1
|
Zhang J, Chen Y, Wu C, Liu P, Wang W, Wei D. The transcription factor ACE3 controls cellulase activities and lactose metabolism via two additional regulators in the fungus Trichoderma reesei. J Biol Chem 2019; 294:18435-18450. [PMID: 31501242 PMCID: PMC6885621 DOI: 10.1074/jbc.ra119.008497] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/23/2019] [Indexed: 12/15/2022] Open
Abstract
Fungi of the genus Trichoderma are a rich source of enzymes, such as cellulases and hemicellulases, that can degrade lignocellulosic biomass and are therefore of interest for biotechnological approaches seeking to optimize biofuel production. The essential transcription factor ACE3 is involved in cellulase production in Trichoderma reesei; however, the mechanism by which ACE3 regulates cellulase activities is unknown. Here, we discovered that the nominal ace3 sequence in the T. reesei genome available through the Joint Genome Institute is erroneously annotated. Moreover, we identified the complete ace3 sequence, the ACE3 Zn(II)2Cys6 domain, and the ACE3 DNA-binding sites containing a 5'-CGGAN(T/A)3-3' consensus. We found that in addition to its essential role in cellulase production, ace3 is required for lactose assimilation and metabolism in T. reesei Transcriptional profiling with RNA-Seq revealed that ace3 deletion down-regulates not only the bulk of the major cellulase, hemicellulase, and related transcription factor genes, but also reduces the expression of lactose metabolism-related genes. Additionally, we demonstrate that ACE3 binds the promoters of many cellulase genes, the cellulose response transporter gene crt1, and transcription factor-encoding genes, including xyr1 We also observed that XYR1 dimerizes to facilitate cellulase production and that ACE3 interacts with XYR1. Together, these findings uncover how two essential transcriptional activators mediate cellulase gene expression in T. reesei On the basis of these observations, we propose a model of how the interactions between ACE3, Crt1, and XYR1 control cellulase expression and lactose metabolism in T. reesei.
Collapse
Affiliation(s)
- Jiajia Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yumeng Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chuan Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Pei Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
2
|
Diversification of Transcriptional Regulation Determines Subfunctionalization of Paralogous Branched Chain Aminotransferases in the Yeast Saccharomyces cerevisiae. Genetics 2017; 207:975-991. [PMID: 28912343 DOI: 10.1534/genetics.117.300290] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/05/2017] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae harbors BAT1 and BAT2 paralogous genes that encode branched chain aminotransferases and have opposed expression profiles and physiological roles . Accordingly, in primary nitrogen sources such as glutamine, BAT1 expression is induced, supporting Bat1-dependent valine-isoleucine-leucine (VIL) biosynthesis, while BAT2 expression is repressed. Conversely, in the presence of VIL as the sole nitrogen source, BAT1 expression is hindered while that of BAT2 is activated, resulting in Bat2-dependent VIL catabolism. The presented results confirm that BAT1 expression is determined by transcriptional activation through the action of the Leu3-α-isopropylmalate (α-IPM) active isoform, and uncovers the existence of a novel α-IPM biosynthetic pathway operating in a put3Δ mutant grown on VIL, through Bat2-Leu2-Leu1 consecutive action. The classic α-IPM biosynthetic route operates in glutamine through the action of the leucine-sensitive α-IPM synthases. The presented results also show that BAT2 repression in glutamine can be alleviated in a ure2Δ mutant or through Gcn4-dependent transcriptional activation. Thus, when S. cerevisiae is grown on glutamine, VIL biosynthesis is predominant and is preferentially achieved through BAT1; while on VIL as the sole nitrogen source, catabolism prevails and is mainly afforded by BAT2.
Collapse
|
3
|
Gonçalves E, Raguz Nakic Z, Zampieri M, Wagih O, Ochoa D, Sauer U, Beltrao P, Saez-Rodriguez J. Systematic Analysis of Transcriptional and Post-transcriptional Regulation of Metabolism in Yeast. PLoS Comput Biol 2017; 13:e1005297. [PMID: 28072816 PMCID: PMC5224888 DOI: 10.1371/journal.pcbi.1005297] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/07/2016] [Indexed: 11/19/2022] Open
Abstract
Cells react to extracellular perturbations with complex and intertwined responses. Systematic identification of the regulatory mechanisms that control these responses is still a challenge and requires tailored analyses integrating different types of molecular data. Here we acquired time-resolved metabolomics measurements in yeast under salt and pheromone stimulation and developed a machine learning approach to explore regulatory associations between metabolism and signal transduction. Existing phosphoproteomics measurements under the same conditions and kinase-substrate regulatory interactions were used to in silico estimate the enzymatic activity of signalling kinases. Our approach identified informative associations between kinases and metabolic enzymes capable of predicting metabolic changes. We extended our analysis to two studies containing transcriptomics, phosphoproteomics and metabolomics measurements across a comprehensive panel of kinases/phosphatases knockouts and time-resolved perturbations to the nitrogen metabolism. Changes in activity of transcription factors, kinases and phosphatases were estimated in silico and these were capable of building predictive models to infer the metabolic adaptations of previously unseen conditions across different dynamic experiments. Time-resolved experiments were significantly more informative than genetic perturbations to infer metabolic adaptation. This difference may be due to the indirect nature of the associations and of general cellular states that can hinder the identification of causal relationships. This work provides a novel genome-scale integrative analysis to propose putative transcriptional and post-translational regulatory mechanisms of metabolic processes. Phosphorylation is a broad regulatory mechanism with implications in nearly all processes of the cell. However, a global understanding of possible regulatory mechanisms remains elusive. In this study, we examined the potential regulatory role of kinases, phosphatases and transcription-factors in yeast metabolism across a variety of steady-state and dynamic conditions. The main novelty of our analysis was to infer putative regulatory interactions from in silico estimated activity of transcription-factors and kinases/phosphatases. This provided functional information about the proteins important for the experimental conditions at hand that had not been uncovered before. We showed that activity profiles are predictive features to estimate metabolite changes in dynamic experiments, while the same was not visible in steady-state conditions. We also showed that dynamic experiments could be used to recapitulate and provide novel TFs-metabolite and K/Ps-metabolite regulatory associations. We believe these findings illustrates the usefulness of this approach for future integrative studies interested in studying metabolic regulation.
