1
|
Fetian T, McShane BM, Horan NL, Shodja DN, True JD, Mosley AL, Arndt KM. Paf1 complex subunit Rtf1 stimulates H2B ubiquitylation by interacting with the highly conserved N-terminal helix of Rad6. Proc Natl Acad Sci U S A 2023; 120:e2220041120. [PMID: 37216505 PMCID: PMC10235976 DOI: 10.1073/pnas.2220041120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/05/2023] [Indexed: 05/24/2023] Open
Abstract
Histone modifications coupled to transcription elongation play important roles in regulating the accuracy and efficiency of gene expression. The monoubiquitylation of a conserved lysine in H2B (K123 in Saccharomyces cerevisiae; K120 in humans) occurs cotranscriptionally and is required for initiating a histone modification cascade on active genes. H2BK123 ubiquitylation (H2BK123ub) requires the RNA polymerase II (RNAPII)-associated Paf1 transcription elongation complex (Paf1C). Through its histone modification domain (HMD), the Rtf1 subunit of Paf1C directly interacts with the ubiquitin conjugase Rad6, leading to the stimulation of H2BK123ub in vivo and in vitro. To understand the molecular mechanisms that target Rad6 to its histone substrate, we identified the site of interaction for the HMD on Rad6. Using in vitro cross-linking followed by mass spectrometry, we localized the primary contact surface for the HMD to the highly conserved N-terminal helix of Rad6. Using a combination of genetic, biochemical, and in vivo protein cross-linking experiments, we characterized separation-of-function mutations in S. cerevisiae RAD6 that greatly impair the Rad6-HMD interaction and H2BK123 ubiquitylation but not other Rad6 functions. By employing RNA-sequencing as a sensitive approach for comparing mutant phenotypes, we show that mutating either side of the proposed Rad6-HMD interface yields strikingly similar transcriptome profiles that extensively overlap with those of a mutant that lacks the site of ubiquitylation in H2B. Our results fit a model in which a specific interface between a transcription elongation factor and a ubiquitin conjugase guides substrate selection toward a highly conserved chromatin target during active gene expression.
Collapse
Affiliation(s)
- Tasniem Fetian
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA15260
| | - Brendan M. McShane
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA15260
| | - Nicole L. Horan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA15260
| | - Donya N. Shodja
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA15260
| | - Jason D. True
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN46202
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN46202
| | - Karen M. Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA15260
| |
Collapse
|
2
|
Rai SK, Sangesland M, Lee M, Esnault C, Cui Y, Chatterjee AG, Levin HL. Host factors that promote retrotransposon integration are similar in distantly related eukaryotes. PLoS Genet 2017; 13:e1006775. [PMID: 29232693 PMCID: PMC5741268 DOI: 10.1371/journal.pgen.1006775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/22/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
Retroviruses and Long Terminal Repeat (LTR)-retrotransposons have distinct patterns of integration sites. The oncogenic potential of retrovirus-based vectors used in gene therapy is dependent on the selection of integration sites associated with promoters. The LTR-retrotransposon Tf1 of Schizosaccharomyces pombe is studied as a model for oncogenic retroviruses because it integrates into the promoters of stress response genes. Although integrases (INs) encoded by retroviruses and LTR-retrotransposons are responsible for catalyzing the insertion of cDNA into the host genome, it is thought that distinct host factors are required for the efficiency and specificity of integration. We tested this hypothesis with a genome-wide screen of host factors that promote Tf1 integration. By combining an assay for transposition with a genetic assay that measures cDNA recombination we could identify factors that contribute differentially to integration. We utilized this assay to test a collection of 3,004 S. pombe strains with single gene deletions. Using these screens and immunoblot measures of Tf1 proteins, we identified a total of 61 genes that promote integration. The candidate integration factors participate in a range of processes including nuclear transport, transcription, mRNA processing, vesicle transport, chromatin structure and DNA repair. Two candidates, Rhp18 and the NineTeen complex were tested in two-hybrid assays and were found to interact with Tf1 IN. Surprisingly, a number of pathways we identified were found previously to promote integration of the LTR-retrotransposons Ty1 and Ty3 in Saccharomyces cerevisiae, indicating the contribution of host factors to integration are common in distantly related organisms. The DNA repair factors are of particular interest because they may identify the pathways that repair the single stranded gaps flanking the sites of strand transfer following integration of LTR retroelements. Retroviruses and retrotransposons are genetic elements that propagate by integrating into chromosomes of eukaryotic cells. Genetic disorders are being treated with retrovirus-based vectors that integrate corrective genes into the chromosomes of patients. Unfortunately, the vectors can alter expression of adjacent genes and depending on the position of integration, cancer genes can be induced. It is therefore essential that we understand how integration sites are selected. Interestingly, different retroviruses and retrotransposons have different profiles of integration sites. While specific proteins have been identified that select target sites, it’s not known what other cellular factors promote integration. In this paper, we report a comprehensive screen of host factors that promote LTR-retrotransposon integration in the widely-studied yeast, Schizosaccharomyces pombe. Unexpectedly, we found a wide range of pathways and host factors participate in integration. And importantly, we found the cellular processes that promote integration relative to recombination in S. pombe are the same that drive integration of LTR-retrotransposons in the distantly related yeast Saccharomyces cerevisiae. This suggests a specific set of cellular pathways are responsible for integration in a wide range of eukaryotic hosts.
