1
|
The hunt for RNA polymerase II elongation factors: a historical perspective. Nat Struct Mol Biol 2019; 26:771-776. [PMID: 31439940 DOI: 10.1038/s41594-019-0283-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
Abstract
The discovery of the three eukaryotic nuclear RNA polymerases paved the way for serious biochemical investigations of eukaryotic transcription and the identification of eukaryotic transcription factors. Here we describe this adventure from our vantage point, with a focus on the hunt for factors that regulate elongation by RNA polymerase II.
Collapse
|
2
|
Resto M, Kim BH, Fernandez AG, Abraham BJ, Zhao K, Lewis BA. O-GlcNAcase Is an RNA Polymerase II Elongation Factor Coupled to Pausing Factors SPT5 and TIF1β. J Biol Chem 2016; 291:22703-22713. [PMID: 27601472 DOI: 10.1074/jbc.m116.751420] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/29/2016] [Indexed: 12/24/2022] Open
Abstract
We describe here the identification and functional characterization of the enzyme O-GlcNAcase (OGA) as an RNA polymerase II elongation factor. Using in vitro transcription elongation assays, we show that OGA activity is required for elongation in a crude nuclear extract system, whereas in a purified system devoid of OGA the addition of rOGA inhibited elongation. Furthermore, OGA is physically associated with the known RNA polymerase II (pol II) pausing/elongation factors SPT5 and TRIM28-KAP1-TIF1β, and a purified OGA-SPT5-TIF1β complex has elongation properties. Lastly, ChIP-seq experiments show that OGA maps to the transcriptional start site/5' ends of genes, showing considerable overlap with RNA pol II, SPT5, TRIM28-KAP1-TIF1β, and O-GlcNAc itself. These data all point to OGA as a component of the RNA pol II elongation machinery regulating elongation genome-wide. Our results add a novel and unexpected dimension to the regulation of elongation by the insertion of O-GlcNAc cycling into the pol II elongation regulatory dynamics.
Collapse
Affiliation(s)
- Melissa Resto
- From the Transcriptional Regulation and Biochemistry Unit, Metabolism Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 30893
| | - Bong-Hyun Kim
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Alfonso G Fernandez
- From the Transcriptional Regulation and Biochemistry Unit, Metabolism Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 30893
| | - Brian J Abraham
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, and.,Laboratory of Epigenome Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Keji Zhao
- Laboratory of Epigenome Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Brian A Lewis
- From the Transcriptional Regulation and Biochemistry Unit, Metabolism Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 30893,
| |
Collapse
|
3
|
Liao JM, Cao B, Deng J, Zhou X, Strong M, Zeng S, Xiong J, Flemington E, Lu H. TFIIS.h, a new target of p53, regulates transcription efficiency of pro-apoptotic bax gene. Sci Rep 2016; 6:23542. [PMID: 27005522 PMCID: PMC4804275 DOI: 10.1038/srep23542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/03/2016] [Indexed: 11/09/2022] Open
Abstract
Tumor suppressor p53 transcriptionally regulates hundreds of genes involved in various cellular functions. However, the detailed mechanisms underlying the selection of p53 targets in response to different stresses are still elusive. Here, we identify TFIIS.h, a transcription elongation factor, as a new transcriptional target of p53, and also show that it can enhance the efficiency of transcription elongation of apoptosis-associated bax gene, but not cell cycle-associated p21 (CDKN1A) gene. TFIIS.h is revealed as a p53 target through microarray analysis of RNAs extracted from cells treated with or without inauhzin (INZ), a p53 activator, and further confirmed by RT-q-PCR, western blot, luciferase reporter, and ChIP assays. Interestingly, knocking down TFIIS.h impairs, but overexpressing TFIIS.h promotes, induction of bax, but not other p53 targets including p21, by p53 activation. In addition, overexpression of TFIIS.h induces cell death in a bax- dependent fashion. These findings reveal a mechanism by which p53 utilizes TFIIS.h to selectively promote the transcriptional elongation of the bax gene, upsurging cell death in response to severe DNA damage.
Collapse
Affiliation(s)
- Jun-Ming Liao
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Bo Cao
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Jun Deng
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA.,Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Xiang Zhou
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Michael Strong
- Department of Pathology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Shelya Zeng
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Erik Flemington
- Department of Pathology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| |
Collapse
|
4
|
Puri D, Gala H, Mishra R, Dhawan J. High-wire act: the poised genome and cellular memory. FEBS J 2014; 282:1675-91. [PMID: 25440020 DOI: 10.1111/febs.13165] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/22/2014] [Accepted: 11/27/2014] [Indexed: 12/12/2022]
Abstract
Emerging evidence aided by genome-wide analysis of chromatin and transcriptional states has shed light on the mechanisms by which stem cells achieve cellular memory. The epigenetic and transcriptional plasticity governing stem cell behavior is highlighted by the identification of 'poised' genes, which permit cells to maintain readiness to undertake alternate developmental fates. This review focuses on two crucial mechanisms of gene poising: bivalent chromatin marks and RNA polymerase II stalling. We provide the context for these mechanisms by exploring the current consensus on the regulation of chromatin states, especially in quiescent adult stem cells, where poised genes are critical for recapitulating developmental choices, leading to regenerative function.
Collapse
Affiliation(s)
- Deepika Puri
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | | |
Collapse
|
5
|
Abstract
Elongation is becoming increasingly recognized as a critical step in eukaryotic transcriptional regulation. Although traditional genetic and biochemical studies have identified major players of transcriptional elongation, our understanding of the importance and roles of these factors is evolving rapidly through the recent advances in genome-wide and single-molecule technologies. Here, we focus on how elongation can modulate the transcriptional outcome through the rate-liming step of RNA polymerase II (Pol II) pausing near promoters and how the participating factors were identified. Among the factors we describe are the pausing factors--NELF (negative elongation factor) and DSIF (DRB sensitivity-inducing factor)--and P-TEFb (positive elongation factor b), which is the key player in pause release. We also describe the high-resolution view of Pol II pausing and propose nonexclusive models for how pausing is achieved. We then discuss Pol II elongation through the bodies of genes and the roles of FACT and SPT6, factors that allow Pol II to move through nucleosomes.
Collapse
Affiliation(s)
- Hojoong Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703; ,
| | | |
Collapse
|
6
|
Sigurdsson S, Dirac-Svejstrup AB, Svejstrup JQ. Evidence that transcript cleavage is essential for RNA polymerase II transcription and cell viability. Mol Cell 2010; 38:202-10. [PMID: 20417599 PMCID: PMC2994637 DOI: 10.1016/j.molcel.2010.02.026] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 01/28/2010] [Accepted: 02/12/2010] [Indexed: 11/29/2022]
Abstract
During transcript elongation in vitro, backtracking of RNA polymerase II (RNAPII) is a frequent occurrence that can lead to transcriptional arrest. The polymerase active site can cleave the transcript during such backtracking, allowing transcription to resume. Transcript cleavage is either stimulated by elongation factor TFIIS or occurs much more slowly in its absence. However, whether backtracking actually occurs in vivo, and whether transcript cleavage is important to escape it, has been unclear. Using a yeast TFIIS mutant that lacks transcript cleavage stimulatory activity and simultaneously inhibits unstimulated cleavage, we now provide evidence that escape from backtracking via transcript cleavage is essential for cell viability and efficient transcript elongation. Our results suggest that transcription problems leading to backtracking are frequent in vivo and that reactivation of backtracked RNAPII is crucial for transcription.
