1
|
MRF4 negatively regulates adult skeletal muscle growth by repressing MEF2 activity. Nat Commun 2016; 7:12397. [PMID: 27484840 PMCID: PMC4976255 DOI: 10.1038/ncomms12397] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022] Open
Abstract
The myogenic regulatory factor MRF4 is highly expressed in adult skeletal muscle but its function is unknown. Here we show that Mrf4 knockdown in adult muscle induces hypertrophy and prevents denervation-induced atrophy. This effect is accompanied by increased protein synthesis and widespread activation of muscle-specific genes, many of which are targets of MEF2 transcription factors. MEF2-dependent genes represent the top-ranking gene set enriched after Mrf4 RNAi and a MEF2 reporter is inhibited by co-transfected MRF4 and activated by Mrf4 RNAi. The Mrf4 RNAi-dependent increase in fibre size is prevented by dominant negative MEF2, while constitutively active MEF2 is able to induce myofibre hypertrophy. The nuclear localization of the MEF2 corepressor HDAC4 is impaired by Mrf4 knockdown, suggesting that MRF4 acts by stabilizing a repressor complex that controls MEF2 activity. These findings open new perspectives in the search for therapeutic targets to prevent muscle wasting, in particular sarcopenia and cachexia.
Collapse
|
2
|
Sabillo A, Ramirez J, Domingo CR. Making muscle: Morphogenetic movements and molecular mechanisms of myogenesis in Xenopus laevis. Semin Cell Dev Biol 2016; 51:80-91. [PMID: 26853935 DOI: 10.1016/j.semcdb.2016.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/01/2016] [Indexed: 12/15/2022]
Abstract
Xenopus laevis offers unprecedented access to the intricacies of muscle development. The large, robust embryos make it ideal for manipulations at both the tissue and molecular level. In particular, this model system can be used to fate map early muscle progenitors, visualize cell behaviors associated with somitogenesis, and examine the role of signaling pathways that underlie induction, specification, and differentiation of muscle. Several characteristics that are unique to X. laevis include myogenic waves with distinct gene expression profiles and the late formation of dermomyotome and sclerotome. Furthermore, myogenesis in the metamorphosing frog is biphasic, facilitating regeneration studies. In this review, we describe the morphogenetic movements that shape the somites and discuss signaling and transcriptional regulation during muscle development and regeneration. With recent advances in gene editing tools, X. laevis remains a premier model organism for dissecting the complex mechanisms underlying the specification, cell behaviors, and formation of the musculature system.
Collapse
Affiliation(s)
- Armbien Sabillo
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Julio Ramirez
- Department of Biology, San Francisco State University, CA 94132, USA
| | - Carmen R Domingo
- Department of Biology, San Francisco State University, CA 94132, USA.
| |
Collapse
|
3
|
Effects of 28 days of resistance exercise while consuming commercially available pre- and post-workout supplements, NO-Shotgun® and NO-Synthesize® on body composition, muscle strength and mass, markers of protein synthesis, and clinical safety markers in males. Nutr Metab (Lond) 2011; 8:78. [PMID: 22050827 PMCID: PMC3226541 DOI: 10.1186/1743-7075-8-78] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 11/03/2011] [Indexed: 11/10/2022] Open
Abstract
Purpose The effects of 28 days of heavy resistance training while ingesting the pre- and post-workout supplements, NO-Shotgun® and NO-Synthesize® were determined on body composition, muscle strength and mass, markers of protein synthesis, and clinical safety markers. Methods Nineteen non-resistance-trained males participated in a resistance training program 4 times/week for 28 days while either ingesting 27 g/day of carbohydrate (CARB) or NO-Shotgun® 30 min pre-exercise and 27 g/day of carbohydrate or NO- Synthesize® 30 min post-exercise (NOSS). Data were analyzed with separate 2 × 2 ANOVA (p < 0.05). Results Total body mass was increased in both groups (p = 0.001), but not different between groups. Fat mass was unchanged with CARB, but NOSS decreased fat mass (p = 0.026). Both groups increased fat-free mass (p = 0.001); however, the increases were greater with NOSS (p = 0.023). NOSS underwent greater increases in upper-body (p = 0.023) and lower-body (p = 0.035) strength than CARB. Myofibrillar protein significantly increased in both groups (p = 0.041), with NOSS being greater than CARB (p = 0.049). All of the MHC isoforms were significantly increased in both groups; however, NOSS was greater than CARB for MHC 1 (p = 0.013) and MHC 2A (p = 0.046). All of the myogenic regulatory factors were significantly increased in both groups; however, NOSS was greater than CARB for Myo-D (p = 0.038) and MRF-4 (p = 0.001). For the whole blood and serum clinical chemistry markers, all variables remained within normal clinical ranges. Conclusions Heavy resistance training for 28 days, with NO-Shotgun® and NO-Synthesize® ingested before and after exercise, respectively, significantly improved body composition and increased muscle mass and performance without abnormally impacting any of the clinical chemistry markers.