Collapse
Affiliation(s)
- Emanuel Gonçalves
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Zrinka Raguz Nakic
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Mattia Zampieri
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Omar Wagih
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - David Ochoa
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Uwe Sauer
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Pedro Beltrao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- * E-mail: (PB); (JSR)
| | - Julio Saez-Rodriguez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- RWTH Aachen University, Faculty of Medicine, Joint Research Center for Computational Biomedicine (JRC-COMBINE), Aachen
- * E-mail: (PB); (JSR)
| |
Collapse
|
4
|
Airoldi EM, Miller D, Athanasiadou R, Brandt N, Abdul-Rahman F, Neymotin B, Hashimoto T, Bahmani T, Gresham D. Steady-state and dynamic gene expression programs in Saccharomyces cerevisiae in response to variation in environmental nitrogen. Mol Biol Cell 2016; 27:1383-96. [PMID: 26941329 PMCID: PMC4831890 DOI: 10.1091/mbc.e14-05-1013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 02/23/2016] [Indexed: 11/16/2022] Open
Abstract
Steady-state and transiently perturbed nitrogen-limited chemostats show that nitrogen abundance is a primary signal controlling nitrogen-responsive gene expression. When cells experience an increase in nitrogen, some transcripts are rapidly degraded, suggesting that accelerated mRNA degradation contributes to remodeling of gene expression. Cell growth rate is regulated in response to the abundance and molecular form of essential nutrients. In Saccharomyces cerevisiae (budding yeast), the molecular form of environmental nitrogen is a major determinant of cell growth rate, supporting growth rates that vary at least threefold. Transcriptional control of nitrogen use is mediated in large part by nitrogen catabolite repression (NCR), which results in the repression of specific transcripts in the presence of a preferred nitrogen source that supports a fast growth rate, such as glutamine, that are otherwise expressed in the presence of a nonpreferred nitrogen source, such as proline, which supports a slower growth rate. Differential expression of the NCR regulon and additional nitrogen-responsive genes results in >500 transcripts that are differentially expressed in cells growing in the presence of different nitrogen sources in batch cultures. Here we find that in growth rate–controlled cultures using nitrogen-limited chemostats, gene expression programs are strikingly similar regardless of nitrogen source. NCR expression is derepressed in all nitrogen-limiting chemostat conditions regardless of nitrogen source, and in these conditions, only 34 transcripts exhibit nitrogen source–specific differential gene expression. Addition of either the preferred nitrogen source, glutamine, or the nonpreferred nitrogen source, proline, to cells growing in nitrogen-limited chemostats results in rapid, dose-dependent repression of the NCR regulon. Using a novel means of computational normalization to compare global gene expression programs in steady-state and dynamic conditions, we find evidence that the addition of nitrogen to nitrogen-limited cells results in the transient overproduction of transcripts required for protein translation. Simultaneously, we find that that accelerated mRNA degradation underlies the rapid clearing of a subset of transcripts, which is most pronounced for the highly expressed NCR-regulated permease genes GAP1, MEP2, DAL5, PUT4, and DIP5. Our results reveal novel aspects of nitrogen-regulated gene expression and highlight the need for a quantitative approach to study how the cell coordinates protein translation and nitrogen assimilation to optimize cell growth in different environments.
Collapse
Affiliation(s)
- Edoardo M Airoldi
- Department of Statistics, Harvard University, Cambridge, MA 02138 Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Darach Miller
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003
| | - Rodoniki Athanasiadou
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003
| | - Nathan Brandt
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003
| | - Farah Abdul-Rahman
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003
| | - Benjamin Neymotin
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003
| | - Tatsu Hashimoto
- Department of Statistics, Harvard University, Cambridge, MA 02138
| | - Tayebeh Bahmani
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003
| | - David Gresham
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003
| |
Collapse
|
5
|
Lichius A, Seidl-Seiboth V, Seiboth B, Kubicek CP. Nucleo-cytoplasmic shuttling dynamics of the transcriptional regulators XYR1 and CRE1 under conditions of cellulase and xylanase gene expression in Trichoderma reesei. Mol Microbiol 2014; 94:1162-1178. [PMID: 25302561 PMCID: PMC4282317 DOI: 10.1111/mmi.12824] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2014] [Indexed: 01/26/2023]
Abstract
Trichoderma reesei is a model for investigating the regulation of (hemi-)cellulase gene expression. Cellulases are formed adaptively, and the transcriptional activator XYR1 and the carbon catabolite repressor CRE1 are main regulators of their expression. We quantified the nucleo-cytoplasmic shuttling dynamics of GFP-fusion proteins of both transcription factors under cellulase and xylanase inducing conditions, and correlated their nuclear presence/absence with transcriptional changes. We also compared their subcellular localization in conidial germlings and mature hyphae. We show that cellulase gene expression requires de novo biosynthesis of XYR1 and its simultaneous nuclear import, whereas carbon catabolite repression is regulated through preformed CRE1 imported from the cytoplasmic pool. Termination of induction immediately stopped cellulase gene transcription and was accompanied by rapid nuclear degradation of XYR1. In contrast, nuclear CRE1 rapidly decreased upon glucose depletion, and became recycled into the cytoplasm. In mature hyphae, nuclei containing activated XYR1 were concentrated in the colony center, indicating that this is the main region of XYR1 synthesis and cellulase transcription. CRE1 was found to be evenly distributed throughout the entire mycelium. Taken together, our data revealed novel aspects of the dynamic shuttling and spatial bias of the major regulator of (hemi-)cellulase gene expression, XYR1, in T. reesei.
Collapse
Affiliation(s)
- Alexander Lichius
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of TechnologyVienna, Austria
| | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of TechnologyVienna, Austria
| | - Bernhard Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of TechnologyVienna, Austria
| | - Christian P Kubicek
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of TechnologyVienna, Austria
- Austrian Center of Industrial BiotechnologyGraz, Austria
| |
Collapse
|
6
|
Reactive oxygen species homeostasis and virulence of the fungal pathogen Cryptococcus neoformans requires an intact proline catabolism pathway. Genetics 2013; 194:421-33. [PMID: 23564202 DOI: 10.1534/genetics.113.150326] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Degradation of the multifunctional amino acid proline is associated with mitochondrial oxidative respiration. The two-step oxidation of proline is catalyzed by proline oxidase and Δ(1)-pyrroline-5-carboxylate (P5C) dehydrogenase, which produce P5C and glutamate, respectively. In animal and plant cells, impairment of P5C dehydrogenase activity results in P5C-proline cycling when exogenous proline is supplied via the actions of proline oxidase and P5C reductase (the enzyme that converts P5C to proline). This proline is oxidized by the proline oxidase-FAD complex that delivers electrons to the electron transport chain and to O2, leading to mitochondrial reactive oxygen species (ROS) overproduction. Coupled activity of proline oxidase and P5C dehydrogenase is therefore important for maintaining ROS homeostasis. In the genome of the fungal pathogen Cryptococcus neoformans, there are two paralogs (PUT1 and PUT5) that encode proline oxidases and a single ortholog (PUT2) that encodes P5C dehydrogenase. Transcription of all three catabolic genes is inducible by the presence of proline. However, through the creation of deletion mutants, only Put5 and Put2 were found to be required for proline utilization. The put2Δ mutant also generates excessive mitochondrial superoxide when exposed to proline. Intracellular accumulation of ROS is a critical feature of cell death; consistent with this fact, the put2Δ mutant exhibits a slight, general growth defect. Furthermore, Put2 is required for optimal production of the major cryptococcal virulence factors. During murine infection, the put2Δ mutant was discovered to be avirulent; this is the first report highlighting the importance of P5C dehydrogenase in enabling pathogenesis of a microorganism.