Collapse
Affiliation(s)
- Stefan Sigurdsson
- Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms EN6 3LD, UK
| | - A. Barbara Dirac-Svejstrup
- Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms EN6 3LD, UK
| | - Jesper Q. Svejstrup
- Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms EN6 3LD, UK
| |
Collapse
|
7
|
Chen ZA, Jawhari A, Fischer L, Buchen C, Tahir S, Kamenski T, Rasmussen M, Lariviere L, Bukowski-Wills JC, Nilges M, Cramer P, Rappsilber J. Architecture of the RNA polymerase II-TFIIF complex revealed by cross-linking and mass spectrometry. EMBO J 2010; 29:717-26. [PMID: 20094031 PMCID: PMC2810376 DOI: 10.1038/emboj.2009.401] [Citation(s) in RCA: 316] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 12/10/2009] [Indexed: 11/09/2022] Open
Abstract
Higher-order multi-protein complexes such as RNA polymerase II (Pol II) complexes with transcription initiation factors are often not amenable to X-ray structure determination. Here, we show that protein cross-linking coupled to mass spectrometry (MS) has now sufficiently advanced as a tool to extend the Pol II structure to a 15-subunit, 670 kDa complex of Pol II with the initiation factor TFIIF at peptide resolution. The N-terminal regions of TFIIF subunits Tfg1 and Tfg2 form a dimerization domain that binds the Pol II lobe on the Rpb2 side of the active centre cleft near downstream DNA. The C-terminal winged helix (WH) domains of Tfg1 and Tfg2 are mobile, but the Tfg2 WH domain can reside at the Pol II protrusion near the predicted path of upstream DNA in the initiation complex. The linkers between the dimerization domain and the WH domains in Tfg1 and Tfg2 are located to the jaws and protrusion, respectively. The results suggest how TFIIF suppresses non-specific DNA binding and how it helps to recruit promoter DNA and to set the transcription start site. This work establishes cross-linking/MS as an integrated structure analysis tool for large multi-protein complexes.
Collapse
Affiliation(s)
- Zhuo Angel Chen
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, The University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kang ME, Dahmus ME. The unique C-terminal domain of RNA polymerase II and its role in transcription. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 71:41-77. [PMID: 8644491 DOI: 10.1002/9780470123171.ch2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- M E Kang
- Section of Molecular and Cellular Biology, University of California, Davis 95616, USA
| | | |
Collapse
|
9
|
Zhang C, Burton ZF. Transcription factors IIF and IIS and nucleoside triphosphate substrates as dynamic probes of the human RNA polymerase II mechanism. J Mol Biol 2004; 342:1085-99. [PMID: 15351637 DOI: 10.1016/j.jmb.2004.07.070] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2004] [Revised: 07/20/2004] [Accepted: 07/21/2004] [Indexed: 11/28/2022]
Abstract
The mechanism for elongation catalyzed by human RNA polymerase II (RNAP II) has been analyzed using millisecond phase transient state kinetics. Here, we apply a running start, two-bond, double-quench protocol. Quenching the reaction with EDTA indicates NTP loading into the active site followed by rapid isomerization. HCl quenching defines the time of phosphodiester bond formation. Model-independent and global kinetic analyses were applied to simulate the RNAP II mechanism for forward elongation through the synthesis of two specific phosphodiester bonds, modeling rate data collected over a wide range of nucleoside triphosphate concentrations. We report adequate two-bond kinetic simulations for the reaction in the presence of TFIIF alone and in the presence of TFIIF+TFIIS, providing detailed insight into the RNAP II mechanism and into processive RNA synthesis. RNAP II extends an RNA chain through a substrate induced-fit mechanism, termed NTP-driven translocation. After rapid isomerization, chemistry is delayed. At a stall point induced by withholding the next templated NTP, RNAP II fractionates into at least two active and one paused conformation, revealed as different forward rates of elongation. In the presence of TFIIF alone or in the presence of TFIIF+TFIIS, rapid rates are very similar; although, with TFIIF alone the complex is more highly poised for forward synthesis. Based on steady-state analysis, TFIIF was thought to suppress transcriptional pausing, but this view is misleading. TFIIF supports elongation and suppresses pausing by stabilizing the post-translocated elongation complex. When TFIIS is present, RNA cleavage and transcriptional restart pathways are supported, but TFIIS has a role in suppression of transient pausing, which is the most important contribution of TFIIS to elongation from a stall position.
Collapse
Affiliation(s)
- Chunfen Zhang
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI 48824-1319, USA
| | | |
Collapse
|
10
|
Rondón AG, Jimeno S, García-Rubio M, Aguilera A. Molecular evidence that the eukaryotic THO/TREX complex is required for efficient transcription elongation. J Biol Chem 2003; 278:39037-43. [PMID: 12871933 DOI: 10.1074/jbc.m305718200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
THO/TREX is a conserved eukaryotic complex formed by the core THO complex plus proteins involved in mRNA metabolism and export such as Sub2 and Yra1. Mutations in any of the THO/TREX structural genes cause pleiotropic phenotypes such as transcription impairment, increased transcription-associated recombination, and mRNA export defects. To assay the relevance of THO/TREX complex in transcription, we performed in vitro transcription elongation assays in mutant cell extracts using supercoiled DNA templates containing two G-less cassettes. With these assays, we demonstrate that hpr1delta, tho2delta, and mft1delta mutants of the THO complex and sub2 mutants show significant reductions in the efficiency of transcription elongation. The mRNA expression defect of hpr1delta mutants was not due to an increase in mRNA decay, as determined by mRNA half-life measurements and mRNA time course accumulation experiments in the absence of Rrp6p exoribonuclease. This work demonstrates that THO and Sub2 are required for efficient transcription elongation, providing further evidence for the coupling between transcription and mRNA metabolism and export.
Collapse
Affiliation(s)
- Ana G Rondón
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Sevilla, Spain
| | | | | | | |
Collapse
|
11
|
Zhang C, Yan H, Burton ZF. Combinatorial control of human RNA polymerase II (RNAP II) pausing and transcript cleavage by transcription factor IIF, hepatitis delta antigen, and stimulatory factor II. J Biol Chem 2003; 278:50101-11. [PMID: 14506279 DOI: 10.1074/jbc.m307590200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When RNA polymerase II (RNAP II) is forced to stall, elongation complexes (ECs) are observed to leave the active pathway and enter a paused state. Initially, ECs equilibrate between active and paused conformations, but with stalls of a long duration, ECs backtrack and become sensitive to transcript cleavage, which is stimulated by the EC rescue factor stimulatory factor II (TFIIS/SII). In this work, the rates for equilibration between the active and pausing pathways were estimated in the absence of an elongation factor, in the presence of hepatitis delta antigen (HDAg), and in the presence of transcription factor IIF (TFIIF), with or without addition of SII. Rates of equilibration between the active and paused states are not very different in the presence or absence of elongation factors HDAg and TFIIF. SII facilitates escape from stalled ECs by stimulating RNAP II backtracking and transcript cleavage and by increasing rates into and out of the paused EC. TFIIF and SII cooperate to merge the pausing and active pathways, a combinatorial effect not observed with HDAg and SII. In the presence of HDAg and SII, pausing is observed without stimulation of transcript cleavage, indicating that the EC can pause without backtracking beyond the pre-translocated state.