Collapse
Affiliation(s)
- Sudhir Kumar Rai
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Maya Sangesland
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Michael Lee
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Caroline Esnault
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Yujin Cui
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Atreyi Ghatak Chatterjee
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Henry L. Levin
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
3
|
Yamauchi T, Sakurai M, Abe K, Matsumiya G, Sawa Y. Ubiquitin-mediated stress response in the spinal cord after transient ischemia. Stroke 2008; 39:1883-9. [PMID: 18388347 DOI: 10.1161/strokeaha.106.455832] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Vulnerability of motor neurons in the spinal cord against ischemia is considered to play an important role in the development of delayed paraplegia after surgery of the thoracic aorta. However, the reasons for such vulnerability are not fully understood. Recently, the ubiquitin system has been reported to participate in neuronal cell death. In the present study, we investigated the expression of ubiquitin system molecules and discussed the relationship between the vulnerability and the ubiquitin system after transient ischemia in the spinal cord. METHODS Fifteen minutes of spinal cord ischemia in rabbits was applied with the use of a balloon catheter. In this model, the spinal motor neuron shows selectively delayed neuronal death, whereas other spinal neurons such as interneurons survive. Immunohistochemical analysis and Western blotting for ubiquitin system molecules, ubiquitin, deubiquitylating enzyme (ubiquitin carboxy-terminal hydrolase 1), and ubiquitin-ligase parkin were examined. RESULTS In cytoplasm, ubiquitin and ubiquitin carboxy-terminal hydrolase 1 were strongly induced both in interneuron and motor neuron at the early stage of reperfusion, but the sustained expression was observed only in motor neuron. Parkin was induced strongly at 3 hours after the reperfusion, but the immunoreactivity returned to the sham control level at 6 hours in both neurons. In the nuclei, ubiquitin, ubiquitin carboxy-terminal hydrolase 1, and parkin were strongly induced in interneuron, whereas no upregulation of these proteins was observed in motor neuron. CONCLUSIONS These results indicate that the vulnerability of motor neuron of the spinal cord might be partially attributed to the different response in ubiquitin-mediated stress response after transient ischemia.
Collapse
Affiliation(s)
- Takashi Yamauchi
- Department of Cardiovascular Surgery, Osaka University Graduate school of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | | | | | | | | |
Collapse
|
4
|
Lesage P, Todeschini AL. Happy together: the life and times of Ty retrotransposons and their hosts. Cytogenet Genome Res 2005; 110:70-90. [PMID: 16093660 DOI: 10.1159/000084940] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 03/18/2004] [Indexed: 11/19/2022] Open
Abstract
The aim of this review is to describe the level of intimacy between Ty retrotransposons (Ty1-Ty5) and their host the yeast Saccharomyces cerevisiae. The effects of Ty location in the genome and of host proteins on the expression and mobility of Ty elements are highlighted. After a brief overview of Ty diversity and evolution, we describe the factors that dictate Ty target-site preference and the impact of targeting on Ty and adjacent gene expression. Studies on Ty3 and Ty5 have been especially informative in unraveling the role of host factors (Pol III machinery and silencing proteins, respectively) and integrase in controlling the specificity of integration. In contrast, not much is known regarding Ty1, Ty2 and Ty4, except that their insertion depends on the transcriptional competence of the adjacent Pol III gene and might be influenced by some chromatin components. This review also brings together recent findings on the regulation of Ty1 retrotransposition. A large number of host proteins (over 30) involved in a wide range of cellular processes controls either directly or indirectly Ty1 mobility, primarily at post-transcriptional steps. We focus on several genes for which more detailed analyses have permitted the elaboration of regulatory models. In addition, this review describes new data revealing that repression of Ty1 mobility also involves two forms of copy number control that act at both the trancriptional and post-transcriptional levels. Since S. cerevisiae lacks the conserved pathways for copy number control via transcriptional and post-transcriptional gene silencing found in other eukaryotes, Ty1 copy number control must be via another mechanism whose features are outlined. Ty1 response to stress also implicates activation at both transcriptional and postranscriptional steps of Ty1. Finally, we provide several insights in the role of Ty elements in chromosome evolution and yeast adaptation and discuss the factors that might limit Ty ectopic recombination.
Collapse
Affiliation(s)
- P Lesage
- Institut de Biologie Physico-Chimique, CNRS UPR 9073, Paris, France.
| | | |
Collapse
|
5
|
Escalier D, Bai XY, Silvius D, Xu PX, Xu X. Spermatid nuclear and sperm periaxonemal anomalies in the mouse Ube2b null mutant. Mol Reprod Dev 2003; 65:298-308. [PMID: 12784252 DOI: 10.1002/mrd.10290] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ube2b (yeast Ubc2b/Rad6 homolog) null mice were described previously. Ube2b encodes the murine ubiquitin conjugating enzyme mHR6B. Ube2b(-/-) mice were shown to present male infertility and their sperm head shape anomalies suggested that Ube2b may be involved in the replacement of nuclear proteins during spermatid chromatin condensation. Apoptosis of spermatocytes suggested additional targets of Ube2b during spermatogenesis. Consistently, we found Ube2b transcription in both meiotic and postmeiotic stages by in situ hybridization. Immuno-electron microscopy revealed that transition proteins 1 and 2, protamines 1 and 2, and actin appear normally distributed during morphogenesis of Ube2b(-/-) spermatid heads. Surprisingly, electron microscopy revealed a particular sperm flagellum phenotype characterized by an abnormal distribution of periaxonemal structures. Flagellar anomalies of Ube2b null mice were previously described in infertile men indicating a possible genetic pathway for flagellar periaxonemal assembly in human.