Collapse
|
7
|
Transcription factor binding to a DNA zip code controls interchromosomal clustering at the nuclear periphery. Dev Cell 2012; 22:1234-46. [PMID: 22579222 DOI: 10.1016/j.devcel.2012.03.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 02/17/2012] [Accepted: 03/27/2012] [Indexed: 11/21/2022]
Abstract
Active genes in yeast can be targeted to the nuclear periphery through interaction of cis-acting "DNA zip codes" with the nuclear pore complex. We find that genes with identical zip codes cluster together. This clustering was specific; pairs of genes that were targeted to the nuclear periphery by different zip codes did not cluster together. Insertion of two different zip codes (GRS I or GRS III) at an ectopic site induced clustering with endogenous genes that have that zip code. Targeting to the nuclear periphery and interaction with the nuclear pore is a prerequisite for gene clustering, but clustering can be maintained in the nucleoplasm. Finally, we find that the Put3 transcription factor recognizes the GRS I zip code to mediate both targeting to the NPC and interchromosomal clustering. These results suggest that zip-code-mediated clustering of genes at the nuclear periphery influences the three-dimensional arrangement of the yeast genome.
Collapse
|
8
|
Maicas S, Moreno I, Nieto A, Gómez M, Sentandreu R, Valentín E. In silico analysis for transcription factors with Zn(II)(2)C(6) binuclear cluster DNA-binding domains in Candida albicans. Comp Funct Genomics 2011; 6:345-56. [PMID: 18629206 PMCID: PMC2447501 DOI: 10.1002/cfg.492] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 05/26/2005] [Accepted: 09/05/2005] [Indexed: 11/09/2022] Open
Abstract
A total of 6047 open reading frames in the Candida albicans genome were screened for
Zn(II)2C6-type zinc cluster proteins (or binuclear cluster proteins) involved in DNA
recognition. These fungal proteins are transcription regulators of genes involved in a
wide range of cellular processes, including metabolism of different compounds such
as sugars or amino acids, as well as multi-drug resistance, control of meiosis, cell
wall architecture, etc. The selection criteria used in the sequence analysis were the
presence of the CysX2CysX6CysX5-16CysX2CysX6-8Cys motif and a putative nuclear localization signal. Using this approach, 70 putative
Zn(II)2C6 transcription factors have been found in the genome of C. albicans.
Collapse
Affiliation(s)
- Sergi Maicas
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Valencia 46100, Spain
| | | | | | | | | | | |
Collapse
|
9
|
van Dijk M, Bonvin AMJJ. Pushing the limits of what is achievable in protein-DNA docking: benchmarking HADDOCK's performance. Nucleic Acids Res 2010; 38:5634-47. [PMID: 20466807 PMCID: PMC2943626 DOI: 10.1093/nar/gkq222] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The intrinsic flexibility of DNA and the difficulty of identifying its interaction surface have long been challenges that prevented the development of efficient protein-DNA docking methods. We have demonstrated the ability our flexible data-driven docking method HADDOCK to deal with these before, by using custom-built DNA structural models. Here we put our method to the test on a set of 47 complexes from the protein-DNA docking benchmark. We show that HADDOCK is able to predict many of the specific DNA conformational changes required to assemble the interface(s). Our DNA analysis and modelling procedure captures the bend and twist motions occurring upon complex formation and uses these to generate custom-built DNA structural models, more closely resembling the bound form, for use in a second docking round. We achieve throughout the benchmark an overall success rate of 94% of one-star solutions or higher (interface root mean square deviation ≤4 A and fraction of native contacts >10%) according to CAPRI criteria. Our improved protocol successfully predicts even the challenging protein-DNA complexes in the benchmark. Finally, our method is the first to readily dock multiple molecules (N > 2) simultaneously, pushing the limits of what is currently achievable in the field of protein-DNA docking.
Collapse
Affiliation(s)
- Marc van Dijk
- Bijvoet Center for Biomolecular Research, Science Faculty, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
10
|
Leverentz MK, Campbell RN, Connolly Y, Whetton AD, Reece RJ. Mutation of a phosphorylatable residue in Put3p affects the magnitude of rapamycin-induced PUT1 activation in a Gat1p-dependent manner. J Biol Chem 2009; 284:24115-22. [PMID: 19574222 DOI: 10.1074/jbc.m109.030361] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Saccharomyces cerevisiae can utilize high quality (e.g. glutamine and ammonia) as well as low quality (e.g. gamma-amino butyric acid and proline) nitrogen sources. The transcriptional activator Put3p allows yeast cells to utilize proline as a nitrogen source through expression of the PUT1 and PUT2 genes. Put3p activates high level transcription of these genes by binding proline directly. However, Put3p also responds to other lower quality nitrogen sources. As nitrogen quality decreases, Put3p exhibits an increase in phosphorylation concurrent with an increase in PUT gene expression. The proline-independent activation of the PUT genes requires both Put3p and the positively acting GATA factors, Gln3p and Gat1p. Conversely, the phosphorylation of Put3p is not dependent on GATA factor activity. Here, we find that the mutation of Put3p at amino acid Tyr-788 modulates the proline-independent activation of PUT1 through Gat1p. The phosphorylation of Put3p appears to influence the association of Gat1p, but not Gln3p, to the PUT1 promoter. Combined, our findings suggest that this may represent a mechanism through which yeast cells rapidly adapt to use proline as a nitrogen source under nitrogen limiting conditions.
Collapse
Affiliation(s)
- Michael K Leverentz
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
The proline-dependent transcription factor Put3 regulates the expression of the riboflavin transporter MCH5 in Saccharomyces cerevisiae. Genetics 2008; 180:2007-17. [PMID: 18940788 DOI: 10.1534/genetics.108.094458] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Like most microorganisms, the yeast Saccharomyces cerevisiae is prototrophic for riboflavin (vitamin B2). Riboflavin auxotrophic mutants with deletions in any of the RIB genes frequently segregate colonies with improved growth. We demonstrate by reporter assays and Western blots that these suppressor mutants overexpress the plasma-membrane riboflavin transporter MCH5. Frequently, this overexpression is mediated by the transcription factor Put3, which also regulates the proline catabolic genes PUT1 and PUT2. The increased expression of MCH5 may increase the concentrations of FAD, which is the coenzyme required for the activity of proline oxidase, encoded by PUT1. Thus, Put3 regulates proline oxidase activity by synchronizing the biosynthesis of the apoenzyme and the coenzyme FAD. Put3 is known to bind to the promoters of PUT1 and PUT2 constitutively, and we demonstrate by gel-shift assays that it also binds to the promoter of MCH5. Put3-mediated transcriptional activation requires proline as an inducer. We find that the increased activity of Put3 in one of the suppressor mutants is caused by increased intracellular levels of proline. Alternative PUT3-dependent and -independent mechanisms might operate in other suppressed strains.
