches, showing that both will be crucial for expanding our understanding of this facet of gene regulation.
Collapse
Affiliation(s)
- Joel R. Neilson
- Department of Molecular Physiology and Biophysics and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
10
|
Edmonds M. A history of poly A sequences: from formation to factors to function. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 71:285-389. [PMID: 12102557 DOI: 10.1016/s0079-6603(02)71046-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biological polyadenylation, first recognized as an enzymatic activity, remained an orphan enzyme until poly A sequences were found on the 3' ends of eukarvotic mRNAs. Their presence in bacteria viruses and later in archeae (ref. 338) established their universality. The lack of compelling evidence for a specific function limited attention to their cellular formation. Eventually the newer techniques of molecular biology and development of accurate nuclear processing extracts showed 3' end formation to be a two-step process. Pre-mRNA was first cleaved endonucleolytically at a specific site that was followed by sequential addition of AMPs from ATP to the 3' hydroxyl group at the end of mRNA. The site of cleavage was specified by a conserved hexanucleotide, AAUAAA, from 10 to 30 nt upstream of this 3' end. Extensive purification of these two activities showed that more than 10 polypeptides were needed for mRNA 3' end formation. Most of these were in complexes involved in the cleavage step. Two of the best characterized are CstF and CPSF, while two other remain partially purified but essential. Oddly, the specific proteins involved in phosphodiester bond hydrolysis have yet to be identified. The polyadenylation step occurs within the complex of poly A polymerase and poly A-binding protein, PABII, that controls poly A length. That the cleavage complex, CPSF, is also required for this step attests to a tight coupling of the two steps of 3' and formation. The reaction reconstituted from these RNA-free purified factors correctly processes pre-mRNAs. Meaningful analysis of the role of poly A in mRNA metabolism or function was possible once quantities of these proteins most often over-expressed from cDNA clones became available. The large number needed for two simple reactions of an endonuclease, a polymerase and a sequence recognition factor, pointed to 3' end formation as a regulated process. Polyadenylation itself had appeared to require regulation in cases where two poly A sites were alternatively processed to produce mRNA coding for two different proteins. The 64-KDa subunit of CstF is now known to be a regulator of poly A site choice between two sites in the immunoglobulin heavy chain of B cells. In resting cells the site used favors the mRNA for a membrane-bound protein. Upon differentiation to plasma cells, an upstream site is used the produce a secreted form of the heavy chain. Poly A site choice in the calcitonin pre-mRNA involves splicing factors at a pseudo splice site in an intron downstream of the active poly site that interacts with cleavage factors for most tissues. The molecular basis for choice of the alternate site in neuronal tissue is unknown. Proteins needed for mRNA 3' end formation also participate in other RNA-processing reactions: cleavage factors bind to the C-terminal domain of RNA polymerase during transcription; splicing of 3' terminal exons is stimulated port of by cleavage factors that bind to splicing factors at 3' splice sites. nuclear ex mRNAs is linked to cleavage factors and requires the poly A II-binding protein. Most striking is the long-sought evidence for a role for poly A in translation in yeast where it provides the surface on which the poly A-binding protein assembles the factors needed for the initiation of translation. This adaptability of eukaryotic cells to use a sequence of low information content extends to bacteria where poly A serves as a site for assembly of an mRNA degradation complex in E. coli. Vaccinia virus creates mRNA poly A tails by a streamlined mechanism independent of cleavage that requires only two proteins that recognize unique poly A signals. Thus, in spite of 40 years of study of poly A sequences, this growing multiplicity of uses and even mechanisms of formation seem destined to continue.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adenoviridae/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- History, 20th Century
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/history
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Vaccinia virus/genetics
- Vaccinia virus/metabolism
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Mary Edmonds
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
11
|
Sharma N, Dey M, Satpathy M, Sachar RC. Evidence of two forms of poly(A) polymerase in germinated wheat embryos and their regulation by a novel protein kinase. Biochem Biophys Res Commun 2002; 293:403-11. [PMID: 12054614 DOI: 10.1016/s0006-291x(02)00231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Two forms of poly(A) polymerase (PAPI and PAPII) from germinated wheat embryos have been resolved on DEAE-cellulose ion-exchange chromatography by a linear gradient of 0-500 mM (NH(4))(2)SO(4). Further purification shows that both forms are monomeric in nature with an identical molecular weight, approximately 65 kDa. The phosphoprotein nature of PAPI and PAPII has been established by in vivo labelling with (32)P-orthophosphate. Acid hydrolysis of both (32)P-labelled purified PAPI and PAPII has revealed that phosphorylations generally take place in serine and threonine residues. PAPI and PAPII have also been characterised with respect to V(max) and K(m) for poly(A). The V(max) and K(m) values of PAPI are 28.57 and 11.37 microg, respectively, whereas 34.48 and 7.04 microg of PAPII. In vitro dephosphorylation of the purified enzyme by alkaline phosphatase leads to a significant loss of the enzyme activity, which is regained upon phosphorylation by a 65 kDa protein kinase (PK) purified from wheat embryos. The extent of phosphorylation by protein kinase shows that PK has similar affinity towards both PAPI and PAPII, whereas the phosphate incorporation in PAPII is twofold higher than PAPI suggesting their distinct chemical nature.