Collapse
|
4
|
Shelmadine B, Cooke M, Buford T, Hudson G, Redd L, Leutholtz B, Willoughby DS. Effects of 28 days of resistance exercise and consuming a commercially available pre-workout supplement, NO-Shotgun(R), on body composition, muscle strength and mass, markers of satellite cell activation, and clinical safety markers in males. J Int Soc Sports Nutr 2009; 6:16. [PMID: 19656392 PMCID: PMC2731073 DOI: 10.1186/1550-2783-6-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 08/05/2009] [Indexed: 11/10/2022] Open
Abstract
Purpose This study determined the effects of 28 days of heavy resistance exercise combined with the nutritional supplement, NO-Shotgun®, on body composition, muscle strength and mass, markers of satellite cell activation, and clinical safety markers. Methods Eighteen non-resistance-trained males participated in a resistance training program (3 × 10-RM) 4 times/wk for 28 days while also ingesting 27 g/day of placebo (PL) or NO-Shotgun® (NO) 30 min prior to exercise. Data were analyzed with separate 2 × 2 ANOVA and t-tests (p < 0.05). Results Total body mass was increased in both groups (p = 0.001), but without any significant increases in total body water (p = 0.77). No significant changes occurred with fat mass (p = 0.62); however fat-free mass did increase with training (p = 0.001), and NO was significantly greater than PL (p = 0.001). Bench press strength for NO was significantly greater than PL (p = 0.003). Myofibrillar protein increased with training (p = 0.001), with NO being significantly greater than PL (p = 0.019). Serum IGF-1 (p = 0.046) and HGF (p = 0.06) were significantly increased with training and for NO HGF was greater than PL (p = 0.002). Muscle phosphorylated c-met was increased with training for both groups (p = 0.019). Total DNA was increased in both groups (p = 0.006), while NO was significantly greater than PL (p = 0.038). For DNA/protein, PL was decreased and NO was not changed (p = 0.014). All of the myogenic regulatory factors were increased with training; however, NO was shown to be significantly greater than PL for Myo-D (p = 0.008) and MRF-4 (p = 0.022). No significant differences were located for any of the whole blood and serum clinical chemistry markers (p > 0.05). Conclusion When combined with heavy resistance training for 28 days, NO-Shotgun® is not associated with any negative side effects, nor does it abnormally impact any of the clinical chemistry markers. Rather, NO-Shotgun® effectively increases muscle strength and mass, myofibrillar protein content, and increases the content of markers indicative of satellite cell activation.
Collapse
Affiliation(s)
- Brian Shelmadine
- Department of Health, Human Performance, and Recreation, Baylor University, Box 97313, Waco, TX 76798, USA.
