1
|
Park JL, Lee YS, Kunkeaw N, Kim SY, Kim IH, Lee YS. Epigenetic regulation of noncoding RNA transcription by mammalian RNA polymerase III. Epigenomics 2017; 9:171-187. [PMID: 28112569 DOI: 10.2217/epi-2016-0108] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RNA polymerase III (Pol III) synthesizes a range of medium-sized noncoding RNAs (collectively 'Pol III genes') whose early established biological roles were so essential that they were considered 'housekeeping genes'. Besides these fundamental functions, diverse unconventional roles of mammalian Pol III genes have recently been recognized and their expression must be exquisitely controlled. In this review, we summarize the epigenetic regulation of Pol III genes by chromatin structure, histone modification and CpG DNA methylation. We also recapitulate the association between dysregulation of Pol III genes and diseases such as cancer and neurological disorders. Additionally, we will discuss why in-depth molecular studies of Pol III genes have not been attempted and how nc886, a Pol III gene, may resolve this issue.
Collapse
Affiliation(s)
- Jong-Lyul Park
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 305-806, Korea.,Department of Functional Genomics, University of Science & Technology, Daejeon 305-806, Korea
| | - Yeon-Su Lee
- Cancer Genomics Branch, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Nawapol Kunkeaw
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1072, USA.,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 305-806, Korea.,Department of Functional Genomics, University of Science & Technology, Daejeon 305-806, Korea
| | - In-Hoo Kim
- Graduate School of Cancer Science & Policy, National Cancer Center, Goyang 10408, Korea
| | - Yong Sun Lee
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1072, USA.,Graduate School of Cancer Science & Policy, National Cancer Center, Goyang 10408, Korea
| |
Collapse
|
2
|
Epigenetic regulation of transcription by RNA polymerase III. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1015-25. [DOI: 10.1016/j.bbagrm.2013.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/11/2013] [Accepted: 05/15/2013] [Indexed: 01/11/2023]
|
3
|
Kober I, Seifart KH. Influence of chromatin-structure on accessibility and transcriptional regulation of the duck histone H5-gene. J Anim Breed Genet 2011. [DOI: 10.1111/j.1439-0388.1996.tb00613.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Hizume K, Yoshimura SH, Kumeta M, Takeyasu K. Structural organization of dynamic chromatin. Subcell Biochem 2007; 41:3-28. [PMID: 17484121 DOI: 10.1007/1-4020-5466-1_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Affiliation(s)
- Kohji Hizume
- Laboratory of Plasma Membrane and Nuclear Signaling, Graduate School of Biostudies, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | | | |
Collapse
|
5
|
Lavelle C. Transcription elongation through a chromatin template. Biochimie 2006; 89:516-27. [PMID: 17070642 DOI: 10.1016/j.biochi.2006.09.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 09/26/2006] [Indexed: 10/24/2022]
Abstract
DNA transaction events occurring during cell life (replication, transcription, recombination, repair, cell division) are always linked to severe changes in the topological state of the double helix. However, since naked DNA almost does not exist in eukaryote nucleus but rather interacts with various proteins, including ubiquitous histones, these topological changes happen in a chromatin context. This review focuses on the role of chromatin fiber structure and dynamics in the regulation of transcription, with an almost exclusive emphasis on the elongation step. Beside a brief overview of our knowledge about transcribed chromatin, we will see how recent mechanistic and biochemical studies give us new insights into the way cell could modulate DNA supercoiling and chromatin conformational dynamics. The participation of topoisomerases in this complex ballet is discussed, since recent data suggest that their role could be closely related to the precise chromatin structure. Lastly, some future prospects to carry on are proposed, hoping this review will help in stimulating discussions and further investigations in the field.
Collapse
Affiliation(s)
- Christophe Lavelle
- Laboratoire de Microscopie Moléculaire et Cellulaire, UMR 8126, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif, France.
| |
Collapse
|
6
|
What happens to nucleosomes during transcription? ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0167-7306(03)39017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
7
|
Gromak N, Rideau A, Southby J, Scadden ADJ, Gooding C, Hüttelmaier S, Singer RH, Smith CWJ. The PTB interacting protein raver1 regulates alpha-tropomyosin alternative splicing. EMBO J 2003; 22:6356-64. [PMID: 14633994 PMCID: PMC291850 DOI: 10.1093/emboj/cdg609] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Revised: 09/19/2003] [Accepted: 10/13/2003] [Indexed: 01/09/2023] Open
Abstract
Regulated switching of the mutually exclusive exons 2 and 3 of alpha-tropomyosin (TM) involves repression of exon 3 in smooth muscle cells. Polypyrimidine tract-binding protein (PTB) is necessary but not sufficient for regulation of TM splicing. Raver1 was identified in two-hybrid screens by its interactions with the cytoskeletal proteins actinin and vinculin, and was also found to interact with PTB. Consistent with these interactions raver1 can be localized in either the nucleus or cytoplasm. Here we show that raver1 is able to promote the smooth muscle-specific alternative splicing of TM by enhancing PTB-mediated repression of exon 3. This activity of raver1 is dependent upon characterized PTB-binding regulatory elements and upon a region of raver1 necessary for interaction with PTB. Heterologous recruitment of raver1, or just its C-terminus, induced very high levels of exon 3 skipping, bypassing the usual need for PTB binding sites downstream of exon 3. This suggests a novel mechanism for PTB-mediated splicing repression involving recruitment of raver1 as a potent splicing co-repressor.