Collapse
Affiliation(s)
- Neelam Sharma
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | |
Collapse
|
12
|
Gunderson SI, Beyer K, Martin G, Keller W, Boelens WC, Mattaj LW. The human U1A snRNP protein regulates polyadenylation via a direct interaction with poly(A) polymerase. Cell 1994; 76:531-41. [PMID: 8313473 DOI: 10.1016/0092-8674(94)90116-3] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The human U1 snRNP-specific U1A protein autoregulates its production by binding its own pre-mRNA and inhibiting polyadenylation. The mechanism of this regulation has been elucidated by in vitro studies. U1A protein is shown not to prevent either binding of cleavage and polyadenylation specificity factor (CPSF) to its recognition sequence (AUUAAA) or to prevent cleavage of U1A pre-mRNA. Instead, U1A protein bound to U1A pre-mRNA inhibits both specific and nonspecific polyadenylation by mammalian, but not by yeast, poly(A) polymerase (PAP). Domains are identified in both proteins whose removal uncouples the polyadenylation activity of mammalian PAP from its inhibition via RNA-bound U1A protein. Finally, U1A protein is shown to specifically interact with mammalian PAP in vitro. The possibility that this interaction may reflect a broader role of the U1A protein in polyadenylation is discussed.
Collapse
Affiliation(s)
- S I Gunderson
- European Molecular Biology Laboratory, Gene Expression Programme, Heidelberg, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
13
|
Murthy K, Manley J. Characterization of the multisubunit cleavage-polyadenylation specificity factor from calf thymus. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42111-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
Kurl RN, Barsoum AL, Sidransky H. Association of poly(A)polymerase with tryptophan receptor in rat hepatic nuclei. J Nutr Biochem 1992. [DOI: 10.1016/0955-2863(92)90029-i] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Aström A, Aström J, Virtanen A. A simple procedure for isolation of eukaryotic mRNA polyadenylation factors. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 202:765-73. [PMID: 1684936 DOI: 10.1111/j.1432-1033.1991.tb16431.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have devised a simple chromatographic procedure which isolates five polyadenylation factors that are required for polyadenylation of eukaryotic mRNA. The factors were separated from each other by fractionation of HeLa cell nuclear extract in two consecutive chromatographic steps. RNA cleavage at the L3 polyadenylation site of human adenovirus 2 required at least four factors. Addition of adenosine residues required only two of these factors. The fractionation procedure separates two components that are both likely to be poly(A) polymerases. The candidate poly(A) polymerases were interchangeable and participated during both RNA cleavage and adenosine addition. They were discriminated from each other by chromatographic properties, heat sensitivity and divalent cation requirement. We have compared our data with published information and have been able to correlate the activities that we have isolated to previously identified polyadenylation factors. However, we have not been able to assign one of the candidate poly(A) polymerases to a previously identified poly(A) polymerase. This simple fractionation procedure can be used for generating an in vitro reconstituted system for polyadenylation within a short period of time.