Collapse
Affiliation(s)
- Chunfen Zhang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | |
Collapse
|
12
|
Nedialkov YA, Gong XQ, Hovde SL, Yamaguchi Y, Handa H, Geiger JH, Yan H, Burton ZF. NTP-driven translocation by human RNA polymerase II. J Biol Chem 2003; 278:18303-12. [PMID: 12637520 DOI: 10.1074/jbc.m301103200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report a "running start, two-bond" protocol to analyze elongation by human RNA polymerase II (RNAP II). In this procedure, the running start allowed us to measure rapid rates of elongation and provided detailed insight into the RNAP II mechanism. Formation of two bonds was tracked to ensure that at least one translocation event was analyzed. By using this method, RNAP II is stalled briefly at a defined template position before restoring the next NTP. Significantly, slow reaction steps are identified both before and after phosphodiester bond synthesis, and both of these steps can be highly dependent on the next templated NTP. The initial and final NTP-driven events, however, are not identical, because the slow step after chemistry, which includes translocation and pyrophosphate release, is regulated differently by elongation factors hepatitis delta antigen and transcription factor IIF. Because recovery from a stall and the processive transition from one bond to the next can be highly NTP-dependent, we conclude that translocation can be driven by the incoming substrate NTP, a model fully consistent with the RNAP II elongation complex structure.
Collapse
Affiliation(s)
- Yuri A Nedialkov
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Nedialkov YA, Gong XQ, Yamaguchi Y, Handa H, Burton ZF. Assay of Transient State Kinetics of RNA Polymerase II Elongation. Methods Enzymol 2003; 371:252-64. [PMID: 14712705 DOI: 10.1016/s0076-6879(03)71018-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yuri A Nedialkov
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
14
|
Funk JD, Nedialkov YA, Xu D, Burton ZF. A key role for the alpha 1 helix of human RAP74 in the initiation and elongation of RNA chains. J Biol Chem 2002; 277:46998-7003. [PMID: 12354769 DOI: 10.1074/jbc.m206249200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA polymerase II-associating protein 74 (RAP74) is the large subunit of transcription factor IIF (TFIIF), which is essential for accurate initiation and stimulates elongation by RNA polymerase II. Mutations within or adjacent to the alpha1 helix of the RAP74 subunit have been shown to decrease both initiation and elongation stimulation activities without strongly affecting the interactions of RAP74 with the RAP30 subunit or the interaction between TFIIF and RNA polymerase II. In this manuscript, mutations within the alpha1 helix are compared with mutations made throughout the neighboring conserved N-terminal domain of RAP74. Changes within the N-terminal domain include disruptions of specific contacts with the alpha1 helix, which were revealed in the recently published x-ray crystal structure (Gaiser, F., Tan, S., and Richmond, T. J. (2000) J. Mol. Biol. 302, 1119-1127). Contacts between the beta4-beta5 loop and the alpha1 helix are shown to be largely unimportant for alpha1 helix function. Other mutations throughout the N-terminal domain are consistent with the establishment of the dimer interface with the RAP30 subunit. The RAP74-RAP30 interface is important for TFIIF function, but no particular RAP74 amino acids within this region have been identified that are required for TFIIF activities. The molecular target of the alpha1 helix remains unknown, but our studies refocus attention on this important functional motif of TFIIF.
Collapse
Affiliation(s)
- Janel D Funk
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | | | |
Collapse
|
15
|
Bradsher J, Auriol J, Proietti de Santis L, Iben S, Vonesch JL, Grummt I, Egly JM. CSB is a component of RNA pol I transcription. Mol Cell 2002; 10:819-29. [PMID: 12419226 DOI: 10.1016/s1097-2765(02)00678-0] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mutation in the CSB gene results in the human Cockayne's syndrome (CS). Here, we provide evidence that CSB is found not only in the nucleoplasm but also in the nucleolus within a complex (CSB IP/150) that contains RNA pol I, TFIIH, and XPG and promotes efficient rRNA synthesis. CSB is active in in vitro RNA pol I transcription and restores rRNA synthesis when transfected in CSB-deficient cells. We also show that mutations in CSB, as well as in XPB and XPD genes, all of which confer CS, disturb the RNA pol I/TFIIH interaction within the CSB IP/150. In addition to revealing an unanticipated function for CSB in rRNA synthesis, we show that the fragility of this complex could be one factor contributing to the CS phenotype.
Collapse
Affiliation(s)
- John Bradsher
- Institut de Genetique et de Biologie Moleculaire et Cellulaire (CNRS/INSERM/ULP), F-67404, Illkirch Cedex, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Kobor MS, Greenblatt J. Regulation of transcription elongation by phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:261-275. [PMID: 12213657 DOI: 10.1016/s0167-4781(02)00457-8] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The synthesis of mRNA by RNA polymerase II (RNAPII) is a multistep process that is regulated by different mechanisms. One important aspect of transcriptional regulation is phosphorylation of components of the transcription apparatus. The phosphorylation state of RNAPII carboxy-terminal domain (CTD) is controlled by a variety of protein kinases and at least one protein phosphatase. We discuss emerging genetic and biochemical evidence that points to a role of these factors not only in transcription initiation but also in elongation and possibly termination. In addition, we review phosphorylation events involving some of the general transcription factors (GTFs) and other regulatory proteins. As an interesting example, we describe the modulation of transcription associated kinases and phosphatase by the HIV Tat protein. We focus on bringing together recent findings and propose a revised model for the RNAPII phosphorylation cycle.
Collapse
Affiliation(s)
- Michael S Kobor
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
17
|
Abstract
Transcription of protein-coding genes is one of the most fundamental processes that underlies all life and is a primary mechanism of biological regulation. In eukaryotic cells, transcription depends on the formation of a complex at the promoter region of the gene that minimally includes RNA polymerase II and several auxiliary proteins known as the general transcription factors. Transcription initiation follows at the promoter site given the availability of nucleoside triphosphates and ATP. Soon after the polymerase begins the synthesis of the nascent mRNA chain, it enters a critical stage, referred to as promoter escape, that is characterized by physical and functional instability of the transcription complex. These include formation of abortive transcripts, strong dependence on ATP cofactor, the general transcription factor TFIIH and downstream template. These criteria are no longer in effect when the nascent RNA reaches a length of 14-15 nucleotides. Towards the end of promoter escape, disruption or adjustment of protein-protein and protein-DNA interactions, including the release of some of the general transcription factors from the early transcription complex is to be expected, allowing the transition to the elongation stage of transcription. In this review, we examine the experimental evidence that defines promoter escape as a distinct stage in transcription, and point out areas where critical information is missing.
Collapse
MESH Headings
- HeLa Cells
- Humans
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/physiology
- RNA Polymerase II/chemistry
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/metabolism
- Sarcosine/analogs & derivatives
- Sarcosine/pharmacology
- Transcription Factor TFIIH
- Transcription Factors, General/chemistry
- Transcription Factors, General/metabolism
- Transcription Factors, TFII/genetics
- Transcription Factors, TFII/metabolism
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Arik Dvir
- Department of Biological Sciences, Oakland University, Rochester, MI 48309-4401, USA.
| |
Collapse
|
18
|
Fish RN, Kane CM. Promoting elongation with transcript cleavage stimulatory factors. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:287-307. [PMID: 12213659 DOI: 10.1016/s0167-4781(02)00459-1] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Transcript elongation by RNA polymerase is a dynamic process, capable of responding to a number of intrinsic and extrinsic signals. A number of elongation factors have been identified that enhance the rate or efficiency of transcription. One such class of factors facilitates RNA polymerase transcription through blocks to elongation by stimulating the polymerase to cleave the nascent RNA transcript within the elongation complex. These cleavage factors are represented by the Gre factors from prokaryotes, and TFIIS and TFIIS-like factors found in archaea and eukaryotes. High-resolution structures of RNA polymerases and the cleavage factors in conjunction with biochemical investigations and genetic analyses have provided insights into the mechanism of action of these elongation factors. However, there are yet many unanswered questions regarding the regulation of these factors and their effects on target genes.