Collapse
Affiliation(s)
- Natalia Gromak
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Yang Z, Hayes JJ. Xenopus transcription factor IIIA and the 5S nucleosome: development of a useful in vitro system. Biochem Cell Biol 2003; 81:177-84. [PMID: 12897852 DOI: 10.1139/o03-043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
5S RNA genes in Xenopus are regulated during development via a complex interplay between assembly of repressive chromatin structures and productive transcription complexes. Interestingly, 5S genes have been found to harbor powerful nucleosome positioning elements and therefore have become an important model system for reconstitution of eukaryotic genes into nucleosomes in vitro. Moreover, the structure of the primary factor initiating transcription of 5S DNA, transcription factor IIIA, has been extensively characterized. This has allowed for numerous studies of the effect of nucleosome assembly and histone modifications on the DNA binding activity of a transcription factor in vitro. For example, linker histones bind 5S nucleosomes and repress TFIIIA binding in vitro in a similar manner to that observed in vivo. In addition, TFIIIA binding to nucleosomes assembled with 5S DNA is stimulated by acetylation or removal of the core histone tail domains. Here we review the development of the Xenopus 5S in vitro system and discuss recent results highlighting new aspects of transcription factor - nucleosome interactions,
Collapse
Affiliation(s)
- Zungyoon Yang
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, NY 14625, USA
| | | |
Collapse
|
9
|
|
10
|
Brooks W, Jackson V. The rapid transfer and selective association of histones H2A and H2B onto negatively coiled DNA at physiological ionic strength. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32430-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
11
|
Jackson S, Brooks W, Jackson V. Dynamics of the interactions of histones H2A,H2B and H3,H4 with torsionally stressed DNA. Biochemistry 1994; 33:5392-403. [PMID: 8180162 DOI: 10.1021/bi00184a006] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The interactions of histones H2A,H2B and H3,H4 with closed circular DNA maintained in either a positively or negatively coiled state have been studied. The interactions were assayed by measuring the rate at which negative stress was stored in the DNA by the histones and by the salt concentration sufficient to cause dissociation on sucrose gradients. Additional experiments were performed in which DNAs of substantially different molecular weights and opposite topological states were mixed with the histones in order to study histone mobility under varied conditions. This mobility was characterized by separating the complexes on sucrose gradients and by analyzing the DNA's topological state after topoisomerase I treatment. Histones H3,H4 were found to differ substantially from histones H2A,H2B with regard to the DNA topology with which they prefer to interact. The results are consistent with a model in which transcription-induced positive stress in advance of the RNA polymerase unfolds the nucleosome to facilitate the release of H2A,H2B. The data are also consistent with a model in which histones H3,H4 remain associated with the DNA during polymerase passage and serve as a nucleation site for the reassociation of H2A,H2B. The rapid production of transcription-induced negative stress in the wake of a polymerase would have substantial importance in facilitating the reassociation of histones H2A,H2B.
Collapse
Affiliation(s)
- S Jackson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226
| | | | | |
Collapse
|
12
|
Svaren J, Klebanow E, Sealy L, Chalkley R. Analysis of the competition between nucleosome formation and transcription factor binding. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37113-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
Whitehall S, Bardeleben C, Kassavetis G. Hydrolytic cleavage of nascent RNA in RNA polymerase III ternary transcription complexes. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42168-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
14
|
Abstract
Xenopus transcription factor, termed TFIIIA, is the first eukaryotic transcription factor purified to homogeneity and one of the most extensively characterized polymerase III gene factors at the levels both of the protein and its gene. It is an abundant protein in oocytes and is specifically required for the 5S RNA gene transcription. It promotes the formation of a stable transcription complex by first binding to the internal control region of the 5S RNA gene through its zinc finger motifs. It contains two structural domains and associates with 5S RNA to form 7S ribonucleoprotein particles in oocytes. Its expression is developmentally controlled at the level of transcription and translation. It participates in the assembly of active chromatin templates and, at least in part, is responsible for the differential expression of two kinds of 5S RNA genes in Xenopus.