Collapse
|
12
|
Bernreiter A, Ramon A, Fernández-Martínez J, Berger H, Araújo-Bazan L, Espeso EA, Pachlinger R, Gallmetzer A, Anderl I, Scazzocchio C, Strauss J. Nuclear export of the transcription factor NirA is a regulatory checkpoint for nitrate induction in Aspergillus nidulans. Mol Cell Biol 2007; 27:791-802. [PMID: 17116695 PMCID: PMC1800680 DOI: 10.1128/mcb.00761-06] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 07/31/2006] [Accepted: 10/30/2006] [Indexed: 12/20/2022] Open
Abstract
NirA, the specific transcription factor of the nitrate assimilation pathway of Aspergillus nidulans, accumulates in the nucleus upon induction by nitrate. NirA interacts with the nuclear export factor KapK, which bridges an interaction with a protein of the nucleoporin-like family (NplA). Nitrate induction disrupts the NirA-KapK interaction in vivo, whereas KapK associates with NirA when this protein is exported from the nucleus. A KpaK leptomycin-sensitive mutation leads to inducer-independent NirA nuclear accumulation in the presence of the drug. However, this does not lead to constitutive expression of the genes controlled by NirA. A nirA(c)1 mutation leads to constitutive nuclear localization and activity, remodeling of chromatin, and in vivo binding to a NirA upstream activation sequence. The nirA(c)1 mutation maps in the nuclear export signal (NES) of the NirA protein. The NirA-KapK interaction is nearly abolished in NirA(c)1 and NirA proteins mutated in canonical leucine residues in the NirA NES. The latter do not result in constitutively active NirA protein, which implies that nuclear retention is necessary but not sufficient for NirA activity. The results are consistent with a model in which activation of NirA by nitrate disrupts the interaction of NirA with the NplA/KapK nuclear export complex, thus resulting in nuclear retention, leading to AreA-facilitated DNA binding of the NirA protein and subsequent chromatin remodeling and transcriptional activation.
Collapse
Affiliation(s)
- Andreas Bernreiter
- Fungal Genetics and Genomics Unit, Austrian Research Centers and BOKU Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
MacPherson S, Larochelle M, Turcotte B. A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol Biol Rev 2006; 70:583-604. [PMID: 16959962 PMCID: PMC1594591 DOI: 10.1128/mmbr.00015-06] [Citation(s) in RCA: 436] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The trace element zinc is required for proper functioning of a large number of proteins, including various enzymes. However, most zinc-containing proteins are transcription factors capable of binding DNA and are named zinc finger proteins. They form one of the largest families of transcriptional regulators and are categorized into various classes according to zinc-binding motifs. This review focuses on one class of zinc finger proteins called zinc cluster (or binuclear) proteins. Members of this family are exclusively fungal and possess the well-conserved motif CysX(2)CysX(6)CysX(5-12)CysX(2)CysX(6-8)Cys. The cysteine residues bind to two zinc atoms, which coordinate folding of the domain involved in DNA recognition. The first- and best-studied zinc cluster protein is Gal4p, a transcriptional activator of genes involved in the catabolism of galactose in the budding yeast Saccharomyces cerevisiae. Since the discovery of Gal4p, many other zinc cluster proteins have been characterized; they function in a wide range of processes, including primary and secondary metabolism and meiosis. Other roles include regulation of genes involved in the stress response as well as pleiotropic drug resistance, as demonstrated in budding yeast and in human fungal pathogens. With the number of characterized zinc cluster proteins growing rapidly, it is becoming more and more apparent that they are important regulators of fungal physiology.
Collapse
Affiliation(s)
- Sarah MacPherson
- Department of Microbiology and Immunology, Royal Victoria Hospital, McGill University, Montréal, Québec, Canada H3A 1A
| | | | | |
Collapse
|
14
|
Martens JA, Wu PYJ, Winston F. Regulation of an intergenic transcript controls adjacent gene transcription in Saccharomyces cerevisiae. Genes Dev 2005; 19:2695-704. [PMID: 16291644 PMCID: PMC1283962 DOI: 10.1101/gad.1367605] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent studies have revealed that transcription of noncoding, intergenic DNA is abundant among eukaryotes. However, the functions of this transcription are poorly understood. We have previously shown that in Saccharomyces cerevisiae, expression of an intergenic transcript, SRG1, represses the transcription of the adjacent gene, SER3, by transcription interference. We now show that SRG1 transcription is regulated by serine, thereby conferring regulation of SER3, a serine biosynthetic gene. This regulation requires Cha4, a serine-dependent activator that binds to the SRG1 promoter and is required for SRG1 induction in the presence of serine. Furthermore, two coactivator complexes, SAGA and Swi/Snf, are also directly required for activation of SRG1 and transcription interference of SER3. Taken together, our results elucidate a physiological role for intergenic transcription in the regulation of SER3. Moreover, our results demonstrate a mechanism by which intergenic transcription allows activators to act indirectly as repressors.
Collapse
Affiliation(s)
- Joseph A Martens
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
15
|
Siddharthan R, Siggia ED, van Nimwegen E. PhyloGibbs: a Gibbs sampling motif finder that incorporates phylogeny. PLoS Comput Biol 2005; 1:e67. [PMID: 16477324 PMCID: PMC1309704 DOI: 10.1371/journal.pcbi.0010067] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 10/28/2005] [Indexed: 12/27/2022] Open
Abstract
A central problem in the bioinformatics of gene regulation is to find the binding sites for regulatory proteins. One of the most promising approaches toward identifying these short and fuzzy sequence patterns is the comparative analysis of orthologous intergenic regions of related species. This analysis is complicated by various factors. First, one needs to take the phylogenetic relationship between the species into account in order to distinguish conservation that is due to the occurrence of functional sites from spurious conservation that is due to evolutionary proximity. Second, one has to deal with the complexities of multiple alignments of orthologous intergenic regions, and one has to consider the possibility that functional sites may occur outside of conserved segments. Here we present a new motif sampling algorithm, PhyloGibbs, that runs on arbitrary collections of multiple local sequence alignments of orthologous sequences. The algorithm searches over all ways in which an arbitrary number of binding sites for an arbitrary number of transcription factors (TFs) can be assigned to the multiple sequence alignments. These binding site configurations are scored by a Bayesian probabilistic model that treats aligned sequences by a model for the evolution of binding sites and "background" intergenic DNA. This model takes the phylogenetic relationship between the species in the alignment explicitly into account. The algorithm uses simulated annealing and Monte Carlo Markov-chain sampling to rigorously assign posterior probabilities to all the binding sites that it reports. In tests on synthetic data and real data from five Saccharomyces species our algorithm performs significantly better than four other motif-finding algorithms, including algorithms that also take phylogeny into account. Our results also show that, in contrast to the other algorithms, PhyloGibbs can make realistic estimates of the reliability of its predictions. Our tests suggest that, running on the five-species multiple alignment of a single gene's upstream region, PhyloGibbs on average recovers over 50% of all binding sites in S. cerevisiae at a specificity of about 50%, and 33% of all binding sites at a specificity of about 85%. We also tested PhyloGibbs on collections of multiple alignments of intergenic regions that were recently annotated, based on ChIP-on-chip data, to contain binding sites for the same TF. We compared PhyloGibbs's results with the previous analysis of these data using six other motif-finding algorithms. For 16 of 21 TFs for which all other motif-finding methods failed to find a significant motif, PhyloGibbs did recover a motif that matches the literature consensus. In 11 cases where there was disagreement in the results we compiled lists of known target genes from the literature, and found that running PhyloGibbs on their regulatory regions yielded a binding motif matching the literature consensus in all but one of the cases. Interestingly, these literature gene lists had little overlap with the targets annotated based on the ChIP-on-chip data. The PhyloGibbs code can be downloaded from http://www.biozentrum.unibas.ch/~nimwegen/cgi-bin/phylogibbs.cgi or http://www.imsc.res.in/~rsidd/phylogibbs. The full set of predicted sites from our tests on yeast are available at http://www.swissregulon.unibas.ch.