Collapse
Affiliation(s)
- Rachel N Fish
- Department of Molecular and Cell Biology, University of California-Berkeley, 401 Barker Hall, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|
19
|
Pokholok DK, Hannett NM, Young RA. Exchange of RNA polymerase II initiation and elongation factors during gene expression in vivo. Mol Cell 2002; 9:799-809. [PMID: 11983171 DOI: 10.1016/s1097-2765(02)00502-6] [Citation(s) in RCA: 260] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have systematically explored the in vivo occupancy of promoters and open reading frames by components of the RNA polymerase II transcription initiation and elongation apparatuses in yeast. RNA polymerase II, Mediator, and the general transcription factors (GTFs) were recruited to all promoters tested upon gene activation. RNA polymerase II, TFIIS, Spt5, and, unexpectedly, the Paf1/Cdc73 complex, were found associated with open reading frames. The presence of the Paf1/Cdc73 complex on ORFs in vivo suggests a novel function for this complex in elongation. Elongator was not detected under any conditions tested, and further analysis revealed that the majority of elongator is cytoplasmic. These results suggest a revised model for transcription initiation and elongation apparatuses in living cells.
Collapse
Affiliation(s)
- Dmitry K Pokholok
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
20
|
Elmendorf BJ, Shilatifard A, Yan Q, Conaway JW, Conaway RC. Transcription factors TFIIF, ELL, and Elongin negatively regulate SII-induced nascent transcript cleavage by non-arrested RNA polymerase II elongation intermediates. J Biol Chem 2001; 276:23109-14. [PMID: 11259417 DOI: 10.1074/jbc.m101445200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TFIIF, ELL, and Elongin belong to a class of RNA polymerase II transcription factors that function similarly to activate the rate of elongation by suppressing transient pausing by polymerase at many sites along DNA templates. SII is a functionally distinct RNA polymerase II elongation factor that promotes elongation by reactivating arrested polymerase. Studies of the mechanism of SII action have shown (i) that arrest of RNA polymerase II results from irreversible displacement of the 3'-end of the nascent transcript from the polymerase catalytic site and (ii) that SII reactivates arrested polymerase by inducing endonucleolytic cleavage of the nascent transcript by the polymerase catalytic site thereby creating a new transcript 3'-end that is properly aligned with the catalytic site and can be extended. SII also induces nascent transcript cleavage by paused but non-arrested RNA polymerase II elongation intermediates, leading to the proposal that pausing may result from reversible displacement of the 3'-end of nascent transcripts from the polymerase catalytic site. On the basis of evidence consistent with the model that TFIIF, ELL, and Elongin suppress pausing by preventing displacement of the 3'-end of the nascent transcript from the polymerase catalytic site, we investigated the possibility of cross-talk between SII and transcription factors TFIIF, ELL, and Elongin. These studies led to the discovery that TFIIF, ELL, and Elongin are all capable of inhibiting SII-induced nascent transcript cleavage by non-arrested RNA polymerase II elongation intermediates. Here we present these findings, which bring to light a novel activity associated with TFIIF, ELL, and Elongin and suggest that these transcription factors may expedite elongation not only by increasing the forward rate of nucleotide addition by RNA polymerase II, but also by inhibiting SII-induced nascent transcript cleavage by non-arrested RNA polymerase II elongation intermediates.
Collapse
Affiliation(s)
- B J Elmendorf
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
The past decade has seen an explosive increase in information about regulation of eukaryotic gene transcription, especially for protein-coding genes. The most striking advances in our knowledge of transcriptional regulation involve the chromatin template, the large complexes recruited by transcriptional activators that regulate chromatin structure and the transcription apparatus, the holoenzyme forms of RNA polymerase II involved in initiation and elongation, and the mechanisms that link mRNA processing with its synthesis. We describe here the major advances in these areas, with particular emphasis on the modular complexes associated with RNA polymerase II that are targeted by activators and other regulators of mRNA biosynthesis.
Collapse
Affiliation(s)
- T I Lee
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
22
|
Taira Y, Kubo T, Natori S. Participation of transcription elongation factor XSII-K1 in mesoderm-derived tissue development in Xenopus laevis. J Biol Chem 2000; 275:32011-5. [PMID: 10900206 DOI: 10.1074/jbc.m003920200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We isolated a cDNA clone for a novel member of the S-II family of transcription elongation factors from Xenopus laevis. This S-II, named XSII-K1, is assumed to be the Xenopus homologue of mouse SII-K1 that we reported previously (Taira, Y., Kubo, T., and Natori, S. (1998) Genes Cells 3, 289-296). Expression of the XSII-K1 gene was found to be restricted to mesoderm-derived tissues such as liver, kidney, and skeletal muscle. Contrary to the general S-II gene, expression of the XSII-K1 gene was not detected in embryos at stages earlier than 11. The animal cap assay revealed that activin A, but not basic fibroblast growth factor, induced expression of the XSII-K1 gene and that it participated in the expression of mesoderm-specific genes such as Xbra and Xalpha-actin. This is the first demonstration that the regulation at the level of transcription elongation is included in the development of mesoderm-derived tissues.
Collapse
Affiliation(s)
- Y Taira
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
23
|
Abstract
RNA chain elongation by RNA polymerase II (pol II) is a complex and regulated process which is coordinated with capping, splicing, and polyadenylation of the primary transcript. Numerous elongation factors that enable pol II to transcribe faster and/or more efficiently have been purified. SII is one such factor. It helps pol II bypass specific blocks to elongation that are encountered during transcript elongation. SII was first identified biochemically on the basis of its ability to enable pol II to synthesize long transcripts. ((1)) Both the high resolution structure of SII and the details of its novel mechanism of action have been refined through mutagenesis and sophisticated in vitro assays. SII engages transcribing pol II and assists it in bypassing blocks to elongation by stimulating a cryptic, nascent RNA cleavage activity intrinsic to RNA polymerase. The nuclease activity can also result in removal of misincorporated bases from RNA. Molecular genetic experiments in yeast suggest that SII is generally involved in mRNA synthesis in vivo and that it is one type of a growing collection of elongation factors that regulate pol II. In vertebrates, a family of related SII genes has been identified; some of its members are expressed in a tissue-specific manner. The principal challenge now is to understand the isoform-specific functional differences and the biology of regulation exerted by the SII family of proteins on target genes, particularly in multicellular organisms.
Collapse
Affiliation(s)
- Megan Wind
- Department of Biochemistry and Graduate Program in Genetics & Molecular Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Daniel Reines
- Department of Biochemistry and Graduate Program in Genetics & Molecular Biology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
24
|
Keene RG, Mueller A, Landick R, London L. Transcriptional pause, arrest and termination sites for RNA polymerase II in mammalian N- and c-myc genes. Nucleic Acids Res 1999; 27:3173-82. [PMID: 10454615 PMCID: PMC148545 DOI: 10.1093/nar/27.15.3173] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Using either highly purified RNA polymerase II (pol II) elongation complexes assembled on oligo(dC)-tailed templates or promoter-initiated (extract-generated) pol II elongation complexes, the precise 3" ends of transcripts produced during transcription in vitro at several human c- and N- myc pause, arrest and termination sites were determined. Despite a low overall similarity between the entire c- and N- myc first exon sequences, many positions of pol II pausing, arrest or termination occurred within short regions of related sequence shared between the c- and N- myc templates. The c- and N- myc genes showed three general classes of sequence conservation near intrinsic pause, arrest or termination sites: (i) sites where arrest or termination occurred after the synthesis of runs of uridines (Us) preceding the transcript 3" end, (ii) sites downstream of potential RNA hairpins and (iii) sites after nucleotide addition following either a U or a C or following a combination of several pyrimidines near the transcript 3" end. The finding that regions of similarity occur near the sites of pol II pausing, arrest or termination suggests that the mechanism of c- and N- myc regulation at the level of transcript elongation may be similar and not divergent as previously proposed.