Collapse
Affiliation(s)
- Denise Escalier
- Histologie Fonctionnelle et Moléculaire, Université Paris 5 and INSERM U.407, France.
| | | | | | | | | |
Collapse
|
6
|
Kiakos K, Howard TT, Lee M, Hartley JA, McHugh PJ. Saccharomyces cerevisiae RAD5 influences the excision repair of DNA minor groove adducts. J Biol Chem 2002; 277:44576-81. [PMID: 12226100 DOI: 10.1074/jbc.m208169200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleotide excision repair (NER) is the primary pathway for the removal of DNA adducts that distort the double helix. In the yeast Saccharomyces cerevisiae the RAD6 epistasis group defines a more poorly characterized set of DNA damage response pathways, believed to be distinct from NER. Here we show that the elimination of the DNA minor groove adducts formed by an important class of anticancer antibiotic (CC-1065 family) requires NER factors in S. cerevisiae. We also demonstrate that the elimination of this class of minor groove adduct from the active MFA2 gene depends upon functional Rad18 and Rad6. This is most clear for the repair of adducts on the transcribed strand, where an absolute requirement for Rad6 and Rad18 was seen. Further experiments revealed that a specific RAD6-RAD18-controlled subpathway, the RAD5 branch, mediates these events. Cells disrupted for rad5 are highly sensitive to this minor groove binding agent, and rad5 cells exhibit an in vivo adduct elimination defect indistinguishable from that seen in rad6 and rad18 cells as well as in NER-defective cells. Our results indicate that the RAD5 subpathway may interact with NER factors during the repair of certain DNA adducts.
Collapse
Affiliation(s)
- Konstantinos Kiakos
- Cancer Research UK Drug-DNA Interactions Research Group, Department of Oncology, Royal Free and University College Medical School, University College London, 91 Riding House Street, United Kingdom
| | | | | | | | | |
Collapse
|
7
|
Scholes DT, Banerjee M, Bowen B, Curcio MJ. Multiple regulators of Ty1 transposition in Saccharomyces cerevisiae have conserved roles in genome maintenance. Genetics 2001; 159:1449-65. [PMID: 11779788 PMCID: PMC1461915 DOI: 10.1093/genetics/159.4.1449] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Most Ty1 retrotransposons in the genome of Saccharomyces cerevisiae are transpositionally competent but rarely transpose. We screened yeast mutagenized by insertion of the mTn3-lacZ/LEU2 transposon for mutations that result in elevated Ty1 cDNA-mediated mobility, which occurs by cDNA integration or recombination. Here, we describe the characterization of mTn3 insertions in 21 RTT (regulation of Ty1 transposition) genes that result in 5- to 111-fold increases in Ty1 mobility. These 21 RTT genes are EST2, RRM3, NUT2, RAD57, RRD2, RAD50, SGS1, TEL1, SAE2, MED1, MRE11, SCH9, KAP122, and 8 previously uncharacterized genes. Disruption of RTT genes did not significantly increase Ty1 RNA levels but did enhance Ty1 cDNA levels, suggesting that most RTT gene products act at a step after mRNA accumulation but before cDNA integration. The rtt mutations had widely varying effects on integration of Ty1 at preferred target sites. Mutations in RTT101 and NUT2 dramatically stimulated Ty1 integration upstream of tRNA genes. In contrast, a mutation in RRM3 increased Ty1 mobility >100-fold without increasing integration upstream of tRNA genes. The regulation of Ty1 transposition by components of fundamental pathways required for genome maintenance suggests that Ty1 and yeast have coevolved to link transpositional dormancy to the integrity of the genome.
Collapse
Affiliation(s)
- D T Scholes
- Molecular Genetics Program, Wadsworth Center and School of Public Health, State University of New York, Albany, New York 12201-2002, USA
| | | | | | | |
Collapse
|
8
|
Sun ZW, Hampsey M. A general requirement for the Sin3-Rpd3 histone deacetylase complex in regulating silencing in Saccharomyces cerevisiae. Genetics 1999; 152:921-32. [PMID: 10388812 PMCID: PMC1460667 DOI: 10.1093/genetics/152.3.921] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The Sin3-Rpd3 histone deacetylase complex, conserved between human and yeast, represses transcription when targeted by promoter-specific transcription factors. SIN3 and RPD3 also affect transcriptional silencing at the HM mating loci and at telomeres in yeast. Interestingly, however, deletion of the SIN3 and RPD3 genes enhances silencing, implying that the Sin3-Rpd3 complex functions to counteract, rather than to establish or maintain, silencing. Here we demonstrate that Sin3, Rpd3, and Sap30, a novel component of the Sin3-Rpd3 complex, affect silencing not only at the HMR and telomeric loci, but also at the rDNA locus. The effects on silencing at all three loci are dependent upon the histone deacetylase activity of Rpd3. Enhanced silencing associated with sin3Delta, rpd3Delta, and sap30Delta is differentially dependent upon Sir2 and Sir4 at the telomeric and rDNA loci and is also dependent upon the ubiquitin-conjugating enzyme Rad6 (Ubc2). We also show that the Cac3 subunit of the CAF-I chromatin assembly factor and Sin3-Rpd3 exert antagonistic effects on silencing. Strikingly, deletion of GCN5, which encodes a histone acetyltransferase, enhances silencing in a manner similar to deletion of RPD3. A model that integrates the effects of rpd3Delta, gcn5Delta, and cac3Delta on silencing is proposed.