Collapse
Affiliation(s)
- Rahul Siddharthan
- Center for Studies in Physics and Biology, The Rockefeller University, New York, New York, United States of America
- Institute of Mathematical Sciences, Taramani, Chennai, India
| | - Eric D Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, New York, New York, United States of America
| | - Erik van Nimwegen
- Center for Studies in Physics and Biology, The Rockefeller University, New York, New York, United States of America
- Division of Bioinformatics, Biozentrum, University of Basel, Basel, Switzerland
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
16
|
Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J, Jennings EG, Zeitlinger J, Pokholok DK, Kellis M, Rolfe PA, Takusagawa KT, Lander ES, Gifford DK, Fraenkel E, Young RA. Transcriptional regulatory code of a eukaryotic genome. Nature 2004; 431:99-104. [PMID: 15343339 PMCID: PMC3006441 DOI: 10.1038/nature02800] [Citation(s) in RCA: 1575] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Accepted: 07/01/2004] [Indexed: 11/09/2022]
Abstract
DNA-binding transcriptional regulators interpret the genome's regulatory code by binding to specific sequences to induce or repress gene expression. Comparative genomics has recently been used to identify potential cis-regulatory sequences within the yeast genome on the basis of phylogenetic conservation, but this information alone does not reveal if or when transcriptional regulators occupy these binding sites. We have constructed an initial map of yeast's transcriptional regulatory code by identifying the sequence elements that are bound by regulators under various conditions and that are conserved among Saccharomyces species. The organization of regulatory elements in promoters and the environment-dependent use of these elements by regulators are discussed. We find that environment-specific use of regulatory elements predicts mechanistic models for the function of a large population of yeast's transcriptional regulators.
Collapse
Affiliation(s)
- Christopher T Harbison
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sellick CA, Reece RJ. Modulation of transcription factor function by an amino acid: activation of Put3p by proline. EMBO J 2003; 22:5147-53. [PMID: 14517252 PMCID: PMC204464 DOI: 10.1093/emboj/cdg480] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Saccharomyces cerevisiae are able to convert proline to glutamate so that it may be used as a source of nitrogen. Here, we show that the activator of the proline utilization genes, Put3p, is transcriptionally inert in the absence of proline but transcriptionally active in its presence. The activation of Put3p requires no additional yeast proteins and can occur in the presence of certain proline analogues: an unmodified pyrrolidine ring is able to activate Put3p as efficiently as proline itself. In addition, we show that a direct interaction occurs between Put3p and proline. These data, which represent direct control of transcriptional activator function by a metabolite, are discussed in terms of the regulation of proline-specific genes in yeast and as a general mechanism of the control of transcription.
Collapse
Affiliation(s)
- Christopher A Sellick
- School of Biological Sciences, The University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
18
|
Saxena D, Kannan KB, Brandriss MC. Rapamycin treatment results in GATA factor-independent hyperphosphorylation of the proline utilization pathway activator in Saccharomyces cerevisiae. EUKARYOTIC CELL 2003; 2:552-9. [PMID: 12796300 PMCID: PMC161436 DOI: 10.1128/ec.2.3.552-559.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Treatment of Saccharomyces cerevisiae cells with the immunosuppressive drug rapamycin results in a variety of cellular changes in response to perceived nutrient deprivation. Among other effects, rapamycin treatment results in the nuclear localization of the global nitrogen activators Gln3p and Nil1p/Gat1p, which leads to expression of nitrogen assimilation genes. The proline utilization (Put) pathway genes were shown to be among the genes induced by rapamycin. Having previously shown that the Put pathway activator Put3p is differentially phosphorylated in response to the quality of the nitrogen source, we examined the phosphorylation status of Put3p after rapamycin treatment. Treatment with rapamycin resulted in the hyperphosphorylation of Put3p, which was independent of Gln3p, Nil1p, and Ure2p. The relative contributions of global nitrogen (Gln3p and Nil1p) and pathway-specific (Put3p) activators to rapamycin-induced expression of the target gene PUT1 were also examined. We found that Nil1p and Put3p, but not Gln3p, play major roles in rapamycin-induced PUT1 expression. Our findings show that perceived nitrogen deprivation triggered by rapamycin treatment and steady-state growth in nitrogen-derepressing conditions are associated with hyperphosphorylation of Put3p and increased PUT1 expression. Rapamycin treatment and nitrogen derepression may share some, but not all, regulatory elements, since Gln3p and Nil1p do not participate identically in both processes and are not required for hyperphosphorylation. A complex relationship exists among the global and pathway-specific regulators, depending on the nature and quality of the nitrogen source.
Collapse
Affiliation(s)
- Deepti Saxena
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, Newark 07101-1709, USA
| | | | | |
Collapse
|
19
|
Idicula AM, Blatch GL, Cooper TG, Dorrington RA. Binding and activation by the zinc cluster transcription factors of Saccharomyces cerevisiae. Redefining the UASGABA and its interaction with Uga3p. J Biol Chem 2002; 277:45977-83. [PMID: 12235130 PMCID: PMC4384467 DOI: 10.1074/jbc.m201789200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Uga3p, a member of zinc binuclear cluster transcription factor family, is required for gamma-aminobutyric acid-dependent transcription of the UGA genes in Saccharomyces cerevisiae. Members of this family bind to CGG triplets with the spacer region between the triplets being an important specificity determinant. A conserved 19-nucleotide activation element in certain UGA gene promoter regions contains a CCGN(4)CGG-everted repeat proposed to be the binding site of Uga3p, UAS(GABA). The function of conserved nucleotides flanking the everted repeat has not been rigorously investigated. The interaction of Uga3p with UAS(GABA) was characterized in terms of binding in vitro and transcriptional activation of lacZ reporter genes in vivo. Electromobility shift assays using mutant UAS(GABA) sequences and heterologously produced full-length Uga3p demonstrated that UAS(GABA) consists of two independent Uga3p binding sites. Simultaneous occupation of both Uga3p binding sites of UAS(GABA) with high affinity is essential for GABA-dependent transcriptional activation in vivo. We present evidence that the two Uga3p molecules bound to UAS(GABA) probably interact with each other and show that Uga3p((1-124)), previously used for binding studies, is not functionally equivalent to the full-length protein with respect to binding in vitro. We propose that the Uga3p binding site is an asymmetric site of 5'-SGCGGNWTTT-3' (S = G or C, W = A, or T and n = no nucleotide or G). However, UAS(GABA), is a palindrome containing two asymmetric Uga3p binding sites.