Collapse
Affiliation(s)
- R G Keene
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | | | | |
Collapse
|
25
|
Reinberg D, Orphanides G, Ebright R, Akoulitchev S, Carcamo J, Cho H, Cortes P, Drapkin R, Flores O, Ha I, Inostroza JA, Kim S, Kim TK, Kumar P, Lagrange T, LeRoy G, Lu H, Ma DM, Maldonado E, Merino A, Mermelstein F, Olave I, Sheldon M, Shiekhattar R, Zawel L. The RNA polymerase II general transcription factors: past, present, and future. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:83-103. [PMID: 10384273 DOI: 10.1101/sqb.1998.63.83] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- D Reinberg
- Howard Hughes Medical Institute, Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 0885, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
A ternary complex composed of RNA polymerase (RNAP), DNA template, and RNA transcript is the central intermediate in the transcription cycle responsible for the elongation of the RNA chain. Although the basic biochemistry of RNAP functioning is well understood, little is known about the underlying structural determinants. The absence of high- resolution structural data has hampered our understanding of RNAP mechanism. However, recent work suggests a structure-function model of the ternary elongation complex, if not at a defined structural level, then at least as a conceptual view, such that key components of RNAP are defined operationally on the basis of compelling biochemical, protein chemical, and genetic data. The model has important implications for mechanisms of transcription elongation and also for initiation and termination.
Collapse
Affiliation(s)
- E Nudler
- Department of Biochemistry, New York University Medical Center, New York, NY 10016, USA.
| |
Collapse
|
27
|
Archambault J, Pan G, Dahmus GK, Cartier M, Marshall N, Zhang S, Dahmus ME, Greenblatt J. FCP1, the RAP74-interacting subunit of a human protein phosphatase that dephosphorylates the carboxyl-terminal domain of RNA polymerase IIO. J Biol Chem 1998; 273:27593-601. [PMID: 9765293 DOI: 10.1074/jbc.273.42.27593] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TFIIF (RAP30/74) is a general initiation factor that also increases the rate of elongation by RNA polymerase II. A two-hybrid screen for RAP74-interacting proteins produced cDNAs encoding FCP1a, a novel, ubiquitously expressed human protein that interacts with the carboxyl-terminal evolutionarily conserved domain of RAP74. Related cDNAs encoding FCP1b lack a carboxyl-terminal RAP74-binding domain of FCP1a. FCP1 is an essential subunit of a RAP74-stimulated phosphatase that processively dephosphorylates the carboxyl-terminal domain of the largest RNA polymerase II subunit. FCP1 is also a stoichiometric component of a human RNA polymerase II holoenzyme complex.
Collapse
Affiliation(s)
- J Archambault
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5G 1L6
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Moreland RJ, Hanas JS, Conaway JW, Conaway RC. Mechanism of action of RNA polymerase II elongation factor Elongin. Maximal stimulation of elongation requires conversion of the early elongation complex to an Elongin-activable form. J Biol Chem 1998; 273:26610-7. [PMID: 9756900 DOI: 10.1074/jbc.273.41.26610] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously identified and purified Elongin by its ability to stimulate the rate of elongation by RNA polymerase II in vitro (Bradsher, J. N., Jackson, K. W., Conaway, R. C., and Conaway, J. W. (1993) J. Biol. Chem. 268, 25587-25593). In this report, we present evidence that stimulation of elongation by Elongin requires that the early RNA polymerase II elongation complex undergoes conversion to an Elongin-activable form. We observe (i) that Elongin does not detectably stimulate the rate of promoter-specific transcription initiation by the fully assembled preinitiation complex and (ii) that early RNA polymerase II elongation intermediates first become susceptible to stimulation by Elongin after synthesizing 8-9-nucleotide-long transcripts. Furthermore, we show that the relative inability of Elongin to stimulate elongation by early elongation intermediates correlates not with the lengths of their associated transcripts but, instead, with the presence of transcription factor IIF (TFIIF) in transcription reactions. By exploiting adenovirus 2 major late promoter derivatives that contain premelted transcriptional start sites and do not require TFIIF, TFIIE, or TFIIH for transcription initiation, we observe (i) that Elongin is capable of strongly stimulating the rate of synthesis of trinucleotide transcripts by a subcomplex of RNA polymerase II, TBP, and TFIIB and (ii) that the ability of Elongin to stimulate synthesis of these short transcripts is substantially reduced by addition of TFIIF to transcription reactions. Here we present these findings, which are consistent with the model that maximal stimulation of elongation by Elongin requires that early elongation intermediates undergo a structural transition that includes loss of TFIIF.
Collapse
Affiliation(s)
- R J Moreland
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
29
|
Parsons MA, Sinden RR, Izban MG. Transcriptional properties of RNA polymerase II within triplet repeat-containing DNA from the human myotonic dystrophy and fragile X loci. J Biol Chem 1998; 273:26998-7008. [PMID: 9756950 DOI: 10.1074/jbc.273.41.26998] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expansion of a (CTG)n segment within the 3'-untranslated region of the myotonic dystrophy protein kinase gene alters mRNA production. The inherent ability of RNA polymerase II to transcribe (CTG)17-255 tracts corresponding to DNA from normal, unstable, and affected individuals, and the normal (CGG)54 fragile X repeat tract, was analyzed using a synchronized in vitro transcription system. Core RNA polymerase II transcribed all repeat units irrespective of repeat length or orientation. However, approximately 50% of polymerases transiently halted transcription (with a half-life of approximately 10 +/- 1 s) within the first and second CTG repeat unit and a more transient barrier to elongation was observed roughly centered within repeats 6-9. Transcription within the remainder of the CTG tracts and within the CCG, CGG, and CAG tracts appeared uniform with average transcription rates of 170, 250, 300, and 410 nucleotides/min, respectively. These differences correlated with changes in the sequence-specific transient pausing pattern within the CNG repeat tracts; individual incorporation rates were slower after incorporation of pyrimidine residues. Unexpectedly, approximately 4% of the run-off transcripts were, depending on the repeat sequence, either 15 or 18 nucleotides longer than expected. However, these products were not produced by transcriptional slippage within the repeat tract.
Collapse
Affiliation(s)
- M A Parsons
- Center for Genome Research, Institute of Biosciences and Technology, Department of Biochemistry and Biophysics, Texas A & M University, Houston, Texas 77030-0030, USA
| | | | | |
Collapse
|
30
|
Abstract
On 5'-template strand protruding templates, promoter-initiated run-off transcription by RNA polymerase II generates discrete, 15-16-nucleotide (nt) longer than expected products whose production is abrogated by elongation factor SII (Parsons, M. A., Sinden, R. R., and Izban, M. G. (1998) J. Biol. Chem. 273, 26998-27008). We demonstrate that template terminal complexes produce these RNAs and that transcript extension is a general and salt-sensitive (250 mM) feature of run-off transcription. On 5'-overhung templates the extended run-off transcripts appear to be retained within an RNA-DNA-enzyme ternary complex, and SII facilitates resumption of transcript elongation via a dinucleotide truncation intermediate. Moreover, on one of the 5-overhung templates, the initially extended complexes spontaneously resumed transcript extension and were uniquely resistant to salt (250 mM) challenge. However, SII did not facilitate this long distance extension on all template ends. Run-off transcripts on a blunt-ended template were initially extended by 2-11 nt (roughly in 2-nt increments); SII addition either before or after extension resulted in the accumulation of a 4-5-nt extension product. Based on these findings, we propose that the initial and continuously extended RNAs reflect intermediates and successful completion of template end-to-end transposition (template switching) by RNA polymerase II, respectively. Both the template end sequence and structure influenced the success of such an event.