Collapse
Affiliation(s)
- Z W Sun
- Department of Biochemistry, Division of Nucleic Acids Enzymology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
9
|
Huang H, Hong JY, Burck CL, Liebman SW. Host genes that affect the target-site distribution of the yeast retrotransposon Ty1. Genetics 1999; 151:1393-407. [PMID: 10101165 PMCID: PMC1460544 DOI: 10.1093/genetics/151.4.1393] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We report here a simple genetic system for investigating factors affecting Ty1 target-site preference within an RNAP II transcribed gene. The target in this system is a functional fusion of the regulatable MET3 promoter with the URA3 gene. We found that the simultaneous inactivation of Hir3 (a histone transcription regulator) and Cac3 (a subunit of the chromatin assembly factor I), which was previously shown by us to increase the Ty1 transposition rate, eliminated the normally observed bias for Ty1 elements to insert into the 5' vs. 3' regions of the MET3-URA3 and CAN1 genes. The double cac3 hir3 mutation also caused the production of a short transcript from the MET3-URA3 fusion under both repressed and derepressed conditions. In a hir3Delta single-mutant strain, the Ty1 target-site distribution into MET3-URA3 was altered only when transposition occurred while the MET3-URA3 fusion was actively transcribed. In contrast, transcription of the MET3-URA3 fusion did not alter the Ty1 target-site distribution in wild-type or other mutant strains. Deletion of RAD6 was shown to alter the Ty1 target-site preference in the MET3-URA3 fusion and the LYS2 gene. These data, together with previous studies of Ty1 integration positions at CAN1 and SUP4, indicate that the rad6 effect on Ty1 target-site selection is not gene specific.
Collapse
Affiliation(s)
- H Huang
- Department of Biological Sciences, University of Illinois, Chicago, Illinois 60607, USA
| | | | | | | |
Collapse
|
10
|
Game JC, Kaufman PD. Role of Saccharomyces cerevisiae chromatin assembly factor-I in repair of ultraviolet radiation damage in vivo. Genetics 1999; 151:485-97. [PMID: 9927445 PMCID: PMC1460507 DOI: 10.1093/genetics/151.2.485] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In vitro, the protein complex Chromatin Assembly Factor-I (CAF-I) from human or yeast cells deposits histones onto DNA templates after replication. In Saccharomyces cerevisiae, the CAC1, CAC2, and CAC3 genes encode the three CAF-I subunits. Deletion of any of the three CAC genes reduces telomeric gene silencing and confers an increase in sensitivity to killing by ultraviolet (UV) radiation. We used double and triple mutants involving cac1Delta and yeast repair gene mutations to show that deletion of the CAC1 gene increases the UV sensitivity of cells mutant in genes from each of the known DNA repair epistasis groups. For example, double mutants involving cac1Delta and excision repair gene deletions rad1Delta or rad14Delta showed increased UV sensitivity, as did double mutants involving cac1Delta and deletions of members of the RAD51 recombinational repair group. cac1Delta also increased the UV sensitivity of strains with defects in either the error-prone (rev3Delta) or error-free (pol30-46) branches of RAD6-mediated postreplicative DNA repair but did not substantially increase the sensitivity of strains carrying null mutations in the RAD6 or RAD18 genes. Deletion of CAC1 also increased the UV sensitivity and rate of UV-induced mutagenesis in rad5Delta mutants, as has been observed for mutants defective in error-free postreplicative repair. Together, these data suggest that CAF-I has a role in error-free postreplicative damage repair and may also have an auxiliary role in other repair mechanisms. Like the CAC genes, RAD6 is also required for gene silencing at telomeres. We find an increased loss of telomeric gene silencing in rad6Delta cac1Delta and rad18Delta cac1Delta double mutants, suggesting that CAF-I and multiple factors in the postreplicative repair pathway influence chromosome structure.
Collapse
Affiliation(s)
- J C Game
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | |
Collapse
|
11
|
Kunz BA, Ramachandran K, Vonarx EJ. DNA sequence analysis of spontaneous mutagenesis in Saccharomyces cerevisiae. Genetics 1998; 148:1491-505. [PMID: 9560369 PMCID: PMC1460101 DOI: 10.1093/genetics/148.4.1491] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To help elucidate the mechanisms involved in spontaneous mutagenesis, DNA sequencing has been applied to characterize the types of mutation whose rates are increased or decreased in mutator or antimutator strains, respectively. Increased spontaneous mutation rates point to malfunctions in genes that normally act to reduce spontaneous mutation, whereas decreased rates are associated with defects in genes whose products are necessary for spontaneous mutagenesis. In this article, we survey and discuss the mutational specificities conferred by mutator and antimutator genes in the budding yeast Saccharomyces cerevisiae. The implications of selected aspects of the data are considered with respect to the mechanisms of spontaneous mutagenesis.