Collapse
Affiliation(s)
| | | | - Terrance G. Cooper
- Department of Molecular Sciences, University Of Tennessee, Memphis, Tennessee 38163
| | | |
Collapse
|
20
|
D'Alessio M, Brandriss MC. Cross-pathway regulation in Saccharomyces cerevisiae: activation of the proline utilization pathway by Ga14p in vivo. J Bacteriol 2000; 182:3748-53. [PMID: 10850990 PMCID: PMC94546 DOI: 10.1128/jb.182.13.3748-3753.2000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Put3p and Gal4p transcriptional activators are members of a distinct class of fungal regulators called the Cys(6) Zn(II)(2) binuclear cluster family. This family includes over 50 different Saccharomyces cerevisiae proteins that share a similar domain organization. Gal4p activates the genes of the galactose utilization pathway permitting the use of galactose as the sole source of carbon and energy. Put3p controls the expression of the proline utilization pathway that allows yeast cells to grow on proline as the sole nitrogen source. We report that Gal4p can activate the PUT structural genes in a strain lacking Put3p. We also show that the activation of PUT2 by Gal4p depends on the presence of the inducer galactose and the Put3p binding site and that activation increases with increased dosage of Gal4p. Put3p cannot activate the GAL genes in the absence of Gal4p. Our in vivo results confirm previously published in vitro data showing that Gal4p is more promiscuous than Put3p in its DNA binding ability. The results also suggest that under appropriate circumstances, Gal4p may be able to function in place of a related family member to activate expression.
Collapse
Affiliation(s)
- M D'Alessio
- Department of Microbiology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School and Graduate School of Biomedical Sciences, Newark, New Jersey 07103, USA
| | | |
Collapse
|
21
|
Huang HL, Brandriss MC. The regulator of the yeast proline utilization pathway is differentially phosphorylated in response to the quality of the nitrogen source. Mol Cell Biol 2000; 20:892-9. [PMID: 10629046 PMCID: PMC85206 DOI: 10.1128/mcb.20.3.892-899.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The proline utilization pathway in Saccharomyces cerevisiae is regulated by the Put3p transcriptional activator in response to the presence of the inducer proline and the quality of the nitrogen source in the growth medium. Put3p is constitutively bound to the promoters of its target genes, PUT1 and PUT2, under all conditions studied but activates transcription to the maximum extent only in the absence of rich nitrogen sources and in the presence of proline (i.e., when proline serves as the sole source of nitrogen). Changes in target gene expression therefore occur through changes in the activity of the DNA-bound regulator. In this report, we demonstrate by phosphatase treatment of immunoprecipitates of extracts metabolically labeled with (32)P or (35)S that Put3p is a phosphoprotein. Examination of Put3p isolated from cells grown on a variety of nitrogen sources showed that it was differentially phosphorylated as a function of the quality of the nitrogen source: the poorer the nitrogen source, the slower the gel migration of the phosphoforms. The presence of the inducer does not detectably alter the phosphorylation profile. Activator-defective and activator-constitutive Put3p mutants have been analyzed. One activator-defective mutant appears to be phosphorylated in a pattern similar to that of the wild type, thus separating its ability to be phosphorylated from its ability to activate transcription. Three activator-constitutive mutant proteins from cells grown on an ammonia-containing medium have a phosphorylation profile similar to that of the wild-type protein in cells grown on proline. These results demonstrate a correlation between the phosphorylation status of Put3p and its ability to activate its target genes and suggest that there are two signals, proline induction and quality of nitrogen source, impinging on Put3p that act synergistically for maximum expression of the proline utilization pathway.
Collapse
Affiliation(s)
- H L Huang
- Department of Microbiology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | |
Collapse
|
22
|
Abstract
In Saccharomyces cerevisiae the expression of all known nitrogen catabolite pathways are regulated by four regulators known as Gln3, Gat1, Dal80, and Deh1. This is known as nitrogen catabolite repression (NCR). They bind to motifs in the promoter region to the consensus sequence 5'GATAA 3'. Gln3 and Gat1 act positively on gene expression whereas Dal80 and Deh1 act negatively. Expression of nitrogen catabolite pathway genes known to be regulated by these four regulators are glutamine, glutamate, proline, urea, arginine. GABA, and allantonie. In addition, the expression of the genes encoding the general amino acid permease and the ammonium permease are also regulated by these four regulatory proteins. Another group of genes whose expression is also regulated by Gln3, Gat1, Dal80, and Deh1 are some proteases, CPS1, PRB1, LAP1, and PEP4, responsible for the degradation of proteins into amino acids thereby providing a nitrogen source to the cell. In this review, all known promoter sequences related to expression of nitrogen catabolite pathways are discussed as well as other regulatory proteins. Overview of metabolic pathways and promotors are presented.
Collapse
Affiliation(s)
- J Hofman-Bang
- Department of Biotechnology, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
23
|
Abstract
In the fungi, nitrogen metabolism is controlled by a complex genetic regulatory circuit which ensures the preferential use of primary nitrogen sources and also confers the ability to use many different secondary nitrogen sources when appropriate. Most structural genes encoding nitrogen catabolic enzymes are subject to nitrogen catabolite repression, mediated by positive-acting transcription factors of the GATA family of proteins. However, certain GATA family members, such as the yeast DAL80 factor, act negatively to repress gene expression. Selective expression of the genes which encode enzymes for the metabolism of secondary nitrogen sources is often achieved by induction, mediated by pathway-specific factors, many of which have a GAL4-like C6/Zn2 DNA binding domain. Regulation within the nitrogen circuit also involves specific protein-protein interactions, as exemplified by the specific binding of the negative-acting NMR protein with the positive-acting NIT2 protein of Neurospora crassa. Nitrogen metabolic regulation appears to play a significant role in the pathogenicity of certain animal and plant fungal pathogens.