Collapse
Affiliation(s)
- M G Izban
- Department of Obstetrics and Gynecology, Sealy Center for Molecular Science, the University of Texas Medical Branch, Galveston, Texas 77555-1062, USA.
| | | | | |
Collapse
|
31
|
Abstract
We have addressed whether the intrinsic 3'-->5' nuclease activity of human RNA polymerase II (pol II) can proofread during transcription in vitro. In the presence of SII, a protein that stimulates the nuclease activity, pol II quantitatively removed misincorporated nucleotides from the nascent transcript during rapid chain extension. The basis of discrimination between the correct and incorrect base was the slow addition of the next nucleotide to the mismatched terminus. Incorporation of inosine monophosphate inhibited next nucleotide addition by a similar magnitude as a mismatched base. We used this finding to demonstrate that addition of SII to a transcription reaction dramatically altered the RNA base content, reflecting the stable incorporation of more "correct" (GMP) and fewer "incorrect" (IMP) nucleotides.
Collapse
Affiliation(s)
- M J Thomas
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene 97403, USA
| | | | | |
Collapse
|
32
|
Taira Y, Kubo T, Natori S. Molecular cloning of cDNA and tissue-specific expression of the gene for SII-K1, a novel transcription elongation factor SII. Genes Cells 1998; 3:289-96. [PMID: 9685180 DOI: 10.1046/j.1365-2443.1998.00188.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Transcription elongation factor SII has been shown to promote read-through by RNA polymerase II of pausing sites within various eukaryotic genes in vitro by inducing cleavage of the 3'-end of the nascent transcript in the ternary elongation complex. Recently, we showed that various mouse tissues contain multiple SII-related proteins. Of these, 'general SII' was ubiquitously expressed, whereas the others were expressed in a tissue-specific manner. We have identified testis-specific SII (SII-T1) and shown that it was expressed exclusively in spermatocytes. RESULTS A new SII cDNA clone (pSII-K1) was isolated from mouse kidney. This clone contained an open reading frame which encoded a protein consisting of 347 amino acid residues (SII-K1). A comparison of the amino acid sequences of SII-K1 with those of general SII and SII-T1 revealed that their amino- and carboxy-terminal regions were very similar, but that the sequence of the 95 internal residues (87/181) was unique to each. The recombinant SII-K1 produced in Escherichia coli stimulated RNA polymerase II as did general S-II. The gene for SII-K1 was found to be expressed strongly in the heart, liver, skeletal muscle and kidney, but not in other tissues examined. Contrary to the expression of the general SII gene, the SII-K1 gene was expressed only in 15- and 17-day-old embryos during mouse embryonic development. CONCLUSIONS We identified a novel member of SII family transcription elongation factor named SII-K1. This factor was expressed exclusively in the heart, liver, kidney and skeletal muscle. During mouse embryonic development, no significant expression of the SII-K1 gene was detected before the formation of these tissues.
Collapse
Affiliation(s)
- Y Taira
- Faculty of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | |
Collapse
|
33
|
Wu-Baer F, Lane WS, Gaynor RB. Role of the human homolog of the yeast transcription factor SPT5 in HIV-1 Tat-activation. J Mol Biol 1998; 277:179-97. [PMID: 9514752 DOI: 10.1006/jmbi.1997.1601] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transactivator protein Tat stimulates transcriptional elongation from the HIV-1 LTR. One mechanism by which Tat increases HIV-1 transcription is by interacting with RNA polymerase II and TFIIH to increase phosphorylation of the polymerase C-terminal domain. Recent studies indicate that specific elongation factors may also be required to modulate Tat function. Here, we used biochemical analysis and in vitro transcription assays to identify cellular factors required for Tat activation. This analysis resulted in the purification of a cellular factor Tat-CT1 which is a human homolog of the yeast transcription factor SPT5. Immunodepletion of Tat-CTl from HeLa extract demonstrated that this factor was involved in transcriptional activation by Tat. However, the absence of this factor from HeLa extract did not prevent transcriptional activation by VP16. These findings are consistent with a model in which Tat-mediated effects on transcriptional elongation are mediated in part by the action of the human homolog of the yeast transcription factor SPT5.
Collapse
Affiliation(s)
- F Wu-Baer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235-8594, USA
| | | | | |
Collapse
|
34
|
Pan G, Aso T, Greenblatt J. Interaction of elongation factors TFIIS and elongin A with a human RNA polymerase II holoenzyme capable of promoter-specific initiation and responsive to transcriptional activators. J Biol Chem 1997; 272:24563-71. [PMID: 9305922 DOI: 10.1074/jbc.272.39.24563] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Affinity chromatography on columns containing the immobilized monomeric transcriptional elongation factor TFIIS or the essential large subunit, Elongin A, of the trimeric elongation factor, Elongin, was used to purify a human RNA polymerase II holoenzyme from HeLa whole cell extract. This holoenzyme contained nearstoichiometric amounts of all the general transcription factors, TFIIB, TFIID (TBP + TAFIIs), TFIIE, TFIIF, and TFIIH, required to accurately initiate transcription in vitro at the adenovirus major late promoter. It behaved as a large complex, slightly smaller than 70 S ribosomes, during gel filtration chromatography, and contained nearly half the TFIID that was present in the extract used for the affinity chromatography. It also contained the cyclin-dependent kinase CDK8, a human homologue of the Saccharomyces cerevisiae holoenzyme subunit SRB10, and many other polypeptides. Efficient interaction of holoenzyme with TFIIS or Elongin A required only the amino-terminal region of either protein. These regions are similar in amino acid sequence but dispensable for TFIIS or Elongin to regulate elongation in vitro by highly purified RNA polymerase II. The transcriptional activators GAL4-VP16 and GAL4-Sp1 activated transcription in vitro by purified holoenzyme in the absence of any additional factors.
Collapse
Affiliation(s)
- G Pan
- Banting and Best Department of Medical Research and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | |
Collapse
|
35
|
Reines D, Dvir A, Conaway JW, Conaway RC. Assays for investigating transcription by RNA polymerase II in vitro. Methods 1997; 12:192-202. [PMID: 9237163 DOI: 10.1006/meth.1997.0471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
With the availability of the general initiation factors (TFIIB, TFIID, TFIIE, TFIIF, and TFIIH), it is now possible to investigate aspects of the mechanism of eukaryotic messenger RNA synthesis in purified, reconstituted RNA polymerase II transcription systems. Rapid progress in these investigations has been spurred by use of a growing number of assays that are proving valuable not only for dissecting the molecular mechanisms of transcription initiation and elongation by RNA polymerase II, but also for identifying and purifying novel transcription factors that regulate polymerase activity. Here we describe a variety of these assays and discuss their utility in the analysis of transcription by RNA polymerase II.
Collapse
Affiliation(s)
- D Reines
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
36
|
Yonaha M, Tsuchiya T, Yasukochi Y. Cell-cycle-dependent phosphorylation of the basal transcription factor RAP74. FEBS Lett 1997; 410:477-80. [PMID: 9237686 DOI: 10.1016/s0014-5793(97)00642-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this report, cell-cycle-dependent effects of TFIID on other basal transcription factors were investigated. We purified TFIID fractions from HeLa cells synchronized in the S/G2 phases and in early G1 phase, and show that RAP74 is phosphorylated more highly by the S/G2 phase TFIID fraction than by the early G1 phase TFIID fraction. Further analyses using deletion mutants of RAP74 revealed that amino acid residues 206-256 are phosphorylated by the TFIID fraction. Reconstitution of in vitro transcription activity indicates that the cell-cycle-dependent phosphorylation of RAP74 increases TFIIF transcription activity.