Collapse
Affiliation(s)
- B A Kunz
- School of Biological and Chemical Sciences, Deakin University, Geelong, Victoria, Australia.
| | | | | |
Collapse
|
12
|
Worthylake DK, Prakash S, Prakash L, Hill CP. Crystal structure of the Saccharomyces cerevisiae ubiquitin-conjugating enzyme Rad6 at 2.6 A resolution. J Biol Chem 1998; 273:6271-6. [PMID: 9497353 DOI: 10.1074/jbc.273.11.6271] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae ubiquitin-conjugating enzyme (UBC) Rad6 is required for several functions, including the repair of UV damaged DNA, damage-induced mutagenesis, sporulation, and the degradation of cellular proteins that possess destabilizing N-terminal residues. Rad6 mediates its role in N-end rule-dependent protein degradation via interaction with the ubiquitin-protein ligase Ubr1 and in DNA repair via interactions with the DNA binding protein Rad18. We report here the crystal structure of Rad6 refined at 2.6 A resolution to an R factor of 21.3%. The protein adopts an alpha/beta fold that is very similar to other UBC structures. An apparent difference at the functionally important first helix, however, has prompted a reassessment of previously reported structures. The active site cysteine lies in a cleft formed by a coil region that includes the 310 helix and a loop that is in different conformations for the three molecules in the asymmetric unit. Residues important for Rad6 interaction with Ubr1 and Rad18 are on the opposite side of the structure from the active site, indicating that this part of the UBC surface participates in protein-protein interactions that define Rad6 substrate specificity.
Collapse
Affiliation(s)
- D K Worthylake
- Biochemistry Department, University of Utah, Salt Lake City, Utah 84132, USA
| | | | | | | |
Collapse
|
13
|
Affiliation(s)
- M J Curcio
- Molecular Genetics Program, Wadsworth Center, Albany, NY, USA.
| | | |
Collapse
|
14
|
Udomkit A, Forbes S, McLean C, Arkhipova I, Finnegan DJ. Control of expression of the I factor, a LINE-like transposable element in Drosophila melanogaster. EMBO J 1996; 15:3174-81. [PMID: 8670818 PMCID: PMC450260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
I factors are LINE-like transposable elements in the genome of Drosophila melanogaster. They normally transpose infrequently but are activated in the germline of female progeny of crosses between males of a strain that contains complete elements, an I or inducer strain and females of a strain that does not, an R or reactive strain. This causes a phenomenon known as I-R hybrid dysgenesis. We have previously shown that the I factor promoter lies between nucleotides 1 and 30. Here we demonstrate that expression of this promoter is regulated by nucleotides 41-186 of the I factor. This sequence can act as an enhancer as it stimulates expression of the hsp7O promoter in ovaries in the absence of heat-shock. Within this region there is a site that is required for promoter activity and that is recognized by a sequence-specific binding protein. We propose that this protein contributes to the enhancer activity of nucleotides 41-186 and that reduced I factor expression in inducer strains is due to titration of this protein or others that interact with it.
Collapse
Affiliation(s)
- A Udomkit
- Institute of Cell and Molecular Biology, University of Edinburgh, UK
| | | | | | | | | |
Collapse
|
15
|
Rinckel LA, Garfinkel DJ. Influences of histone stoichiometry on the target site preference of retrotransposons Ty1 and Ty2 in Saccharomyces cerevisiae. Genetics 1996; 142:761-76. [PMID: 8849886 PMCID: PMC1207017 DOI: 10.1093/genetics/142.3.761] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In Saccharomyces cerevisiae, the target site specificity of the retrotransposon Ty1 appears to involve the Ty integration complex recognizing chromatin structures. To determine whether changes in chromatin structure affect Ty1 and Ty2 target site preference, we analyzed Ty transposition at the CAN1 locus in mutants containing altered levels of histone proteins. A delta hta1-htb1 mutant with decreased levels of H2A and H2B histone proteins showed a pattern of Ty1 and Ty2 insertions at CAN1 that was significantly different from that of both the wild-type and a delta hta2-htb2 mutant, which does not have altered histone protein levels. Altered levels of H2A and H2B proteins disrupted a dramatic orientation bias in the CAN1 promoter region. In the wild-type strains, few Ty1 and Ty2 insertions in the promoter region were oriented opposite to the direction of CAN1 transcription. In the delta hta1-htb1 background, however, numerous Ty1 and Ty2 insertions were in the opposite orientation clustered within the TATA region. This altered insertion pattern does not appear to be due to a bias caused by selecting canavanine resistant isolates in the different HTA1-HTB1 backgrounds. Our results suggest that reduced levels of histone proteins alter Ty target site preference and disrupt an asymmetric Ty insertion pattern.