Collapse
Affiliation(s)
- B S Shastry
- Eye Research Institute, Oakland University, Rochester, Michigan 48309
| |
Collapse
|
15
|
Abstract
The "rigidity" of chromatin fiber solenoidal structure in different states of condensation was evaluated with the help of gel-electrophoresis. A new property of the unfolded nucleosomal fiber-the capacity to condense with temperature-was demonstrated. These results together with our previously obtained data (W.A. Krajewski et al., Mol. Gen. Genet. 230, pp. 442-448, 1991; W.A. Krajewski et al., Ibid. 231, pp. 17-22, 1991) testify that changes in DNA linking number of transcriptionally active minichromosomes arise in vivo from alteration of nucleosomal solenoid parameters (i.e. from supernucleosomal level of chromatin organization), rather than from core histone modifications only or from increased flexibility of DNA within nucleosomes.
Collapse
Affiliation(s)
- W A Krajewski
- Laboratory of Biochemistry, Russian Academy of Sciences, Moscow
| | | | | |
Collapse
|
16
|
Nguyen TP, Kmiec EB. In vitro transcription of the c-myc first exon may be influenced by the extent of chromatin assembly. Mol Cell Biochem 1993; 120:33-41. [PMID: 8459802 DOI: 10.1007/bf00925982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The first exon of the human c-myc gene can be transcribed by either RNA polymerase II or RNA polymerase III. The molecular factors contributing to polymerase selection are not yet completely defined. We have examined the role of chromatin structure in regulating transcription by RNA polymerase III. Using as competitor a pol III gene in both a cis and trans arrangement, we demonstrate that c-myc gene expression is facilitated from templates containing a minimal number of fully assembled nucleosomes. The removal of excess histones by DNA titration leads to an elevated level of c-myc expression. These results suggest that either the c-myc expression is inhibited when the template is fully packaged into chromatin or that the affinity of RNA polymerase for the regulatory elements of this exon is such that a template, devoid of histones, is required for transcriptional initiation.
Collapse
Affiliation(s)
- T P Nguyen
- Jefferson Cancer Institute, Thomas Jefferson School of Medicine, Philadelphia, Pennsylvania 19107
| | | |
Collapse
|
17
|
Abstract
We have determined the fate of a nucleosome core on transcription. A nucleosome core was assembled on a short DNA fragment and ligated into a plasmid containing a promoter and terminators for SP6 RNA polymerase. The nucleosome core was stable in the absence of transcription. The distribution of nucleosome cores after transcription was examined. The histone octamer was displaced from its original site and reformed a nucleosome core at a new site within the same plasmid molecule, with some preference for the untranscribed region behind the promoter. These observations eliminate several models that have been proposed for transcription through a nucleosome core. Our results suggest that a nucleosome core in the path of a transcribing polymerase is displaced by transfer to the closest acceptor DNA.
Collapse
Affiliation(s)
- D J Clark
- Laboratory of Molecular Biology, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
18
|
Hansen JC, Wolffe AP. Influence of chromatin folding on transcription initiation and elongation by RNA polymerase III. Biochemistry 1992; 31:7977-88. [PMID: 1510985 DOI: 10.1021/bi00149a032] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nucleosomes were assembled onto either closed circular plasmids containing a single Xenopus 5S RNA gene or a linear tandemly repeated array of Lytechinus 5S RNA genes. Both chromatin templates were found to vary in their extent of compaction, depending upon the type and concentration of cation in solution. Compaction of these chromatin templates led to a significant inhibition of both transcription initiation and elongation by RNA polymerase III. Thus, the transcriptional repression observed after incorporation of genes into chromatin depends not only on occlusion of the promoter elements through direct contact with histones but also on compaction of nucleosomal arrays which occurs under the conditions of the transcription reactions.