Collapse
Affiliation(s)
- A Aström
- Department of Medical Genetics, Uppsala University, Sweden
| | | | | |
Collapse
|
16
|
Abstract
Poly(A) polymerase has a critical role in the synthesis of messenger RNA in eukaryotic cells. The isolation and characterization of complementary DNAs encoding bovine poly(A) polymerase is described here. The predicted sequences of the mRNA and protein reveal features that provide insights into how the enzyme functions and how it might be regulated. Poly(A) polymerase expressed from a cloned cDNA is fully functional in in vitro assays, and mutational analyses have identified a putative regulatory domain that enhances, but is not essential for, activity.
Collapse
Affiliation(s)
- T Raabe
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | | | | |
Collapse
|
17
|
Abstract
Continued progress has been made during the past year in understanding the basic biochemical mechanisms involved in nuclear RNA processing. Of particular importance have been the advances made in purifying and characterizing protein factors involved in splicing and polyadenylation of pre-mRNAs.
Collapse
Affiliation(s)
- A I Lamond
- European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
18
|
Bardwell VJ, Wickens M, Bienroth S, Keller W, Sproat BS, Lamond AI. Site-directed ribose methylation identifies 2'-OH groups in polyadenylation substrates critical for AAUAAA recognition and poly(A) addition. Cell 1991; 65:125-33. [PMID: 1901516 DOI: 10.1016/0092-8674(91)90414-t] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The importance of sugar contacts for the sequence-specific recognition that occurs during polyadenylation of mRNAs was investigated with chemically synthesized substrates containing 2'-O-CH3 groups at selected riboses. An RNA (5'-CUGCAAUAAACAAGU-UAA-3') with 2'-O-CH3 ribose at each nucleotide except for the AAUAAA sequence and 3'-terminal adenosine was efficiently polyadenylated in vitro. Methylation of single riboses within AAUAAA inhibited both poly(A) addition and binding of the specificity factor, but the magnitude of inhibition varied greatly at different nucleotides. Nucleotides that showed sensitivity to base substitutions did not necessarily show sensitivity to ribose methylation, and vice versa. The data indicate that the specificity factor interacts with AAUAAA through RNA-protein contacts involving essential recognition of both sugars and bases at different nucleotide positions.
Collapse
Affiliation(s)
- V J Bardwell
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin, Madison 53706
| | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- N Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, England
| |
Collapse
|
20
|
Lakota J, Nelson BD. ADP is a substrate for the AAUAAA-directed poly(A) addition reaction catalyzed by HeLa cell nuclear extracts. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 195:685-9. [PMID: 1999190 DOI: 10.1111/j.1432-1033.1991.tb15754.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The specific poly(A) addition reaction catalyzed by crude nuclear extracts from HeLa cells can use ADP as efficiently as ATP as the donor of AMP residues. Both the ADP- and ATP-supported reactions require an intact upstream polyadenylation signal sequence element (AAUAAA). The mutated signal sequence (AACAAA) supports neither reaction. The ADP-supported poly(A) addition reaction can be resolved by glycerol gradient centrifugation of the crude nuclear extract into two components which are active when recombined but are inactive individually. The ATP-supported poly(A) addition is reconstituted by recombining the same gradient fractions, but the activity is lower than that supported by ADP, suggesting that an ATP-specific factor has been removed. A 150 mM KCl fraction DEAE-Sepharose of the nuclear extract, also devoid of the ATP-supported poly(A) addition reaction, retains a normal ADP-supported reaction. Together, these data show that ADP is a substrate for polyadenylation, and suggest that different factors might be required to induce ADP- or ATP-specificity in the poly(A) addition reaction.
Collapse
Affiliation(s)
- J Lakota
- Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Czechoslovakia
| | | |
Collapse
|
21
|
Wahle E. Purification and characterization of a mammalian polyadenylate polymerase involved in the 3' end processing of messenger RNA precursors. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)49964-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Abstract
Most mRNAs end in a poly(A) tail, the addition of which is catalysed by a poly(A) polymerase in conjunction with a distinct factor that provides specificity for mRNAs. The reaction is dynamic, involving separable initiation, elongation and termination phases. A companion article in next month's TIBS will review the regulation of poly(A) addition and removal during early animal development.
Collapse
Affiliation(s)
- M Wickens
- Department of Biochemistry, Graduate School, College of Agriculture and Life Sciences, University of Wisconsin-Madison 53796
| |
Collapse
|