Collapse
Affiliation(s)
- G A Marzluf
- Department of Biochemistry, Ohio State University, Columbus 43210, USA.
| |
Collapse
|
24
|
Cunningham TS, Svetlov VV, Rai R, Smart W, Cooper TG. G1n3p is capable of binding to UAS(NTR) elements and activating transcription in Saccharomyces cerevisiae. J Bacteriol 1996; 178:3470-9. [PMID: 8655543 PMCID: PMC178115 DOI: 10.1128/jb.178.12.3470-3479.1996] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
When readily used nitrogen sources are available, the expression of genes encoding proteins needed to transport and metabolize poorly used nitrogen sources is repressed to low levels; this physiological response has been designated nitrogen catabolite repression (NCR). The cis-acting upstream activation sequence (UAS) element UAS(NTR) mediates Gln3p-dependent, NCR-sensitive transcription and consists of two separated dodecanucleotides, each containing the core sequence GATAA. Gln3p, produced in Escherichia coli and hence free of all other yeast proteins, specifically binds to wild-type UAS(NTR) sequences and DNA fragments derived from a variety of NCR-sensitive promoters (GDH2, CAR11 DAL3, PUT1, UGA4, and GLN1). A LexA-Gln3 fusion protein supported transcriptional activation when bound to one or more LexAp binding sites upstream of a minimal CYC1-derived promoter devoid of UAS elements. LexAp-Gln3p activation of transcription was largely independent of the nitrogen source used for growth. These data argue that Gln3p is capable of direct UAS(NTR) binding and participates in transcriptional activation of NCR-sensitive genes.
Collapse
Affiliation(s)
- T S Cunningham
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163, USA
| | | | | | | | | |
Collapse
|
25
|
Gray WM, Fassler JS. Isolation and analysis of the yeast TEA1 gene, which encodes a zinc cluster Ty enhancer-binding protein. Mol Cell Biol 1996; 16:347-58. [PMID: 8524314 PMCID: PMC231009 DOI: 10.1128/mcb.16.1.347] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A genetic screen for mutants that affect the activity of internal regulatory sequences of Ty retrotransposons led to the identification of a new gene encoding a DNA-binding protein that interacts with the downstream enhancer-like region of Ty1 elements. The TEA1 (Ty enhancer activator) gene sequence predicts a protein of 86.9 kDa whose N terminus contains a zinc cluster and dimerization motif typical of the Gal4-type family of DNA-binding proteins. The C terminus encodes an acidic domain with a net negative charge of -10 and the ability to mediate transcriptional activation. Like other zinc cluster proteins, purified Tea1 was found to bind to a partially palindromic CGGNxCCG repeat motif located in the Ty1 enhancer region. The Ty1 Tea1 binding site has a spacing of 10 and is located near binding sites for the DNA-binding proteins Rap1 and Mcm1. Analysis of the phenotype of tea1 deletion mutants confirmed that the TEA1 gene is required for activation from the internal Ty1 enhancer characterized in this study and makes a modest contribution to normal Ty1 levels in the cell. Hence, Tea1, like Rap1, is a member of a small family of downstream activators in Saccharomyces cerevisiae. Further analysis of the Tea1 protein and its interactions may provide insight into the mechanism of downstream activation in yeast cells.
Collapse
Affiliation(s)
- W M Gray
- Department of Biological Sciences, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
26
|
Kirkpatrick CR, Schimmel P. Detection of leucine-independent DNA site occupancy of the yeast Leu3p transcriptional activator in vivo. Mol Cell Biol 1995; 15:4021-30. [PMID: 7623798 PMCID: PMC230641 DOI: 10.1128/mcb.15.8.4021] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The product of the Saccharomyces cerevisiae LEU3 gene, Leu3p, is a transcriptional activator which regulates leucine biosynthesis in response to intracellular levels of leucine through the biosynthetic intermediate alpha-isopropylmalate. We devised a novel assay to examine the DNA site occupancy of Leu3p under different growth conditions, using a reporter gene with internal Leu3p-binding sites. Expression of the reporter is inhibited by binding of nuclear Leu3p to these sites; inhibition is dependent on the presence of the sites in the reporter, on the integrity of the Leu3p DNA-binding domain, and, surprisingly, on the presence of a transcriptional activation domain in the inhibiting protein. By this assay, Leu3p was found to occupy its binding site under all conditions tested, including high and low levels of leucine and in the presence and absence of alpha-isopropylmalate. The localization of Leu3p to the nucleus was confirmed by immunofluorescence staining of cells expressing epitope-tagged Leu3p derivatives. We conclude that Leu3p regulates transcription in vivo without changing its intracellular localization and DNA site occupancy.
Collapse
Affiliation(s)
- C R Kirkpatrick
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
27
|
Xu S, Falvey DA, Brandriss MC. Roles of URE2 and GLN3 in the proline utilization pathway in Saccharomyces cerevisiae. Mol Cell Biol 1995; 15:2321-30. [PMID: 7891726 PMCID: PMC230460 DOI: 10.1128/mcb.15.4.2321] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The yeast Saccharomyces cerevisiae can use alternative nitrogen sources such as arginine, urea, allantoin, gamma-aminobutyrate, or proline when preferred nitrogen sources like glutamine, asparagine, or ammonium ions are unavailable in the environment. Utilization of alternative nitrogen sources requires the relief of nitrogen repression and induction of specific permeases and enzymes. The products of the GLN3 and URE2 genes are required for the appropriate transcription of many genes in alternative nitrogen assimilatory pathways. GLN3 appears to activate their transcription when good nitrogen sources are unavailable, and URE2 appears to repress their transcription when alternative nitrogen sources are not needed. The participation of nitrogen repression and the regulators GLN3 and URE2 in the proline utilization pathway was evaluated in this study. Comparison of PUT gene expression in cells grown in repressing or derepressing nitrogen sources, in the absence of the inducer proline, indicated that both PUT1 and PUT2 are regulated by nitrogen repression, although the effect on PUT2 is comparatively small. Recessive mutations in URE2 elevated expression of the PUT1 and PUT2 genes 5- to 10-fold when cells were grown on a nitrogen-repressing medium. Although PUT3, the proline utilization pathway transcriptional activator, is absolutely required for growth on proline as the sole nitrogen source, a put3 ure2 strain had somewhat elevated PUT gene expression, suggesting an effect of the ure2 mutation in the absence of the PUT3 product. PUT1 and PUT2 gene expression did not require the GLN3 activator protein for expression under either repressing or derepressing conditions. Therefore, regulation of the PUT genes by URE2 does not require a functional GLN3 protein. The effect of the ure2 mutation on the PUT genes is not due to increased internal proline levels. URE2 repression appears to be limited to nitrogen assimilatory systems and does not affect genes involved in carbon, inositol, or phosphate metabolism or in mating-type control and sporulation.