Collapse
Affiliation(s)
- J C Hansen
- Department of Biochemistry, University of Texas Health Science Center, San Antonio
| | | |
Collapse
|
19
|
O'Neill TE, Roberge M, Bradbury EM. Nucleosome arrays inhibit both initiation and elongation of transcripts by bacteriophage T7 RNA polymerase. J Mol Biol 1992; 223:67-78. [PMID: 1731087 DOI: 10.1016/0022-2836(92)90716-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have examined the effects of nucleosome cores on the initiation and elongation of RNA transcripts by phage T7 RNA polymerase in vitro. A transcription template, pT207-18, was constructed containing tandemly repeated 207 base-pair (bp) nucleosome positioning sequences from a sea urchin (Lytechinus variegatus) 5 S RNA gene inserted between the T7 and SP6 transcription promoters of pGEM-3Z. Nucleosome cores were reconstituted onto supercoiled, closed circular pT207-18 DNA and double label transcription experiments were performed to determine the effects of nucleosome cores on the initiation and elongation of transcripts by T7 RNA polymerase. Both transcript initiation and elongation were inhibited, the extent of the inhibition being directly proportional to the number of nucleosome cores reconstituted onto the pT207-18 DNA templates. Time course transcription experiments indicated that nucleosome cores caused a reduction in the equilibrium length of transcripts and not mere retardation of elongation rates. Continuous regularly spaced linear arrays of nucleosomes were obtained by digesting reconstituted nucleosomel pT207-18 templates with DraI, for which a unique restriction site lies within the nucleosome positioning region of the 207 bp 5 S rDNA repeat sequence. After in vitro transcription with T7 RNA polymerase an RNA ladder with 207 nucleotide spacing was obtained, indicating that transcription can occur through continuous arrays of positioned nucleosome cores. It is demonstrated that nucleosome cores partially inhibit the elongation of transcripts by T7 RNA polymerase, while allowing passage of the transcribing polymerase through each nucleosome core at an upper limit efficiency of 85%. Hence, complete transcripts are produced with high efficiency from short nucleosomal templates, while the production of full-length transcripts from long nucleosomal arrays is relatively inefficient. The results indicate that nucleosome cores have significant inhibitory effects in vitro not only on transcription initiation but on transcription elongation as well, and that special mechanisms may exist to overcome these inhibitory effects in vivo.
Collapse
Affiliation(s)
- T E O'Neill
- Department of Biological Chemistry, School of Medicine, University of California, Davis 95616
| | | | | |
Collapse
|
20
|
Abstract
In eukaryotes, DNA that is transcribed is packaged first into nucleosomes and then into chromatin fibres. How does transcription proceed through chromatin? Studies of transcription through nucleosomes in vitro suggest that the intracellular environment may provide factors which alleviate the inhibitory effect that nucleosomes have on transcription, possibly via positive supercoiling induced by the migrating polymerase. Stable changes in nucleosome structure have been correlated with transcriptionally active chromatin, but the precise mechanism by which RNA polymerase transcribes through nucleosomal DNA remains unknown.
Collapse
Affiliation(s)
- R H Morse
- NIDDK, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
21
|
Abstract
Remarkable progress has been made in defining the functional significance of the protein-DNA interactions involved in transcription complex formation on yeast tRNA and 5S RNA genes. This new information leads to a re-evaluation of how the class III gene transcription machinery operates.
Collapse
Affiliation(s)
- A P Wolffe
- Laboratory of Molecular Embryology, NICHD, National Institutes of Health, Bethesda, Maryland 20891
| |
Collapse
|
22
|
Activation domains of stably bound GAL4 derivatives alleviate repression of promoters by nucleosomes. Cell 1991; 64:533-44. [PMID: 1991320 DOI: 10.1016/0092-8674(91)90237-s] [Citation(s) in RCA: 210] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
GAL4 derivatives containing an activation domain alleviated repression of a promoter during nucleosome assembly. A GAL4 derivative lacking an activation domain stably bound the promoter during nucleosome assembly but was not sufficient to preserve promoter function. The activation domain of GAL4 derivatives was essential for preserving promoter function, and thus the transcriptional stimulatory activity attributable to these activation domains increased dramatically during nucleosome assembly. Furthermore, promoter-bound activation domains allowed the formation of preinitiation complexes after nucleosome assembly. Finally, GAL4 derivatives containing activation domains significantly stimulated transcription through bacterially produced yeast TFIID only from nucleosome-assembled templates. These data indicate that acidic activation domains stimulate transcription by enhancing the ability of basal transcription factors to compete with nucleosomes for occupancy of the promoter.
Collapse
|
23
|
Shastry BS. Xenopus transcription factor IIIA (XTFIIIA): after a decade of research. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1991; 56:135-44. [PMID: 1947129 DOI: 10.1016/0079-6107(91)90017-m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Xenopus transcription factor IIIA (XTFIIIA) is the first eukaryotic transcription factor purified to homogeneity and is specifically required for the 5S RNA gene transcription. It contains two structural domains and nine zinc finger motifs through which it recognizes the promoter region of the 5S RNA gene. It also binds to 5S RNA and serves to store 5S RNA in the form of 7S ribonucleoprotein particles in oocytes. Additionally, it forms a metastable complex with 5S DNA and promotes the formation of stable and competent transcription complexes. Its expression is developmentally controlled at the level of transcription and translation. Moreover, it participates in the assembly of active chromatin templates and at least, in part, is responsible for the developmental regulation of two kinds of 5S RNA genes in Xenopus.
Collapse
Affiliation(s)
- B S Shastry
- Eye Research Institute of Oakland University, Rochester, MI 48309
| |
Collapse
|