| | | | | | | | | | | | | |
Collapse
|
5
|
Kim JA, Laney C, Curry J, Unguez GA. Expression of myogenic regulatory factors in the muscle-derived electric organ of Sternopygus macrurus. ACTA ACUST UNITED AC 2008; 211:2172-84. [PMID: 18552307 DOI: 10.1242/jeb.016592] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In most groups of electric fish, the current-producing cells of electric organs (EOs) derive from striated muscle fibers but retain some phenotypic characteristics of their precursor muscle cells. Given the role of the MyoD family of myogenic regulatory factors (MRFs) in the transcriptional activation of the muscle program in vertebrates, we examined their expression in the electrocytes of the gymnotiform Sternopygus macrurus. We estimated the number of MRF genes in the S. macrurus genome and our Southern blot analyses revealed a single MyoD, myogenin, myf5 and MRF4 gene. Quantitative RT-PCR showed that muscle and EO transcribe all MRF genes. With the exception of MyoD, the endogenous levels of myogenin, myf5 and MRF4 transcripts in electrocytes were greater than those detected in muscle fibers. These data indicate that MRF expression levels are not sufficient to predict the level to which the muscle program is manifested. Qualitative expression analysis of MRF co-regulators MEF2C, Id1 and Id2 also revealed these genes not to be unique to either muscle or EO, and detected similar expression patterns in the two tissues. Therefore, the partial muscle program of the EO is not associated with a partial expression of MRFs or with apparent distinct levels of some MRF co-factors. In addition, electrical inactivation by spinal cord transection (ST) resulted in the up-regulation of some muscle proteins in electrocytes without an accompanying increase in MRF transcript levels or notable changes in the co-factors MEF2C, Id1 and Id2. These findings suggest that the neural regulation of the skeletal muscle program via MRFs in S. macrurus might differ from that of their mammalian counterparts. Together, these data further our understanding of the molecular processes involved in the plasticity of the vertebrate skeletal muscle program that brings about the muscle-like phenotype of the non-contractile electrogenic cells in S. macrurus.
Collapse
Affiliation(s)
- Jung A Kim
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | | | |
Collapse
|
6
|
Suelves M, Lluís F, Ruiz V, Nebreda AR, Muñoz-Cánoves P. Phosphorylation of MRF4 transactivation domain by p38 mediates repression of specific myogenic genes. EMBO J 2004; 23:365-75. [PMID: 14739931 PMCID: PMC1271762 DOI: 10.1038/sj.emboj.7600056] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Accepted: 12/05/2003] [Indexed: 12/31/2022] Open
Abstract
Skeletal myogenesis is associated with the activation of four muscle regulatory factors (MRFs): Myf5, MyoD, Myogenin and MRF4. Here we report that p38 mitogen-activated protein kinase represses the transcriptional activity of MRF4 (involved in late stages of myogenesis), resulting in downregulation of specific muscle genes. MRF4 is phosphorylated in vitro and in vivo by p38 on two serines (Ser31 and Ser42) located in the N-terminal transactivation domain, resulting in reduced MRF4-mediated transcriptional activity. In contrast, nonphosphorylatable MRF4 mutants display increased transcriptional activity and are able to advance both myoblast fusion and differentiation. We also show that expression of desmin and alpha-actin, but not muscle creatin kinase, decreased at late stages of muscle differentiation, correlating with the induction of MRF4 and p38 activation. Accordingly, inhibition of p38 during late myogenesis results in the upregulation of both desmin and alpha-actin. We propose that repression of MRF4 activity by p38 phosphorylation may represent a new mechanism for the silencing of specific muscle genes at the terminal stages of muscle differentiation.