Collapse
Affiliation(s)
- L A Rinckel
- Gene Regulation and Chromosome Biology Laboratory, NCI-Frederick Cancer Research and Development Center, Maryland 21702-1201, USA
| | | |
Collapse
|
16
|
|
17
|
Roche H, Gietz RD, Kunz BA. Specificities of the Saccharomyces cerevisiae rad6, rad18, and rad52 mutators exhibit different degrees of dependence on the REV3 gene product, a putative nonessential DNA polymerase. Genetics 1995; 140:443-56. [PMID: 7498727 PMCID: PMC1206625 DOI: 10.1093/genetics/140.2.443] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Saccharomyces cerevisiae rad6, rad18, and rad52 mutants exhibit DNA repair deficiencies and distinct mutator phenotypes. DNA replication past unrepaired spontaneous damage might contribute to the specificities of these mutators. Because REV3 is thought to encode a DNA polymerase that specializes in translesion synthesis, we determined the REV3 dependence of the rad mutator specificities. Spontaneous mutagenesis at a plasmid-borne SUP4-o locus was examined in isogenic strains having combinations of normal or mutant REV3 and RAD6, RAD18, or RAD52 alleles. For the rad6 and rad18 mutators, the mutation rate increase relied largely, but not exclusively, on REV3 whereas the rad52 mutator was entirely REV3 dependent. The influence of REV3 on the specificity of the rad6 mutator differed markedly depending on the mutational class examined. However, the requirement of rev3 for the production of G.C-->T.A transversions by the rad18 mutator, which induces only these substitutions, was similar to that for rad6-mediated G.C-->T.A transversion. This supports a role for the Rad6-Rad18 protein complex in the control of spontaneous mutagenesis. The available data imply that the putative Rev3 polymerase can process a variety of spontaneous DNA lesions that normally are substrates for error-free repair.
Collapse
Affiliation(s)
- H Roche
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
18
|
Ichimura S, Mita K, Numata M. Protein ubiquitination in the posterior silk glands of Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1994; 24:717-722. [PMID: 7520801 DOI: 10.1016/0965-1748(94)90059-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ubiquitin gene expression and the ubiquitination of proteins in the posterior silk glands (PSG) of B. mori were analyzed developmentally with respect to fibroin synthesis and degeneration. Two ubiquitin transcripts are expressed throughout larval stages, and the level of each transcript is regulated differently. The larger transcript, a polyubiquitin mRNA, was abundant during the molt stage, while levels of the smaller ubiquitin transcript increased immediately after molting. Only a single 65 kDa ubiquitinated protein was detected late in the 5th instar, and the amount increased up to spinning stage. This ubiquitinated protein may participate in the PSG degeneration.
Collapse
Affiliation(s)
- S Ichimura
- Division of Biology, National Institute of Radiological Sciences, Chiba-shi, Japan
| | | | | |
Collapse
|
19
|
Raboy B, Kulka RG. Role of the C-terminus of Saccharomyces cerevisiae ubiquitin-conjugating enzyme (Rad6) in substrate and ubiquitin-protein-ligase (E3-R) interactions. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 221:247-51. [PMID: 8168512 DOI: 10.1111/j.1432-1033.1994.tb18735.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The product of the RAD6 (UBC2) gene of Saccharomyces cerevisiae is a ubiquitin-conjugating enzyme (Rad6) which is implicated in DNA repair, induced mutagenesis, retrotransposition, sporulation and the degradation of proteins with destabilizing N-terminal amino acid residues. Deletion of the 23-residue acidic C-terminus of Rad6 impairs sporulation and N-end rule protein degradation in vivo but does not affect other functions such as DNA repair and induced mutagenesis. We have investigated the role of the C-terminus of Rad6 in in vitro interactions with various substrates and with a putative ubiquitin-protein ligase, E3-R. The removal of the Rad6 C-terminus had significant different effects on enzyme activity for individual substrates. Although the 23-residue truncated Rad6-149 protein had markedly impaired activity for histone H2B and micrococcal nuclease, the activity for cytochrome c was the same as that of the intact Rad6 protein. Similarly, truncation of Rad6 had no effect on its activity for several poor substrates, namely, beta-casein, beta-lactoglobulin and oxidized RNase. E3-R stimulated the activities of both Rad6 and Rad6-149 for the latter three substrates to similar degrees. E3-R appears to act by enhancing the low intrinsic affinity of Rad6 and Rad6-149 for these substrates. Thus Rad6 can act in three different modes in vitro depending on the substrate, namely unassisted C-terminus-dependent, unassisted C-terminus-independent and E3-R-assisted C-terminus-independent modes. We also examined the results of removing the C-terminal acidic region of Cdc34 (Ubc3), a ubiquitin-conjugating enzyme closely related to Rad6. Truncation of Cdc34 like that of Rad6 had no effect on activity for beta-casein, beta-lactoglobulin or oxidized RNase in the presence or absence of E3-R.
Collapse
Affiliation(s)
- B Raboy
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
20
|
Curcio MJ, Garfinkel DJ. Heterogeneous functional Ty1 elements are abundant in the Saccharomyces cerevisiae genome. Genetics 1994; 136:1245-59. [PMID: 8013902 PMCID: PMC1205905 DOI: 10.1093/genetics/136.4.1245] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Despite the abundance of Ty1 RNA in Saccharomyces cerevisiae, Ty1 retrotransposition is a rare event. To determine whether transpositional dormancy is the result of defective Ty1 elements, functional and defective alleles of the retrotransposon in the yeast genome were quantitated. Genomic Ty1 elements were isolated by gap repair-mediated recombination of pGTy1-H3(delta 475-3944) HIS3, a multicopy plasmid containing a GAL1/Ty1-H3 fusion element lacking most of the gag domain (TYA) and the protease (PR) and integrase (IN) domains. Of 39 independent gap repaired pGTyHIS3 elements isolated, 29 (74%) transposed at high levels following galactose induction. The presence of restriction site polymorphisms within the gap repaired region of the 29 functional pGTyHIS3 elements indicated that they were derived from at least eight different genomic Ty1 elements and one Ty2 element. Of the 10 defective pGTyHIS3 elements, one was a partial gap repair event while the other nine were derived from at least six different genomic Ty1 elements. These results suggest that most genomic Ty1 elements encode functional TYA, PR and IN proteins. To understand how functional Ty1 elements are regulated, we tested the hypothesis that a TYB protein associates preferentially in cis with the RNA template that encodes it, thereby promoting transposition of its own element. A genomic Ty1 mhis3AI element containing either an in-frame insertion in PR or a deletion in TYB transposed at the same rate as a wild-type Ty1mhis3AI allele, indicating that TYB proteins act efficiently in trans. This result suggests in principle that defective genomic Ty1 elements could encode trans-acting repressors of transposition; however, expression of only one of the nine defective pGTy1 isolates had a negative effect on genomic Ty1 mhis3AI element transposition in trans, and this effect was modest. Therefore, the few defective Ty1 elements in the genome are not responsible for transpositional dormancy.