Collapse
Affiliation(s)
- M Yonaha
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Japan.
| | | | | |
Collapse
|
37
|
Cho H, Maldonado E, Reinberg D. Affinity purification of a human RNA polymerase II complex using monoclonal antibodies against transcription factor IIF. J Biol Chem 1997; 272:11495-502. [PMID: 9111063 DOI: 10.1074/jbc.272.17.11495] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Five different monoclonal antibodies that immunoreact with RAP74, the large subunit of general transcription factor (TF) IIF, were produced and characterized. Using one of these antibodies, an affinity purification procedure was devised to isolate a human RNA polymerase II complex. This procedure is fast, simple, and reproducible and does not require extensive purification. The RNA polymerase II complex isolated using this procedure contains SRB (suppressor of RNA polymerase B) polypeptides, transcription factors IIE and IIF, limiting amounts of TFIIH, and the TATA-binding protein, but was devoid of TFIIB.
Collapse
Affiliation(s)
- H Cho
- Howard Hughes Medical Institute, Division of Nucleic Acid Enzymology, Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
38
|
Labhart P. Transcript cleavage in an RNA polymerase I elongation complex. Evidence for a dissociable activity similar to but distinct from TFIIS. J Biol Chem 1997; 272:9055-61. [PMID: 9083031 DOI: 10.1074/jbc.272.14.9055] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Stalled Xenopus RNA polymerase I (pol I) elongation complexes bearing a 52-nucleotide RNA were prepared by promoter-initiated transcription in the absence of UTP. When such complexes were isolated and incubated in the presence of Mg2+, the associated RNA was shortened from the 3'-end, and mono- and dinucleotides were released. Shortened transcripts were still associated with the DNA and were quantitatively reelongated upon addition of NTPs. The cleavage activity could be removed from the pol I-ternary complex with buffers containing 0.25% Sarkosyl. These findings indicate that a factor with characteristics similar to elongation factor TFIIS is associated with the pol I elongation complex. However, addition of recombinant Xenopus TFIIS to Sarkosyl-washed pol I elongation complexes had no effect, whereas it showed the expected effects in control reactions with identically prepared pol II elongation complexes. The results thus suggest the existence of a pol I-specific cleavage/elongation factor. I also report the sequence of a novel type of Xenopus TFIIS. The predicted amino acid sequences of the present and previously identified Xenopus TFIIS are less than 65% conserved. Thus, like mammalian species, Xenopus has at least two highly divergent forms of TFIIS.
Collapse
Affiliation(s)
- P Labhart
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|
39
|
Conaway RC, Conaway JW. General transcription factors for RNA polymerase II. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 56:327-46. [PMID: 9187058 DOI: 10.1016/s0079-6603(08)61009-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- R C Conaway
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA
| | | |
Collapse
|
40
|
Parada CA, Roeder RG. Enhanced processivity of RNA polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain. Nature 1996; 384:375-8. [PMID: 8934526 DOI: 10.1038/384375a0] [Citation(s) in RCA: 217] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The protein Tat is encoded by the HIV-1 genome and is essential for viral replication because of its activation of viral transcription. Tat enhances the ability of RNA polymerase II (Pol II) to move long distances down the DNA through a poorly understood mechanism that involves its binding the to the 5' end of the nascent HIV-1 transcript. It has been suggested that the stimulation of transcript elongation by conventional DNA-binding activators may involve phosphorylation of the carboxy-terminal domain (CTD) of Pol II by the transcription factor TFIIH through the associated CAK kinase. Here we show that Tat-enhanced HIV-1 transcription in vitro requires both TFIIH and the CTD of Pol II. In addition, Tat, through its activation domain, both interacts with a functional TFIIH-containing complex and stimulates phosphorylation of a CTD-containing substrate by the TFIIH kinase. Under conditions that jointly restrict transcriptional elongation and TFIIH-mediated CTD phosphorylation, Tat stimulates both these activities. Furthermore, RNA synthesis is required for Tat to stimulate phosphorylation of the CTD when it is part of an initiation complex, as expected from Tat's interaction with viral transcripts. Thus, stimulation of Pol II elongation by Tat may involve direct effects on TFIIH-mediated CTD phosphorylation.
Collapse
Affiliation(s)
- C A Parada
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York 10021, USA
| | | |
Collapse
|
41
|
Schnapp G, Graveley BR, Grummt I. TFIIS binds to mouse RNA polymerase I and stimulates transcript elongation and hydrolytic cleavage of nascent rRNA. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:412-9. [PMID: 8879242 DOI: 10.1007/bf02173006] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Efficient transcription elongation by RNA polymerase I (Pol I) requires a specific Pol I-associated factor, termed TIF-IC. Here we show that TFIIS, a factor that has previously been shown to promote read-through past many types of blocks to elongation by RNA polymerase II, also enhances Pol I-directed transcription elongation. In a reconstituted transcription system containing purified proteins, TFIIS stimulates Pol I transcription by increasing the overall rate of RNA chain elongation. As with Pol II, ternary Pol I complexes cleave the 3' end of the nascent transcripts in response to TFIIS. The truncated RNAs remain bound to the template, are subject to pyrophosphorolysis, and can be chased into longer transcripts. Moreover, we show by immunoprecipitation and specific affinity chromatography that TFIIS physically interacts with Pol I. The results suggest that nascent transcript cleavage by TFIIS or a TFIIS-related factor may be a general mechanism by which both Pol I and Pol II can bypass transcriptional impediments.
Collapse
Affiliation(s)
- G Schnapp
- Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany
| | | | | |
Collapse
|
42
|
Samkurashvili I, Luse DS. Translocation and transcriptional arrest during transcript elongation by RNA polymerase II. J Biol Chem 1996; 271:23495-505. [PMID: 8798558 DOI: 10.1074/jbc.271.38.23495] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
RNA polymerase II may stop transcription, or arrest, while transcribing certain DNA sequences. The molecular basis for arrest is not well understood, but a connection has been suggested between arrest and a transient failure of the polymerase to translocate along the template. We have investigated this question by monitoring the movement of RNA polymerase II along a number of templates, using exonuclease III protection as our assay. We found that normal transcription is accompanied by essentially coordinate movement of the active site and both the leading and trailing edges of the polymerase. However, as polymerase approaches an arrest site, translocation of the body of the polymerase stops while transcription continues, leading to an arrested complex in which the 3' end of the transcript is located much closer than normal to the front edge of the polymerase. Surprisingly, mutated arrest sites that no longer block transcription continue to direct the transient failure of polymerase translocation. As transcription proceeds through these sequences, the initially stationary polymerase moves forward 10-15 bases along the template in response to the addition of only 3 bases to the nascent RNA. Mutagenesis studies indicate that the sequences responsible for the transient block to polymerase movement are located downstream of the T-rich motif required for arrest. Our results indicate that blocking translocation is not sufficient to cause arrest.
Collapse
Affiliation(s)
- I Samkurashvili
- Department of Molecular Biology, Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
43
|
Rudd MD, Luse DS. Amanitin greatly reduces the rate of transcription by RNA polymerase II ternary complexes but fails to inhibit some transcript cleavage modes. J Biol Chem 1996; 271:21549-58. [PMID: 8702941 DOI: 10.1074/jbc.271.35.21549] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The toxin alpha-amanitin is frequently employed to completely block RNA synthesis by RNA polymerase II. However, we find that polymerase II ternary transcription complexes stalled by the absence of NTPs resume RNA synthesis when NTPs and amanitin are added. Chain elongation with amanitin can continue for hours at approximately 1% of the normal rate. Amanitin also greatly slows pyrophosphorolysis by elongation-competent complexes. Complexes which are arrested (that is, which have paused in transcription for long periods in the presence of excess NTPs) are essentially incapable of resuming transcription in the presence of alpha-amanitin. Complexes traversing sequences that can provoke arrest are much more likely to stop transcription in the presence of the toxin. The substitution of IMP for GMP at the 3' end of the nascent RNA greatly increases the sensitivity of stalled transcription complexes to amanitin. Neither arrested nor stalled complexes display detectable SII-mediated transcript cleavage following amanitin treatment. However, arrested complexes possess a low level, intrinsic transcript cleavage activity which is completely amanitin-resistant; furthermore, pyrophosphorolytic transcript cleavage in arrested complexes is not affected by amanitin.