Collapse
Affiliation(s)
- Mònica Suelves
- Centre de Regulació Genòmica (CRG), Programa de Diferenciació i Cancer, Barcelona, Spain
- Both authors have contributed equally to this work and should therefore be considered first authors
| | - Frederic Lluís
- Centre de Regulació Genòmica (CRG), Programa de Diferenciació i Cancer, Barcelona, Spain
- Both authors have contributed equally to this work and should therefore be considered first authors
| | - Vanessa Ruiz
- Centre de Regulació Genòmica (CRG), Programa de Diferenciació i Cancer, Barcelona, Spain
| | - Angel R Nebreda
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Pura Muñoz-Cánoves
- Centre de Regulació Genòmica (CRG), Programa de Diferenciació i Cancer, Barcelona, Spain
- Centre de Regulació Genòmica (CRG), Programa de Diferenciació i Cancer, Passeig Maritim, 37-49, E-08003 Barcelona, Spain. Tel.: +34 93 224 0933; Fax: +34 93 224 0899; E-mail:
| |
Collapse
|
7
|
Sartorelli V, Huang J, Hamamori Y, Kedes L. Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol Cell Biol 1997; 17:1010-26. [PMID: 9001254 PMCID: PMC231826 DOI: 10.1128/mcb.17.2.1010] [Citation(s) in RCA: 305] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
By searching for molecules that assist MyoD in converting fibroblasts to muscle cells, we have found that p300 and CBP, two related molecules that act as transcriptional adapters, coactivate the myogenic basic-helix-loop-helix (bHLH) proteins. Coactivation by p300 involves novel physical interactions between p300 and the amino-terminal activation domain of MyoD. In particular, disruption of the FYD domain, a group of three amino acids conserved in the activation domains of other myogenic bHLH proteins, drastically diminishes the transactivation potential of MyoD and abolishes both p300-mediated coactivation and the physical interaction between MyoD and p300. Two domains of p300, at its amino and carboxy terminals, independently function to both mediate coactivation and physically interact with MyoD. A truncated segment of p300, unable to bind MyoD, acts as a dominant negative mutation and abrogates both myogenic conversion and transactivation by MyoD, suggesting that endogenous p300 is a required coactivator for MyoD function. The p300 dominant negative peptide forms multimers with intact p300. p300 and CBP serve as coactivators of another class of transcriptional activators critical for myogenesis, myocyte enhancer factor 2 (MEF2). In fact, transactivation mediated by the MEF2C protein is potentiated by the two coactivators, and this phenomenon is associated with the ability of p300 to interact with the MADS domain of MEF2C. Our results suggest that p300 and CBP may positively influence myogenesis by reinforcing the transcriptional autoregulatory loop established between the myogenic bHLH and the MEF2 factors.
Collapse
Affiliation(s)
- V Sartorelli
- Institute for Genetic Medicine and Department of Biochemistry and Molecular Biology, University of Southern California School of Medicine, Los Angeles 90033, USA
| | | | | | | |
Collapse
|
8
|
Calkhoven CF, Ab G. Multiple steps in the regulation of transcription-factor level and activity. Biochem J 1996; 317 ( Pt 2):329-42. [PMID: 8713055 PMCID: PMC1217492 DOI: 10.1042/bj3170329] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This review focuses on the regulation of transcription factors, many of which are DNA-binding proteins that recognize cis-regulatory elements of target genes and are the most direct regulators of gene transcription. Transcription factors serve as integration centres of the different signal-transduction pathways affecting a given gene. It is obvious that the regulation of these regulators themselves is of crucial importance for differential gene expression during development and in terminally differentiated cells. Transcription factors can be regulated at two, principally different, levels, namely concentration and activity, each of which can be modulated in a variety of ways. The concentrations of transcription factors, as of intracellular proteins in general, may be regulated at any of the steps leading from DNA to protein, including transcription, RNA processing, mRNA degradation and translation. The activity of a transcription factor is often regulated by (de) phosphorylation, which may affect different functions, e.g. nuclear localization DNA binding and trans-activation. Ligand binding is another mode of transcription-factor activation. It is typical for the large super-family of nuclear hormone receptors. Heterodimerization between transcription factors adds another dimension to the regulatory diversity and signal integration. Finally, non-DNA-binding (accessory) factors may mediate a diverse range of functions, e.g. serving as a bridge between the transcription factor and the basal transcription machinery, stabilizing the DNA-binding complex or changing the specificity of the target sequence recognition. The present review presents an overview of different modes of transcription-factor regulation, each illustrated by typical examples.