Collapse
Affiliation(s)
- M J Curcio
- Molecular Genetics Program, Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201-0509
| | | |
Collapse
|
21
|
Chen P, Johnson P, Sommer T, Jentsch S, Hochstrasser M. Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast MAT alpha 2 repressor. Cell 1993; 74:357-69. [PMID: 8393731 DOI: 10.1016/0092-8674(93)90426-q] [Citation(s) in RCA: 322] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Attachment of ubiquitin to proteins is catalyzed by a family of ubiquitin-conjugating (UBC) enzymes. Although these enzymes are essential for many cellular processes; their molecular functions remain unclear because no physiological target has been identified for any of them. Here we show that four UBC proteins (UBC4, UBC5, UBC6, and UBC7) target the yeast MAT alpha 2 transcriptional regulator for intracellular degradation by two distinct ubiquitination pathways. UBC6 and UBC7 define one of the pathways and can physically associate. The UBC6/UBC7-containing complex targets the Deg1 degradation signal of alpha 2, a conclusion underscored by the finding that UBC6 is encoded by DOA2, a gene previously implicated in Deg1-mediated degradation. These data reveal an unexpected overlap in substrate specificity among diverse UBC enzymes and suggest a combinatorial mechanism of substrate selection in which UBC enzymes partition into multiple ubiquitination complexes.
Collapse
Affiliation(s)
- P Chen
- Department of Biochemistry and Molecular Biology, University of Chicago, Illinois 60637
| | | | | | | | | |
Collapse
|
22
|
Liebman SW, Newnam G. A ubiquitin-conjugating enzyme, RAD6, affects the distribution of Ty1 retrotransposon integration positions. Genetics 1993; 133:499-508. [PMID: 8384143 PMCID: PMC1205338 DOI: 10.1093/genetics/133.3.499] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A galactose-inducible Ty1 element was used to generate 59 independent Ty1 inserts that inactivate the CAN1 gene. As found in previous studies, the distribution of these elements shows a gradient of insertion frequency from highest to lowest between the 5' and 3' ends of the gene. However, 53 independent Ty1 and Ty2 insertions isolated by an identical procedure in an isogenic rad6 deletion strain do not show this bias. In this strain, the Ty elements insert randomly throughout CAN1. These results show that the ubiquitin-conjugating enzyme, RAD6, alters the integration site preferences of Ty1 retrotransposons.
Collapse
Affiliation(s)
- S W Liebman
- Department of Biological Sciences, University of Illinois, Chicago 60680
| | | |
Collapse
|
23
|
Abstract
A major pathway for protein degradation in eukaryotes is ubiquitin dependent. Substrate-specific ubiquitin-conjugating enzymes and accessory factors recognize specific signals on proteolytic substrates and attach ubiquitin to defined lysine residues of substrate proteins. Ubiquitin-protein conjugates are then degraded by the proteasome, a multicatalytic protease complex. This proteolytic pathway is highly selective and tightly regulated. It mediates the elimination of abnormal proteins and controls the half-lifes of certain regulatory proteins. Targets include transcriptional regulators, p53 and cyclins, pointing to a role of the ubiquitin system in the regulation of gene expression and growth control.
Collapse
Affiliation(s)
- S Jentsch
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstrasse 37-39, 7400 Tuebingen, Germany
| |
Collapse
|
24
|
Wing S, Dumas F, Banville D. A rabbit reticulocyte ubiquitin carrier protein that supports ubiquitin-dependent proteolysis (E214k) is homologous to the yeast DNA repair gene RAD6. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50455-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
25
|
Kang XL, Yadao F, Gietz RD, Kunz BA. Elimination of the yeast RAD6 ubiquitin conjugase enhances base-pair transitions and G.C----T.A transversions as well as transposition of the Ty element: implications for the control of spontaneous mutation. Genetics 1992; 130:285-94. [PMID: 1311695 PMCID: PMC1204849 DOI: 10.1093/genetics/130.2.285] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The RAD6 gene of the yeast Saccharomyces cerevisiae encodes an enzyme that conjugates ubiquitin to other proteins. Defects in RAD6 confer a mutator phenotype due, in part, to an increased rate of transposition of the yeast Ty element. To further delineate the role of protein ubiquitination in the control of spontaneous mutagenesis in yeast, we have characterized 202 mutations that arose spontaneously in the SUP4-o gene carried on a centromere vector in a RAD6 deletion strain. The resulting mutational spectrum was compared to that for 354 spontaneous SUP4-o mutations isolated in the isogenic wild-type parent. This comparison revealed that the rad6 mutator enhanced the rate of single base-pair substitution, as well as Ty insertion, but did not affect the rates of the other mutational classes detected. Relative to the wild-type parent, Ty inserted at considerably more SUP4-o positions in the rad6 strain with a significantly smaller fraction detected at a transposition hotspot. These findings suggest that, in addition to the rate of transposition, protein ubiquitination might influence the target site specificity of Ty insertion. The increase in the substitution rate accounted for approximately 90% of the rad6 mutator effect but only the two transitions and the G. C----T.A transversion were enhanced. Analysis of the distribution of these events within SUP4-o suggested that the site specificity of the substitutions was influenced by DNA sequence context. Transformation of heteroduplex plasmid DNAs into the two strains demonstrated that the rad6 mutator did not reduce the efficiency of correcting mismatches that could give rise to the transitions or transversion nor did it bias restoration of the mismatches to the incorrect base-pairs. These results are discussed in relation to possible mechanisms that might link ubiquitination of proteins to spontaneous mutation rates.