Collapse
Affiliation(s)
- S Xu
- Department of Microbiology and Molecular Genetics, UMD-New Jersey Medical School, Newark 07103
| | | | | |
Collapse
|
28
|
Two upstream activation sequences control the expression of the XPR2 gene in the yeast Yarrowia lipolytica. Mol Cell Biol 1994. [PMID: 8264600 DOI: 10.1128/mcb.14.1.327] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have initiated a study of the promoter region of the alkaline extracellular protease gene (XPR2) from Yarrowia lipolytica to identify upstream sequences possibly involved in carbon, nitrogen, and peptone control of XPR2 expression. Deletion analysis showed that the TATA box and two major upstream activation sequences (UASs) were essential for promoter activity under conditions of repression or full induction. Within the distal UAS (UAS1), in vivo footprinting studies with dimethyl sulfate (DMS) identified two sequences similar to Saccharomyces cerevisiae GCN4 (-800 to -792)- and TUF/RAP1 (-790 to -778)-binding sites and two sequences which partially overlap a repeated sequence (-778 to -771 and -720 to -713) similar to the CAR1 upstream repression sequence of S. cerevisiae. Oligonucleotides carrying the TUF/RAP1-like-binding site and adjacent downstream nucleotides restored full transcriptional activity of a UAS1-deleted promoter. Within the proximal UAS (UAS2), a directly repeated decameric sequence (-146 to -137 and -136 to -127) was protected against DMS in vivo. Sequences identical to the ABF1-binding site of S. cerevisiae (-121 to -109) or similar to the GCN4-binding site (-113 to -105) were not clearly protected from DMS in vivo. An oligomer (-150 to -106) carrying these three sequences, inserted into a UAS2-deleted promoter, increased the transcriptional activity. The results from footprints under different physiological conditions suggested that protein binding to both UASs was constitutive. Deletion of both UASs greatly reduced XPR2 expression without abolishing its regulation. Our results strongly suggest that these UASs are targets for transcriptional factors required for assisting specific regulatory proteins.
Collapse
|
29
|
Blanchin-Roland S, Cordero Otero RR, Gaillardin C. Two upstream activation sequences control the expression of the XPR2 gene in the yeast Yarrowia lipolytica. Mol Cell Biol 1994; 14:327-38. [PMID: 8264600 PMCID: PMC358382 DOI: 10.1128/mcb.14.1.327-338.1994] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have initiated a study of the promoter region of the alkaline extracellular protease gene (XPR2) from Yarrowia lipolytica to identify upstream sequences possibly involved in carbon, nitrogen, and peptone control of XPR2 expression. Deletion analysis showed that the TATA box and two major upstream activation sequences (UASs) were essential for promoter activity under conditions of repression or full induction. Within the distal UAS (UAS1), in vivo footprinting studies with dimethyl sulfate (DMS) identified two sequences similar to Saccharomyces cerevisiae GCN4 (-800 to -792)- and TUF/RAP1 (-790 to -778)-binding sites and two sequences which partially overlap a repeated sequence (-778 to -771 and -720 to -713) similar to the CAR1 upstream repression sequence of S. cerevisiae. Oligonucleotides carrying the TUF/RAP1-like-binding site and adjacent downstream nucleotides restored full transcriptional activity of a UAS1-deleted promoter. Within the proximal UAS (UAS2), a directly repeated decameric sequence (-146 to -137 and -136 to -127) was protected against DMS in vivo. Sequences identical to the ABF1-binding site of S. cerevisiae (-121 to -109) or similar to the GCN4-binding site (-113 to -105) were not clearly protected from DMS in vivo. An oligomer (-150 to -106) carrying these three sequences, inserted into a UAS2-deleted promoter, increased the transcriptional activity. The results from footprints under different physiological conditions suggested that protein binding to both UASs was constitutive. Deletion of both UASs greatly reduced XPR2 expression without abolishing its regulation. Our results strongly suggest that these UASs are targets for transcriptional factors required for assisting specific regulatory proteins.
Collapse
Affiliation(s)
- S Blanchin-Roland
- Laboratoire de Génétique Moléculaire et Cellulaire INRA-CNRS, Institut National Agronomique, Thiverval-Grignon, France
| | | | | |
Collapse
|
30
|
Analysis of constitutive and noninducible mutations of the PUT3 transcriptional activator. Mol Cell Biol 1991. [PMID: 2017167 DOI: 10.1128/mcb.11.5.2609] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae PUT3 gene encodes a transcriptional activator that binds to DNA sequences in the promoters of the proline utilization genes and is required for the basal and induced expression of the enzymes of this pathway. The sequence of the wild-type PUT3 gene revealed the presence of one large open reading frame capable of encoding a 979-amino-acid protein. The protein contains amino-terminal basic and cysteine-rich domains homologous to the DNA-binding motifs of other yeast transcriptional activators. Adjacent to these domains is an acidic domain with a net charge of -17. A second acidic domain with a net charge of -29 is located at the carboxy terminus. The midsection of the PUT3 protein has homology to other activators including GAL4, LAC9, PPR1, and PDR1. Mutations in PUT3 causing aberrant (either constitutive or noninducible) expression of target genes in this system have been analyzed. One activator-defective and seven activator-constitutive PUT3 alleles have been retrieved from the genome and sequenced to determine the nucleotide changes responsible for the altered function of the protein. The activator-defective mutation is a single nucleotide change within codon 409, replacing glycine with aspartic acid. One activator-constitutive mutation is a nucleotide change at codon 683, substituting phenylalanine for serine. The remaining constitutive mutations resulted in amino acid substitutions or truncations of the protein within the carboxy-terminal 76 codons. Mechanisms for regulating the activation function of the PUT3 protein are discussed.
Collapse
|
31
|
Marczak JE, Brandriss MC. Analysis of constitutive and noninducible mutations of the PUT3 transcriptional activator. Mol Cell Biol 1991; 11:2609-19. [PMID: 2017167 PMCID: PMC360030 DOI: 10.1128/mcb.11.5.2609-2619.1991] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Saccharomyces cerevisiae PUT3 gene encodes a transcriptional activator that binds to DNA sequences in the promoters of the proline utilization genes and is required for the basal and induced expression of the enzymes of this pathway. The sequence of the wild-type PUT3 gene revealed the presence of one large open reading frame capable of encoding a 979-amino-acid protein. The protein contains amino-terminal basic and cysteine-rich domains homologous to the DNA-binding motifs of other yeast transcriptional activators. Adjacent to these domains is an acidic domain with a net charge of -17. A second acidic domain with a net charge of -29 is located at the carboxy terminus. The midsection of the PUT3 protein has homology to other activators including GAL4, LAC9, PPR1, and PDR1. Mutations in PUT3 causing aberrant (either constitutive or noninducible) expression of target genes in this system have been analyzed. One activator-defective and seven activator-constitutive PUT3 alleles have been retrieved from the genome and sequenced to determine the nucleotide changes responsible for the altered function of the protein. The activator-defective mutation is a single nucleotide change within codon 409, replacing glycine with aspartic acid. One activator-constitutive mutation is a nucleotide change at codon 683, substituting phenylalanine for serine. The remaining constitutive mutations resulted in amino acid substitutions or truncations of the protein within the carboxy-terminal 76 codons. Mechanisms for regulating the activation function of the PUT3 protein are discussed.
Collapse
Affiliation(s)
- J E Marczak
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey-Graduate School of Biomedical Sciences, Newark 07103
| | | |
Collapse
|