Collapse
Affiliation(s)
- C F Calkhoven
- Department of Biochemistry, University of Groningen, The Netherlands
| | | |
Collapse
|
9
|
Kong Y, Johnson SE, Taparowsky EJ, Konieczny SF. Ras p21Val inhibits myogenesis without altering the DNA binding or transcriptional activities of the myogenic basic helix-loop-helix factors. Mol Cell Biol 1995; 15:5205-13. [PMID: 7565669 PMCID: PMC230768 DOI: 10.1128/mcb.15.10.5205] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
MRF4, MyoD, myogenin, and Myf-5 are muscle-specific basic helix-loop-helix transcription factors that share the ability to activate the expression of skeletal muscle genes such as those encoding alpha-actin, myosin heavy chain, and the acetylcholine receptor subunits. The muscle regulatory factors (MRFs) also exhibit the unique capacity to initiate the myogenic program when ectopically expressed in a variety of nonmuscle cell types, most notably C3H10T1/2 fibroblasts (10T1/2 cells). The commitment of myoblasts to terminal differentiation, although positively regulated by the MRFs, also is controlled negatively by a variety of agents, including several growth factors and oncoproteins such as fibroblast growth factor (FGF-2), transforming growth factor beta 1 (TGF-beta 1), and Ras p21Val. The molecular mechanisms by which these varied agents alter myogenic terminal differentiation events remain unclear. In an effort to establish whether Ras p21Val represses MRF activity by directly targeting the MRF proteins, we examined the DNA binding and transcription activation potentials of MRF4 and MyoD when expressed in 10T1/2 cells or in 10T1/2 cells expressing Ras p21Val. Our results demonstrate that Ras p21Val inhibits terminal differentiation events by targeting the basic domain of the MRFs, and yet the mechanism underlying this inhibition does not involve altering the DNA binding or the inherent transcriptional activity of these regulatory factors. In contrast, FGF-2 and TGF-beta 1 block terminal differentiation by repressing the transcriptional activity of the MRFs. We conclude that the Ras p21Val block in differentiation operates via an intracellular signaling pathway that is distinct from the FGF-2 and TGF-beta 1 pathways.
Collapse
Affiliation(s)
- Y Kong
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | | | | | |
Collapse
|
10
|
Naidu PS, Ludolph DC, To RQ, Hinterberger TJ, Konieczny SF. Myogenin and MEF2 function synergistically to activate the MRF4 promoter during myogenesis. Mol Cell Biol 1995; 15:2707-18. [PMID: 7739551 PMCID: PMC230501 DOI: 10.1128/mcb.15.5.2707] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The basic helix-loop-helix muscle regulatory factor (MRF) gene family encodes four distinct muscle-specific transcription factors known as MyoD, myogenin, Myf-5, and MRF4. These proteins represent key regulatory factors that control many aspects of skeletal myogenesis. Although the MRFs often exhibit overlapping functional activities, their distinct expression patterns during embryogenesis suggest that each protein plays a unique role in controlling aspects of muscle development. As a first step in determining how MRF4 gene expression is developmentally regulated, we examined the ability of the MRF4 gene to be expressed in a muscle-specific fashion in vitro. Our studies show that the proximal MRF4 promoter contains sufficient information to direct muscle-specific expression. Located within the proximal promoter are a single MEF2 site and E box that are required for maximum MRF4 expression. Mutation of the MEF2 site or E box severely impairs the ability of this promoter to produce a muscle-specific response. In addition, the MEF2 site and E box function in concert to synergistically activate the MRF4 gene in nonmuscle cells coexpressing MEF2 and myogenin proteins. Thus, the MRF4 promoter is regulated by the MEF2 and basic helix-loop-helix MRF protein family through a cross-regulatory circuitry. Surprisingly, the MRF4 promoter itself is not transactivated by MRF4, suggesting that this MRF gene is not subject to an autoregulatory pathway as previously implied by other studies. Understanding the molecular mechanisms regulating expression of each MRF gene is central to fully understanding how these factors control developmental events.
Collapse
Affiliation(s)
- P S Naidu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
11
|
Smith TH, Kachinsky AM, Miller JB. Somite subdomains, muscle cell origins, and the four muscle regulatory factor proteins. J Cell Biol 1994; 127:95-105. [PMID: 7929574 PMCID: PMC2120174 DOI: 10.1083/jcb.127.1.95] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We show by immunohistology that distinct expression patterns of the four muscle regulatory factor (MRF) proteins identify subdomains of mouse somites. Myf-5 and MyoD are, at specific stages, each expressed in both myotome and dermatome cells. Myf-5 expression is initially restricted to dorsal cells in all somites, as is MyoD expression in neck somites. In trunk somites, however, MyoD is initially expressed in ventral cells. Myogenin and MRF4 are restricted to myotome cells, though the MRF4-expressing cells are initially less widely distributed than the myogenin-expressing cells, which are at all stages found throughout the myotome. All somitic myocytes express one or more MRFs. The transiently distinct expression patterns of the four MRF proteins identify dorsal and ventral subdomains of somites, and suggest that skeletal muscle cells in somites originate at multiple sites and via multiple molecular pathways.