Collapse
Affiliation(s)
- X L Kang
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
26
|
Wilke CM, Maimer E, Adams J. The population biology and evolutionary significance of Ty elements in Saccharomyces cerevisiae. Genetica 1992; 86:155-73. [PMID: 1334907 DOI: 10.1007/bf00133718] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The basic structure and properties of Ty elements are considered with special reference to their role as agents of evolutionary change. Ty elements may generate genetic variation for fitness by their action as mutagens, as well as by providing regions of portable homology for recombination. The mutational spectra generated by Ty1 transposition events may, due to their target specificity and gene regulatory capabilities, possess a higher frequency of adaptively favorable mutations than spectra resulting from other types of mutational processes. Laboratory strains contain between 25-35 elements, and in both these and industrial strains the insertions appear quite stable. In contrast, a wide variation in Ty number is seen in wild isolates, with a lower average number/genome. Factors which may determine Ty copy number in populations include transposition rates (dependent on Ty copy number and mating type), and stabilization of Ty elements in the genome as well as selection for and against Ty insertions in the genome. Although the average effect of Ty transpositions are deleterious, populations initiated with a single clone containing a single Ty element steadily accumulated Ty elements over 1,000 generations. Direct evidence that Ty transposition events can be selectively favored is provided by experiments in which populations containing large amounts of variability for Ty1 copy number were maintained for approximately 100 generations in a homogeneous environment. At their termination, the frequency of clones containing 0 Ty elements had decreased to approximately 0.0, and the populations had became dominated by a small number of clones containing > 0 Ty elements. No such reduction in variability was observed in populations maintained in a structured environment, though changes in Ty number were observed. The implications of genetic (mating type and ploidy) changes and environmental fluctuations for the long-term persistence of Ty elements within the S. cerevisiae species group are discussed.
Collapse
Affiliation(s)
- C M Wilke
- Department of Biology, University of Michigan, Ann Arbor 48109
| | | | | |
Collapse
|
27
|
Abstract
Retrotransposons are a widely distributed group of eukaryotic mobile genetic elements that transpose through an RNA intermediate. The element Ty (Transposon yeast), found in the yeast Saccharomyces cerevisiae, is a model system for the study of retrotransposons because of the experimental tools that exist to manipulate and detect transposition. Ty transposition can be elevated to levels exceeding one transposition event per cell when an element is expressed from an inducible yeast promoter. In addition, individual genomic Ty elements can be tagged with a retrotransposition indicator gene that allows transposition events occurring at a rate of 10(-5) to 10(-7) per element per cell division to be detected phenotypically. These systems are being used to elucidate the mechanism of Ty transposition and clarify how Ty transposition is controlled.
Collapse
Affiliation(s)
- M J Curcio
- NCI-Frederick Cancer Research and Development Center, ABL-Basic Research Program, Maryland 21702-1201
| | | |
Collapse
|
28
|
Sharon G, Raboy B, Parag H, Dimitrovsky D, Kulka R. RAD6 gene product of Saccharomyces cerevisiae requires a putative ubiquitin protein ligase (E3) for the ubiquitination of certain proteins. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98492-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
29
|
Jentsch S, Seufert W, Hauser HP. Genetic analysis of the ubiquitin system. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1089:127-39. [PMID: 1647207 DOI: 10.1016/0167-4781(91)90001-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- S Jentsch
- Friedrich-Miescher-Laboratorium, Max-Planck-Gesellschaft, Tübingen, F.R.G
| | | | | |
Collapse
|
30
|
Jentsch S, Seufert W, Sommer T, Reins HA. Ubiquitin-conjugating enzymes: novel regulators of eukaryotic cells. Trends Biochem Sci 1990; 15:195-8. [PMID: 2193438 DOI: 10.1016/0968-0004(90)90161-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Covalent attachment of ubiquitin to cellular proteins is essential for cell viability and is catalysed by a set of distinct ubiquitin-conjugating enzymes. Individual members of this novel enzyme family mediate strikingly diverse functions, including DNA repair, cell cycle control, selective protein degradation and essential functions of the stress response.
Collapse
Affiliation(s)
- S Jentsch
- Friedrich-Miescher-Laboratory, Max-Planck-Society, Tübingen, FRG
| | | | | | | |
Collapse
|