Collapse
Affiliation(s)
- M D Rudd
- Department of Molecular Biology, Cleveland Clinic Foundation Research Institute, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
44
|
Wang BQ, Burton ZF. Functional domains of human RAP74 including a masked polymerase binding domain. J Biol Chem 1995; 270:27035-44. [PMID: 7592953 DOI: 10.1074/jbc.270.45.27035] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
RAP74, the large subunit of human transcription factor IIF (TFIIF), has been analyzed by deletion mutagenesis and in vitro assays to map functional domains. Tight binding to the RAP30 subunit involves amino acids between positions 1-172. Amino acids 1-205 are minimally sufficient to stimulate accurate transcription from the adenovirus major late promoter in an extract system, although C-terminal sequences contribute to activity. A partially masked RNA polymerase II binding domain has been mapped to the C-terminal region of the protein (amino acids 363-444). Sequences near the N terminus and within the central portion of RAP74 affect accessibility of this domain. Extending this domain to 363-486 creates a peptide that binds polymerase and DNA and inhibits transcription initiation in vitro from non-promoter DNA sites. This larger C-terminal domain may modify polymerase interaction with template during initiation and/or elongation of RNA chains.
Collapse
Affiliation(s)
- B Q Wang
- Department of Biochemistry, Michigan State University, East Lansing 48824, USA
| | | |
Collapse
|
45
|
Johansen FE, Prywes R. Serum response factor: transcriptional regulation of genes induced by growth factors and differentiation. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1242:1-10. [PMID: 7626651 DOI: 10.1016/0304-419x(94)00014-s] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- F E Johansen
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
46
|
Nakanishi T, Shimoaraiso M, Kubo T, Natori S. Structure-function relationship of yeast S-II in terms of stimulation of RNA polymerase II, arrest relief, and suppression of 6-azauracil sensitivity. J Biol Chem 1995; 270:8991-5. [PMID: 7721809 DOI: 10.1074/jbc.270.15.8991] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The yeast S-II null mutant is viable, but the mutation induces sensitivity to 6-azauracil. To examine whether the region needed for stimulation of RNA polymerase II and that for suppression of 6-azauracil sensitivity in the S-II molecule could be separated, we constructed various deletion mutants of S-II and expressed them in the null mutant using the GAL1 promoter to see if the mutant proteins suppressed 6-azauracil sensitivity. We also expressed these constructs in Escherichia coli, purified the mutant proteins to homogeneity, and examined if they stimulated RNA polymerase II. We found that a mutant protein lacking the first 147 amino acid residues suppressed 6-azauracil sensitivity but that removal of 2 additional residues completely abolished the suppression. A mutant protein lacking the first 141 residues had activity to stimulate RNA polymerase II, whereas removal of 10 additional residues completely abolished this activity. We also examined arrest-relief activity of these mutant proteins and found that there is a good correlation between RNA polymerase II-stimulating activity and arrest-relief activity. Therefore, at least the last 168 residues of S-II are sufficient for expressing these three activities.
Collapse
Affiliation(s)
- T Nakanishi
- Faculty of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | | | |
Collapse
|
47
|
Joliot V, Demma M, Prywes R. Interaction with RAP74 subunit of TFIIF is required for transcriptional activation by serum response factor. Nature 1995; 373:632-5. [PMID: 7854423 DOI: 10.1038/373632a0] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A few general transcription factors, in particular TFIID and TFIIB, have been found to bind transcriptional activators. Here we show that the general transcription factor TFIIF is also a target for a transcriptional activator, namely serum response factor (SRF), which binds to the c-fos promoter. Using a yeast interaction assay, we find that SRF binds the RAP74 subunit of TFIIF and that SRF's transcriptional activation domain is the region involved in this binding. Further, RAP74's central charged cluster domain is required for binding to SRF's activation domain. Deletion of this domain impairs RAP74's ability to support SRF-activated transcription in vitro but has little effect on the protein's basal transcription activity or its ability to support SP1-activated transcription. The correlation of SRF-RAP74 binding with transcriptional activation suggests that RAP74 is a critical target for SRF-activated transcription.
Collapse
Affiliation(s)
- V Joliot
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | | | | |
Collapse
|
48
|
Parada CA, Yoon JB, Roeder RG. A novel LBP-1-mediated restriction of HIV-1 transcription at the level of elongation in vitro. J Biol Chem 1995; 270:2274-83. [PMID: 7836461 DOI: 10.1074/jbc.270.5.2274] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The cellular factor, LBP-1, can repress HIV-1 transcription by preventing the binding of TFIID to the promoter. Here we have analyzed the effect of recombinant LBP-1 on HIV-1 transcription in vitro by using a "pulse-chase" assay. LBP-1 had no effect on initiation from a preformed preinitiation complex and elongation to position +13 ("pulse"). However, addition of LBP-1 after RNA polymerase was stalled at +13 strongly inhibited further elongation ("chase") by reducing RNA polymerase processivity. Severe mutations of the high affinity LBP-1 binding sites between -4 and +21 did not relieve the LBP-1-dependent block. However, LBP-1 could bind independently to upstream low affinity sites (-80 to -4), suggesting that these sites mediate the effect of LBP-1 on elongation. These results demonstrate a novel function of LBP-1, restricting HIV-1 transcription at the level of elongation. In addition, Tat was found to suppress the antiprocessivity effect of LBP-1 on HIV-1 transcription in nuclear extracts. These findings strongly suggest that LBP-1 may provide a natural mechanism for restricting the elongation of HIV-1 transcripts and that this may be a target for the action of Tat in enhancing transcription.
Collapse
Affiliation(s)
- C A Parada
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, New York, New York 10021
| | | | | |
Collapse
|
49
|
Izban MG, Samkurashvili I, Luse DS. RNA polymerase II ternary complexes may become arrested after transcribing to within 10 bases of the end of linear templates. J Biol Chem 1995; 270:2290-7. [PMID: 7836462 DOI: 10.1074/jbc.270.5.2290] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In the presence of elongation factor SII, arrested RNA polymerase II ternary complexes cleave 7-17 nucleotides from the 3'-ends of their nascent RNAs. It has been shown that transcription of linear templates generates apparent run-off RNAs, which are nevertheless truncated upon incubation with SII. By using high resolution gels, we demonstrate that transcription of blunt or 3'-overhung templates with RNA polymerase II generates two populations of ternary complexes. The first class pauses 5-10 bases prior to the end of the template strand. These complexes respond to SII by cleaving approximately 9-17 nucleotide RNAs from their 3'-ends and therefore may be termed arrested. A second class of complexes, which fail to respond to SII, transcribe to within 3 bases of the end of the template strand. These complexes appear to have run off the template since they have released their nascent RNAs. Run-off transcription occurs on all types of templates, but it is the predominant reaction on DNAs with 5'-overhung ends. Thus, RNA polymerase II ternary complexes that retain 5-10 bases of contact with the template strand down-stream of the catalytic site become arrested. Further reduction of downstream template contacts can lead to termination. We also show that the addition of Sarkosyl to the elongation reactions significantly changes the pattern of transcriptional arrest near the end of linear templates.
Collapse
Affiliation(s)
- M G Izban
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, College of Medicine, Ohio 45267-0524
| | | | | |
Collapse
|
50
|
|