Collapse
Affiliation(s)
- T H Smith
- Neuromuscular Laboratory, Massachusetts General Hospital, Charlestown 02129
| | | | | |
Collapse
|
12
|
E-box- and MEF-2-independent muscle-specific expression, positive autoregulation, and cross-activation of the chicken MyoD (CMD1) promoter reveal an indirect regulatory pathway. Mol Cell Biol 1994. [PMID: 8035824 DOI: 10.1128/mcb.14.8.5474] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the MyoD family of gene-regulatory proteins (MyoD, myogenin, myf5, and MRF4) have all been shown not only to regulate the transcription of numerous muscle-specific genes but also to positively autoregulate and cross activate each other's transcription. In the case of muscle-specific genes, this transcriptional regulation can often be correlated with the presence of a DNA consensus in the regulatory region CANNTG, known as an E box. Little is known about the regulatory interactions of the myogenic factors themselves; however, these interactions are thought to be important for the activation and maintenance of the muscle phenotype. We have identified the minimal region in the chicken MyoD (CMD1) promoter necessary for muscle-specific transcription in primary cultures of embryonic chicken skeletal muscle. The CMD1 promoter is silent in primary chick fibroblast cultures and in muscle cell cultures treated with the thymidine analog bromodeoxyuridine. However, CMD1 and chicken myogenin, as well as, to a lesser degree, chicken Myf5 and MRF4, expressed in trans can activate transcription from the minimal CMD1 promoter in these primary fibroblast cultures. Here we show that the CMD1 promoter contains numerous E-box binding sites for CMD1 and the other myogenic factors, as well as a MEF-2 binding site. Surprisingly, neither muscle-specific and the other myogenic factors, as well as a MEF-2 binding site. Surprisingly, neither muscle-specific expression, autoregulation, or cross activation depends upon the presence of of these E-box or MEF-2 binding sites in the CMD1 promoter. These results demonstrate that the autoregulation and cross activation of the chicken MyoD promoter through the putative direct binding of the myogenic basic helix-loop-helix regulatory factors is mediated through an indirect pathway that involves unidentified regulatory elements and/or ancillary factors.
Collapse
|
13
|
Dechesne CA, Wei Q, Eldridge J, Gannoun-Zaki L, Millasseau P, Bougueleret L, Caterina D, Paterson BM. E-box- and MEF-2-independent muscle-specific expression, positive autoregulation, and cross-activation of the chicken MyoD (CMD1) promoter reveal an indirect regulatory pathway. Mol Cell Biol 1994; 14:5474-86. [PMID: 8035824 PMCID: PMC359067 DOI: 10.1128/mcb.14.8.5474-5486.1994] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Members of the MyoD family of gene-regulatory proteins (MyoD, myogenin, myf5, and MRF4) have all been shown not only to regulate the transcription of numerous muscle-specific genes but also to positively autoregulate and cross activate each other's transcription. In the case of muscle-specific genes, this transcriptional regulation can often be correlated with the presence of a DNA consensus in the regulatory region CANNTG, known as an E box. Little is known about the regulatory interactions of the myogenic factors themselves; however, these interactions are thought to be important for the activation and maintenance of the muscle phenotype. We have identified the minimal region in the chicken MyoD (CMD1) promoter necessary for muscle-specific transcription in primary cultures of embryonic chicken skeletal muscle. The CMD1 promoter is silent in primary chick fibroblast cultures and in muscle cell cultures treated with the thymidine analog bromodeoxyuridine. However, CMD1 and chicken myogenin, as well as, to a lesser degree, chicken Myf5 and MRF4, expressed in trans can activate transcription from the minimal CMD1 promoter in these primary fibroblast cultures. Here we show that the CMD1 promoter contains numerous E-box binding sites for CMD1 and the other myogenic factors, as well as a MEF-2 binding site. Surprisingly, neither muscle-specific and the other myogenic factors, as well as a MEF-2 binding site. Surprisingly, neither muscle-specific expression, autoregulation, or cross activation depends upon the presence of of these E-box or MEF-2 binding sites in the CMD1 promoter. These results demonstrate that the autoregulation and cross activation of the chicken MyoD promoter through the putative direct binding of the myogenic basic helix-loop-helix regulatory factors is mediated through an indirect pathway that involves unidentified regulatory elements and/or ancillary factors.
Collapse
Affiliation(s)
- C A Dechesne
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | |
Collapse
|
14
|
MyoD and myogenin act on the chicken myosin light-chain 1 gene as distinct transcriptional factors. Mol Cell Biol 1993. [PMID: 8413304 DOI: 10.1128/mcb.13.11.7153] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of MyoD, myogenin, MRF4, and Myf-5 converts nonmuscle cells to muscle cells. In an attempt to analyze the roles of these factors, we have investigated their effects on transcription driven by the promoter of the chicken myosin alkaline light-chain (MLC1) gene. The activation by CMD1 or c-myogenin (chicken MyoD or myogenin, respectively) was dependent on the existence of a muscle-specific regulatory region located from positions -2096 to -1743. Its distal half, containing a pair of E boxes (CANNTG), had been previously characterized as an enhancer responsive to CMD1 but not to c-myogenin. In this study, we report the identification of another enhancer in the muscle-specific regulatory region which is preferentially responsive to c-myogenin. Deletion and mutation analyses indicated that this enhancer requires a single E box and its flanking sequences. Furthermore, analysis of chimeric proteins of CMD1 and c-myogenin indicated that regions outside the basic helix-loop-helix domain of c-myogenin are involved in the specificity of the enhancer. These results show that CMD1 and c-myogenin act on the MLC1 gene by recognizing different upstream DNA sequences and that direct or indirect interactions between the regions outside the basic helix-loop-helix domain and flanking sequences of E boxes are involved in the target sequence specificity.
Collapse
|
15
|
Asakura A, Fujisawa-Sehara A, Komiya T, Nabeshima Y, Nabeshima Y. MyoD and myogenin act on the chicken myosin light-chain 1 gene as distinct transcriptional factors. Mol Cell Biol 1993; 13:7153-62. [PMID: 8413304 PMCID: PMC364776 DOI: 10.1128/mcb.13.11.7153-7162.1993] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Expression of MyoD, myogenin, MRF4, and Myf-5 converts nonmuscle cells to muscle cells. In an attempt to analyze the roles of these factors, we have investigated their effects on transcription driven by the promoter of the chicken myosin alkaline light-chain (MLC1) gene. The activation by CMD1 or c-myogenin (chicken MyoD or myogenin, respectively) was dependent on the existence of a muscle-specific regulatory region located from positions -2096 to -1743. Its distal half, containing a pair of E boxes (CANNTG), had been previously characterized as an enhancer responsive to CMD1 but not to c-myogenin. In this study, we report the identification of another enhancer in the muscle-specific regulatory region which is preferentially responsive to c-myogenin. Deletion and mutation analyses indicated that this enhancer requires a single E box and its flanking sequences. Furthermore, analysis of chimeric proteins of CMD1 and c-myogenin indicated that regions outside the basic helix-loop-helix domain of c-myogenin are involved in the specificity of the enhancer. These results show that CMD1 and c-myogenin act on the MLC1 gene by recognizing different upstream DNA sequences and that direct or indirect interactions between the regions outside the basic helix-loop-helix domain and flanking sequences of E boxes are involved in the target sequence specificity.
Collapse
Affiliation(s)
- A Asakura
- Division of Molecular Genetics, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | | | | | | |
Collapse
|
16
|
Fibroblast growth factor inhibits MRF4 activity independently of the phosphorylation status of a conserved threonine residue within the DNA-binding domain. Mol Cell Biol 1993. [PMID: 8413199 DOI: 10.1128/mcb.13.10.5943] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MRF4 is a member of the muscle-specific basic helix-loop-helix transcription factor family that also includes MyoD, myogenin, and Myf-5. Each of these proteins, when overexpressed in fibroblasts, converts the cells to differentiated muscle fibers that express several skeletal muscle genes, such as those for alpha-actin, muscle creatine kinase, and troponin I. Despite the fact that MRF4 functions as a positive transcriptional regulator, the MRF4 protein is subject to negative regulation by a variety of agents, most notably by exposure of cells to purified growth factors, such as basic fibroblast growth factor (bFGF). In an effort to establish whether bFGF inhibits MRF4 activity through specific posttranslational modifications, we examined whether MRF4 exists in vivo as a phosphoprotein and whether the phosphorylation status of the protein regulates its activity. Our results indicate that MRF4 is phosphorylated predominantly on serine residues, with weak phosphorylation occurring on threonine residues. Both cyclic AMP-dependent protein kinase (PKA) and protein kinase C (PKC) phosphorylate MRF4 in vitro as well as in vivo, and the overexpression of each kinase inhibits MRF4 activity and thus blocks terminal differentiation. PKC-directed phosphorylation of a conserved threonine residue (T-99) situated within the DNA-binding domain inhibits MRF4 from binding in vitro to specific DNA targets. However, although T-99 itself is essential for myogenic activity, our studies demonstrate that the phosphorylation status of T-99 does not play a major role in regulating MRF4 activity in vivo, since PKA, PKC, and bFGF inhibit the activity of MRF4 proteins in which the identified PKA and PKC sites have been mutated. We suggest that the negative regulation of MRF4 imposed by bFGF does not involve a direct modification of the protein at the identified PKA and PKC sites but instead may involve the modification of specific coregulators that interact with this muscle regulatory factor.
Collapse
|
17
|
Hardy S, Kong Y, Konieczny SF. Fibroblast growth factor inhibits MRF4 activity independently of the phosphorylation status of a conserved threonine residue within the DNA-binding domain. Mol Cell Biol 1993; 13:5943-56. [PMID: 8413199 PMCID: PMC364639 DOI: 10.1128/mcb.13.10.5943-5956.1993] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
MRF4 is a member of the muscle-specific basic helix-loop-helix transcription factor family that also includes MyoD, myogenin, and Myf-5. Each of these proteins, when overexpressed in fibroblasts, converts the cells to differentiated muscle fibers that express several skeletal muscle genes, such as those for alpha-actin, muscle creatine kinase, and troponin I. Despite the fact that MRF4 functions as a positive transcriptional regulator, the MRF4 protein is subject to negative regulation by a variety of agents, most notably by exposure of cells to purified growth factors, such as basic fibroblast growth factor (bFGF). In an effort to establish whether bFGF inhibits MRF4 activity through specific posttranslational modifications, we examined whether MRF4 exists in vivo as a phosphoprotein and whether the phosphorylation status of the protein regulates its activity. Our results indicate that MRF4 is phosphorylated predominantly on serine residues, with weak phosphorylation occurring on threonine residues. Both cyclic AMP-dependent protein kinase (PKA) and protein kinase C (PKC) phosphorylate MRF4 in vitro as well as in vivo, and the overexpression of each kinase inhibits MRF4 activity and thus blocks terminal differentiation. PKC-directed phosphorylation of a conserved threonine residue (T-99) situated within the DNA-binding domain inhibits MRF4 from binding in vitro to specific DNA targets. However, although T-99 itself is essential for myogenic activity, our studies demonstrate that the phosphorylation status of T-99 does not play a major role in regulating MRF4 activity in vivo, since PKA, PKC, and bFGF inhibit the activity of MRF4 proteins in which the identified PKA and PKC sites have been mutated. We suggest that the negative regulation of MRF4 imposed by bFGF does not involve a direct modification of the protein at the identified PKA and PKC sites but instead may involve the modification of specific coregulators that interact with this muscle regulatory factor.
Collapse
Affiliation(s)
- S Hardy
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392
| | | | | |
Collapse
|